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ABSTRACT

We consider simple deterministic models of disease transmission. Given a set of individuals
I, we assign a hypergraph Hi = (I \ {i}, Ei) to each i ∈ I and assume that i will be infected
whenever there is a fully infected edge e ∈ Ei. Along with this general model MH we also
study two special cases MG and MD when for all i ∈ I the hypergraphs Hi are specified
implicitly by a (directed) graph G = (I, E) and integral positive thresholds k(i) for all i ∈ I.
Then we assume that i will be infected whenever at least k(i) of his neighbors (predecessors)
are infected.
Given a set S of the originally infected individuals (a source) we generate the closure T (S) =
cl(S), that is, the set of all individuals that will be infected if the above transmission rules
are applied iteratively sufficiently many times. We study all minimal sources such that
(i) T (S) = I, or (ii) T (S) contains a given individual q ∈ I, or
(iii) T (S) contains an edge of a given “target” hypergraph H.
We denote these three types of “targets” by TI , Tq, and TH respectively. We show that,
given a threshold t, it is NP-complete to decide whether there is a source S of size at most t.
The problem remains NP-complete for each of the three models MR, MG or MD and targets
TI , Tq or TH . We also consider enumeration problems and show that if the transmission rule
is given explicitly, MR, then all inclusion minimal sources can be generated in incremental
polynomial time for all targets TI , Tq, or TH . On the other hand, generating minimal sources
is hard for all targets if the transmission model is given by a (directed) graph, MG or MD,
since for these two cases the input size may be logarithmic in the input size of MR. Indeed,
given G = (I, E) and k(i) for all i ∈ I, a corresponding hypergraph Hi for some i ∈ I may
be exponential in |I| unless k(i) is bounded by a constant.
Key words: closure, disease transmission, incremental polynomial, generation algorithm,
graph, hypergraph, DNF, Horn DNF, pure Horn DNF.



1 Introduction

1.1 Basic assumptions

We consider simple models of a disease transmission within a set of individuals I. Our basic
assumptions are as follows:

1. We restrict ourselves with deterministic models and do not consider any random
mechanisms.

2. We also restrict ourselves with irreversible models, that is, if an individual is infected
(s)he remains infected. In other words, we consider time intervals that are not long enough
for an individual to recover.

3. We ignore dynamics and consider only the initial and final situation. Mathematically,
such an approach is described by the concept of closure cl : 2I → 2I satisfying the following
standard axioms:

a) expansion: S ⊆ cl(S);

b) monotonicity: S ⊆ S ′ ⇒ cl(S) ⊆ cl(S ′)

c) idempotent rule: cl(cl(S)) = cl(S)

Here S ⊆ I and T = cl(S) ⊆ I denote the sets of initially and finally infected individuals.
We will refer to them as the source and target, respectively.

1.2 Source and target groups, fatal sources

We will consider the following three types of targets.

TI : the whole set I.

Tq: one special individual q ∈ I that we will call a queen.
In this case we assume that q cannot belong to a source, q 6∈ S.

TH : Given a family of sets (a hypergraph) H = (I, E) whose vertices are the individuals
i ∈ I and edges e ⊆ I are target groups. Target is achieved if at least one target group is
fully infected. Clearly, this case generalizes the previous two.

A set S of the initially infected individuals is a source. In the next section we will
introduce several models of a disease transmission. Given such a model M and a target T ,
we say a source S is fatal (or (M, T )-fatal) if S will infect T , given transmission rules M .
There are two problems to consider:

O, “optimization”: find a fatal source of minimum size, and

E, enumeration: generate all fatal sources.

Given M and T , these two problems can be hard or tractable. In this paper we survey
the cases.

A motivation for such a terminology and for the above assumptions, as well, is the need
to study the aftermath of a possible terrorist attack.
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1.3 Disease transmission modeling

We consider three transmission models MG, MD, and MR defined respectively by a graph,
digraph, and a set of transmission rules or implications.

Model MG. Let G = (I, E) be a graph on the ground set I. Edges of G are interpreted
as contacts or connections between individuals. We assume that there are no loops but
multiple edges are allowed. The multiplicities show how intensive are the contacts. To each
i ∈ I we assign a threshold k(i) that indicates that i will be infected whenever (at least) k(i)
of his neighbors (i.e., adjacent vertices) are infected.

Given a source S ⊆ I, the set of infected individuals is expanded iteratively until the
limit (i.e., the closure cl(S)) is achieved. Without loss of generality, we can assume that
k(i) ≤ deg(i) for every i ∈ I, since otherwise i cannot be infected at all and hence, (s)he can
be excused. Since the thresholds k(i) may vary with i ∈ I, we can model a situation when
some individuals are more vulnerable than others.

Let us remark that within model MG target TI can be easily reduced to Tq as follows.
Given a graph G = (I, E), let us add to I one new vertex q and an edge (i, q) between i
and q for each i ∈ I. Then let us set k(q) = deg(q) = |I|. Clearly, given a source S ⊆ I,
the queen q is infected in the obtained graph G′ = (I ′, E ′) if and only if the whole set I is
infected in G.

Model MD. Given a directed graph (digraph) G = (I, E) on the ground set I and a
positive integral k(i) for each i ∈ I, we assume that an individual i will be infected whenever
at least k(i) of his predecessors are infected; in other words, if there is a set of infected
individuals I ′ ⊆ I such that |I ′| ≥ k(i) and there is an arc (i′, i) from i′ to i in E for each
i′ ∈ I ′. Without loss of generality we can assume that k(i) ≤ indeg(i) must hold for every
i ∈ I, since otherwise i can be excused.

This model MD may reflect an assymmetry between the individuals. Formally, MD

generalizes MG. Indeed, given a graph G = (I, E), let us substitute each edge (u, v) = e ∈ E
by two oppositely directed arcs (u, v) = e′ and (v, u) = e′′ and we obtain a digraph G′ =
(I, E ′) that represents an equivalent model.

Let us also remark that for digraphs targets TI and Tq are obviously equivalent. The
reduction of TI to Tq was described for graphs and it holds for digraphs as well. Now we
reduce target Tq to TI as follows. Given a digraph G = (V, E) and q ∈ I, let us choose an
integer m > |I| and for each i ∈ I \ {q} add m parallel arcs (q, i) from q to i. Clearly, in
the obtained graph G′ = (I, E ′) the whole set I is infected if and only if q is infected in the
original digraph G.

Model MR; transmission rules (implications) and Horn DNFs. More generally,
the rules of transmission can be given explicitly by a set of implications. For example,

i5 ∈ I is infected whenever i1, i2, i3, i4 ∈ I are all infected;

i4 is infected whenever i1, i2, i3 are all infected;

i3 is infected whenever i1, i2 are both infected;
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i2 is infected whenever i1, i3 are both infected;

i1 is infected whenever i2, i3 are both infected.

These transmission rules are summarized by the following pure Horn DNF:

DTR = xi1xi2xi3xi4xi5 ∨ xi1xi2xi3xi4 ∨ xi1xi2xi3 ∨ xi2xi3xi1 ∨ xi3xi1xi2 .

Let us recall that D is a (pure) Horn DNF if each its monomial contains at most one
(respectively, exactly one) negation.

In Section 3 we will explain this approach with more details. Now let us notice that
in the above example the following three properties of a source S ⊆ I = {i1, i2, i3, i4} are
equivalent:

(i) the whole set I is infected by S;

(ii) the queen q = i5 is infected by S;

(iii) S contains at least one of the following three sets (minimal sources) S1 = {i2, i3},
S2 = {i1, i3}, or S3 = {i1, i2}.

In general, let us assign a hypergraph Hi = (I \ {i}, Ei to each individual i ∈ I and
assume that i is infected whenever there is a fully infected edge e ∈ Ei. Thus, the family of
hypergraphs R = {Hi | i ∈ I} defines a transmission model MR.

In Section 3, we assign a Horn DNF to R as follows:

DTR =
∨

e∈Ei

(p
∧
i∈e

xi)

Given a source S ⊆ I of originally infected individuals, we expand S iteratively by
applying the rules of R until we get the limit set T (S) = clR(S).

We will consider the same three types of targets: TI , Tq, and TH . Target TI can be
reduced to Tq similarly. Given a set of individuals I and a family of rules R = {Hi, i ∈ I},
let us add one new individual q to I and and expand R to R′ by adding one more hypergraph
Hq that consists of one edge I; in other words,

q is infected whenever the whole set I is infected.

Obviously, q is infected by a source S ⊆ I in R′ if and only if the whole set I is infected
by S in R.

In Section 3 to a target hypergraph H = (I, E) we will assign another Horn DNF

DTA =
∨
e∈E

(q
∧
i∈e

xi)

and show that all minimal sources that achieve the target are in one-to-one correspondence
with the minimal implicants of the pure Horn DNF DTR ∨DTA. Furthermore, these impli-
cants can be efficiently generated by iterative applying consensus rules.

It is easy to see that model MR generalizes MD (that in its turn is more general than
MG). Indeed, given a digraph G = (I, E) to each individual i ∈ I let us assign the family
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of mi =
(

indeg(i)
k(i)

)
implications: i is infected whenever (at least) ki of his predecessors are

infected. Obviously, the obtained family R and the digraph G define the same model for any
target.

Let us remark however that input sizes of these two models are polynomially equivalent
only if all thresholds k(i) are bounded. Yet, if k(i) is a part of the input of the model
(Di)Graph then the number of implications mi can be exponential in |I|.

Let us also remark that MG and MD correspond only to some very special cases of MR. If
a family R = {Hi | i ∈ I} is obtained from a (di)graph G then each hypergraph Hi consists
of mi =

(
`(i)
k(i)

)
edges of size k(i); these edges are all subsets of a set P (i) ⊆ I, where P (i) is

the set of all neighbors (predecessors) of i in G and `(i) = |P (i)|.
For example, R can not contain two rules

i5 is infected whenever i1, i2 are both infected; and

i5 is infected whenever i2, i3, i4 are both infected

since the sets {i1, i2} and {i2, i3, i4} are of different cardinalities. Furthermore, if R contains
the rules

i4 is infected whenever i1, i2 are infected; and

i4 is infected whenever i1, i3 are infected

then R must also contain the rule

i4 is infected whenever i2, i3 are infected.

1.4 Main results

Given a transmission model M and target T we are looking for minimal sources S that infect
T . We shall consider two problems:

”Optimization”: find a source of minimum size that infects T .

Generation: output all inclusion minimal sources that infect T .

Optimization is hard already for graphs and for digraphs it remains hard even if ki =
deg(i) for one i ∈ I and ki = 1 for all others. More precisely, the following claim holds.

Theorem 1. Given a (di)graph G = (I, E) and positive integral t and k(i) for each i ∈ I,
the following two decision problems are NP-complete: if there is a fatal source S of size (at
most) t that infects (i) the whole set I or (ii) a given individual q ∈ I. Both problems, (i) and
(ii), remain NP-complete k(i) take only values deg(i) or 1 (that is, mi =

(
deg(i)
k(i)

)
= deg(i)).

In case of digraphs (i) and (ii) remain NP-complete even when k(i) = deg(i) only for one
i ∈ I and k(i) = 1 for all others. In case of graphs (i) and (ii) remain NP-complete even
when deg(i) ≤ 3 for all i ∈ I.

Let us recall that q 6∈ S in case (ii).
Let us also note that problems (i) and (ii) remain NP-complete for a more general trans-

mission model Implications. Indeed, to a given a (di)graph we assign a list of implications
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whose size is bounded by Σ =
∑

i∈I mi, where mi =
(

deg(i)
k(i)

)
. Furthermore, we can as-

sume that Σ < 2|E|, since for (di)graphs problems (i) and (ii) are NP-complete already
for mi = deg(i) or 1 for each i ∈ I. Thus, the input size for Implications is polynomially
bounded in the input size for (Di)graphs.

However, for generating problems the exponential increase of the input size is possible
and it does make a difference between the models (Di)Graphs and Implications. In the latter
case all minimal fatal sources can be generated in incremental polynomial time even if the
target is an arbitrary hypergraph.

Theorem 2. Given a family of rules R over a set of individuals I and a family of target sets
H ⊆ 2I , all inclusion minimal sources S ⊆ I can be generated in incremental polynomial
time.

On the other hand, if the transmission model MG or MD is a (Di)Graph G = (I, E) and
neither ki nor deg(i)−k(i) are polynomially bounded in |I| then generating all minimal fatal
sources becomes hard already for simple targets TI and Tq. Moreover, for digraphs these
problems remain hard even if all thresholds k(i), except one, take values 1 and 2. More
precisely, the following claim holds.

Theorem 3. Given a (di)graph G = (I, E), queen q ∈ I, positive integral thresholds t ≤ |I|
and k(i) for each i ∈ I, and also a collection S of minimal fatal sources S ⊆ I that infect (i)
the whole set I or (ii) the queen q, it is an NP-complete to decide whether there exists one
more minimal fatal source S 6∈ S or the collection S is complete. Moreover, for digraphs the
problem remains NP-hard even if all thresholds k(i), except one, take only values 1 and 2.

To summarize, let us count all problems. We consider three transmission models MG, MD, MR,
three targets TI , Tq, TH , and two goals: “optimization” and generation; totally 3×3×2 = 18
problems. Three of them, generation problems with model MR are tractable, incremental
polynomial, for all three possible targets; the remaining sixteen problems are NP-hard.

1.5 Generating optimal vaccination strategies

Let us say also a few words about possible vaccination strategies. Given a family (hyper-
graph) S of all fatal sources, let us consider so-called dual (or transversal) hepergraph Sd

defined on the same ground set I and whose edges are all minimal transversals to the edges
of S.

Let us note that in fact the hypergraph S is given implicitly, by a transmission model and
target. The problem of simultaneous generating of two implicitly given dual hypergraphs
was considered in [5]. The main result of this paper is positive: an incremental quasi-
polynomial (N o(log N) algorithm for joint generation of any dual pair S and Sd given by a
(quasi-) polynomial oracle.

(Let us recall that a function f(N) = 2polylog(N) = 2logcN is called quasi-polynomial in N ,
where c is a constant.)
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Thus, generating all “inclusion minimal” vaccination strategies is a tractable (incremental
quasi-polynomial) generation problem. Needless to say that “optimization”, that is, getting
a transversal to S of minimum cardinality, is NP-hard. Indeed, obviously, the complement to
a (minimum) transversal to S is a (maximum) stable set of S. Thus, the problem is reduced
to the classical “Stability Number”, which is NP-complete already for graphs.

2 Proofs of Theorems 1 and 3

Proof of Theorem 1. We reduce both cases (i) and (ii) for graphs and digraphs from
a well-known NP-complete problem Minimal Vertex Cover (MVC). For an arbitrary graph
G = (I, E) a subset S ⊆ I is called a vertex cover if each edge e ∈ E is adjacent to an i ∈ I.
A vertex cover S is called minimal if it is not a proper subset of some other vertex cover.
Given a graph G = (V, E) and a positive integral threshold t, it is an NP-complete problem
to decide if there is a vertex cover in G of cardinality (at most) t. Moreover, this problem is
NP-complete already for cubic (deg(i) ≤ 3 for all i ∈ I) and planar graphs.

(i) Target TI in model MG. Given an arbitrary graph G = (I, E), let us assign to it a
bipartite graph G′ = (I ′, E ′) where I ′ = I∪E and i ∈ I is incident to e ∈ E in G′ if and only
if i is adjacent to e in G. Furthermore, let us set k(e) = 1 for each e ∈ E and k(i) = deg(i)
for each i ∈ I. It is easy to see that each vertex cover S ⊆ I in G infects the whole set I ′ in
G′. Indeed, every e ∈ E will be infected, by the definition of a vertex cover. Then, each i ∈ I
will be infected too. Furthermore, let us notice that it is irrelevant to include an individual
e ∈ E in a source S. Indeed, if instead of e we include an i ∈ I adjacent to e then e will be
infected anyway. This concludes the proof of (i).

(ii) target Tq in model MG. In general, target Queen can be standardly reduced to
target All; see Introduction. Let us add to G′ = (I ′, E ′) one new vertex q, connect it to each
i ∈ I and to each e ∈ E, and set k(q) = deg(q) = |I|+ |E|. Obviously in the obtained graph
G′′ = (I ′′, E ′′) a fatal source S ⊆ I ′′ \ {q} = I ′ = I ∪ E infects q if and only if S infects the
whole set I ′ = I ∪ E in G′.

Targets TI and Tq for model MD. Given an arbitrary graph G = (I, E), let us assign to
it a digraph G′ = (I ′, E ′) as follows: I ′ = I∪E∪{q} and (i, e) ∈ E ′ if and only if i is adjacent
to e in G; furthermore, (e, q) ∈ E ′ for all e ∈ E and (q, i) ∈ E ′ for all i ∈ I. Thresholds k(i)
for i ∈ I ′ are as follows: k(i) = k(e) = 1 for all i ∈ I, e ∈ E and k(q) = deg(q).

The same arguments as before show that the following three properties of a source S ⊆ I
are equivalent: (a) S infects the whole set I ′, (b) S infects q, and (c) S is a vertex cover in
G.

It is also easy to see that q herself infects the whole set I ′.
Finally, it is pointless to include an individual e ∈ E in a minimum source S. Indeed,

if instead of e we include an i ∈ I adjacent to e in G then e will be infected in G′ anyway.
This concludes the proof.

Proof of Theorem 3. For both graphs and digraphs we reduce our decision problem
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from a well-known NP-complete problem: Stability Number of a Graph. For an arbitrary
graph G = (I, E) a subset S ⊆ I is called a stable set if S does not contain an edge, that is,
u, v ∈ S fot no edge (u, v) = e ∈ E. A stable set S is called maximal if it is not a proper
subset of some other stable set. Obviously, the complement of a (maximal) stable set in I is
a (minimal) vertex cover. Given a graph G = (V, E) and a positive integral threshold t, it is
an NP-complete problem to decide whether there is a stable set S in G of size (at least) t.

Proof for digraphs, model MD. Given an arbitrary graph G = (I, E), let us assign to
it a digraph G′ = (I ′, E ′) where I ′ = I ∪ E ∪ {p} ∪ {q} and E ′ are defined as follows: (i, e)
is an arc in E ′ if and only if i and e are adjacent in G; next, (i, p) and (q, i) ∈ E ′ for each
i ∈ I; furthermore, (p, q) and (e, q) ∈ E ′ for each e ∈ e. The thresholds k(i) for i ∈ I ′ are
defined as follows: k(i) = 1 for i ∈ I ∪ {q}, k(i) = 2 for i ∈ E, and k(p) = t. Let us note
that k(i) = 1 or 2 for all i ∈ I ′, except i = p.

It is easy to see that a single-individual-source S = {i} will infect the whole set I ′

whenever i ∈ E∪{p}∪{q}. Indeed, each i ∈ E or i = p will infect q, in her turn q will infect
the whole set I, and then I will infect E ∪ {p}. It is also easy to see that a pair S = {u, v}
will infect the whole set I ′ whenever (u, v) ∈ E. Indeed, in this case S = {u, v} will infect
e ∈ E such that e = (u, v) ∈ E, in his turn e will infect q, then q will infect I, and then I
will infect E ∪ {p}. Thus we got a collection S of minimal sources that infect the whole set
I ′, or which is equivalent, the queen q. Yet, there may be more minimal sources with this
property. It is easy to see that such a source exists if and only if graph G = (V, E) contains
a stable set S ⊆ I of cardinality |S| = t. Indeed, in this case S will infect p, in his turn p
will infect q, in her turn q will infect the whole set I, and finally, I will infect E. However,
it is NP-complete to decide whether G contains such a set S.

Proof for graphs, model MG. Given an arbitrary graph G = (I, E), let us assign to it
a digraph G′ = (I ′, E ′) where I ′ = I ∪E∪{p}∪{q} and E ′ are defined as follows: (i, e) is an
arc in E ′ if and only if i and e are adjacent in G; next, (i, p) and (q, i) ∈ E ′ for each i ∈ I;
furthermore, in E ′ there are m multiple edges between p and q and between e and q for each
e ∈ E, where m is a positive integral such that m > |I|. The thresholds k(i) for i ∈ I ′ are
defined as follows: k(i) = 1 for i ∈ I ; k(i) = 2 for i ∈ E , k(p) = t, and and k(q) = m.

It is easy to see that a source S = {i} of cardinality 1 will infect the whole set I ′ whenever
i ∈ E ∪ {p} ∪ {q}. Indeed, each i ∈ E or i = p will infect q, in her turn q will infect the
whole set I, and then I will infect E ∪ {p}. It is also easy to see that a pair S = {u, v}
will infect the whole set I ′ whenever (u, v) ∈ E. Indeed, in this case S = {u, v} will infect
e ∈ E such that e = (u, v) ∈ E, in his turn e will infect q, then q will infect I, and then I
will infect E ∪ {p}. Thus we got a collection S of minimal sources that infect the whole set
I ′, or which is equivalent, the queen q. Yet, there may be more minimal sources with this
property. It is easy to see that such a source exists if and only if graph G = (V, E) contains
a stable set S ⊆ I of cardinality |S| = t. Indeed, in this case S will infect p, in his turn p will
infect q, in her turn q will infect the whole set I, and finally, I will infect E ∪{p}. However,
it is NP-complete to decide whether G contains such a set S.

Let us note finally that no subset S ⊆ I can infect q directly, since m > |I|.
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3 Target and transmission pure Horn DNFs. Proof

of Theorem 2

Let us assign a DNF

DTR =
∨
j∈J

(xij

∧
i∈Kj

xi)

to a given set of transmission rules Rj = {rj = (Kj, ij) | j ∈ J}.
Also let us assign a DNF

DTA =
∨
e∈E

(xq

∧
i∈e

xi)

to a given family of target sets H = (I, E). In this DNF, xq is a special new variable, an
“artificial queen”.

Finally, let us consider disjunction of the above two DNFs, DT = DTR ∨DTA.
By construction, DTR, DTA, and DT are are pure Horn DNFs, that is, each monomial

contains exactly one negated literal.
Obviously, a pure Horn monomial x1 . . . xkxk+1 is equal to 1 if and only if x1 = . . . =

xk = 1, while xk+1 = 0, that is, if the implication x1 ∧ . . . ∧ xk ⇒ xk+1 fails. In other
words, this implication holds if and only if x1 . . . xkxk+1 = 0. Thus, we obtain a one-to one
correspondence between the fatal sources for the target hypergraph H and the satisfying
assignments for the Boolean equation DT = DTR ∨DTA = 0 in which xq = 1.

Proposition 1. A source S ⊆ I will infect a target set e ∈ E = E(H) iff the corresponding
elementary conjunction xq ∧i∈S xi is an implicant of DT .

Respectively, the minimal sources that infect a target set e ∈ E are in one-to-one corre-
spondence with the prime implicants of DT that contains the literal x̄q. An efficient (incre-
mental polynomial) algorithm generating all prime implicants that contain a given literal of
an arbitrary Horn DNF was recently obtained by Eiter and Makino in [4]. (Let us remark
that in [8, 9] it was conjectured that this generating problem is intractable.) Here we outline
the algorithm for the case of pure Horn DNFs which appears to be simpler than the general
case.

The following Boolean identity was introduced by Blake [1]:

xA ∨ xB = xA ∨ xB ∨ AB.

Here A and B are elementary conjunctions (monomials) that may contain negated literals.
The proof is immediate. Indeed, in both cases, x = 0 and x = 1, we obtain so-called
absorption identities: B = B∨AB for x = 0 and A = A∨AB for x = 1. The above Boolean
identity xA ∨ xB = xA ∨ xB ∨ AB is the so-called consensus operation and it plays an
important role in Boolean algebra; see e.g. [2] Chapters 1-3. In particular, it is known that,
successively applying this operation (together with the absorption A∨AB = A), one can get
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all prime implicants of a Boolean function beginning with an arbitrary its DNF. However, in
general, such a generation algorithm is exponential, since consensus operation can produce
a new monomial that is larger than both operands; for example,

x1x2x3 ∨ x1x4x5 = x1x2x3 ∨ x1x4x5 ∨ x2x3x4x5.

Hence, applying successively consensus operations, one can get exponentially large inter-
mediate DNFs, while the input and output DNFs are both small. However, in case of (pure)
Horn DNFs this problem can be resolved.

First, let us note that, obviously, consensus operation respects (pure) Horn DNFs; see
the above example.

Given a DNF D, the Boolean equation D = 0 is called the tautology problem. (The
corresponding equation C = 1 for a CNF C is called the satisfiabilty (SAT) problem; ob-
viously, these two problems are equivalent.) Tautology is NP-complete in general but it is
polynomial for (pure) Horn DNFs; see e.g. [2] Chapters 1-3. Respectively, given a DNF D
and an arbitrary monomial A, it is NP-complete to verify whether A is an implicant of D
(that is, if A ⇒ D holds). However, this problem becomes polynomial if D is a (pure) Horn
DNF. This will be the main subroutine in the following algorithm of generating all prime
implicants that contain xq for the pure Horn DNF

DT = DTR ∨DTA = (
∨
j∈J

(xij

∧
i∈Kj

xi))
∨

(
∨
e∈E

(xq

∧
i∈e

xi)).

Step 1. For each monomial Bxq of DTA let us verify whether is it prime in DT and if not
reduce the set of literals of B to get a prime one B′xq. This procedure is polynomial, since
DT is a (pure) Horn DNF. Note also that we do not try to reduce B in all possible ways but
obtain only one B′. Let us denote the obtained (from DTA) new target DNF by D1

TA. Let
us remark that this DNF is a ready part of the output.

Step 2. Now, let us apply consensus procedure to all proper pairs of monomials A and B
from DTR and D1

TA, respectively. Note that each B contains xq, while A does not; hence, all
the obtained “new” monomials will contain it. Yet, some of them may be absorbed by the
“old” monomials of DTA. Let us delete them, add the remaining ones to D1

TA, and denote
the obtained “new” target DNF by D2

TA.
Now we repeat Step 1 with D2

TA, etc. If after k rounds all new monomials produced in
the Step 2k are absorbed then halt and output the target DNF.

It is clear that both steps 1 and 2 take time polynomial in size of the DNF DTR (which
does not change at all) and the current target DNF. Since after Steps 1k and 2k, for each
round k, except the last one, we produce new outputs, we conclude that the above generating
algorithm is incremental polynomial.

Remark 1. Word “incremental” is used here because new prime implicants are generated
in time polynomial in size of the input DT and the current output, that is, target DNF D1k

TA.
However, this DNF may increase exponentially in k; see [10, 7, 6] for the precise definitions
related to complexity of the generation algorithms.
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