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ABSTRACT

This report gives an exposition of the Process-Grammar, published originally in the journal Artificial
Intelligence in 1988, together with a description of some of the subsequent applications of the
grammar in meteorology, biology, computer-aided design, chemical engineering, and geology. The
Process-Grammar is a means of recovering the process-history of a smooth shape from its curvature
extrema, and expressing that evolution in terms of transitions at those extrema. The inference of
history follows from the Symmetry-Curvature Duality Theorem of Leyton (1987), which states that,
to each curvature extremum, there is a differential symmetry axis leading to and terminating at that
extremum; and from an inference rule that states that the symmetry axis is the record of a process.
The Process-Grammar expresses the relationship between any two stages in the shape’s history as
an extrapolation of the processes inferred by the theorem.



1 Extraction of History from Shape

The purpose of this paper is to describe a grammar that I published in the journal Artificial Intelli-
gence in 1988. The grammar is essentially a theorem I proved that any smooth shape evolution of a
smooth 2D curve can be expressed in terms of six types of transitions at curvature extrema. These
transitions constitute what I call the Process-Grammar.

After I published the grammar, the grammar, and the mathematics on which it is based, was
applied by scientists in many disciplines: Radiology, meteorology, computer vision, chemical engi-
neering, geology, computer-aided design, robotics, anatomy, botany, forensic science, architecture,
abductive reasoning, linguistics, mechanical engineering, computer graphics, archaeology, etc.

Let us begin by understanding the purpose for which the grammar was developed: inferring
history from shape; e.g., from the shapes of tumors, embryos, clouds, etc. For example, the shape
shown in Fig 1 can be understood as the result of various processes such as protrusion, indentation,
squashing, resistance. My book Symmetry, Causality, Mind (MIT Press) was essentially a 630-page
rule-system for deducing the past history that formed any shape. The Process-Grammar is part of
that rule-system – that related to the use of curvature extrema.

Figure 1: Shape as history.

2 The PISA Symmetry Analysis

It is first necessary to understand how symmetry can be defined in complex shape. Clearly, in a
simple shape, such as an equilateral triangle, a symmetry axis is easy to define. One simply places
a straight mirror across the shape such that one half is reflected onto the other. The straight line of
the mirror is then defined to be a symmetry axis of the shape. However, in a complex shape, it is
often impossible to place a mirror that will reflect one half of the figure onto the other. Fig 1, is an
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Figure 2: How can one construct a symmetry axis between these to curves?

Figure 3: In the PISA system, the points Q define the symmetry axis.
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example of such a shape. However, in such cases, one might still wish to regard the figure, or part
of it, as symmetrical about some curved axis. Such a generalized axis can be constructed in the
following way.

Consider Fig 2. It shows two curves c1 and c2, which can be understood as two sides of an object.
Notice that no mirror could reflect one of these curves onto the other. The goal is to construct a
symmetry axis between the two curves. One proceeds as follows: As shown in Fig 3, introduce a
circle that is tangential simultaneously to the two curves. Here the two tangent points are marked
as A and B.

Next, move the circle continuously along the two curves, c1 and c2, while always ensuring
that it maintains the property of being tangential to the two curves simultaneously. To maintain
this double-touching property, it might be necessary to expand or contract the circle. This initial
procedure was invented by Blum in the 1960s, and he then defined the symmetry axis to be the center
of the circle as it moved. However, in my book, Symmetry, Causality, Mind, I showed that there are
serious topological problems with this definition, and it furthermore cannot infer the processes that
have acted on the shape. Therefore, in contrast, I defined the axis to be the trajectory of the point
Q shown in Fig 3. This is the point on the circle, half-way between the two tangent points. As the
circle moves along the curves, it traces out a trajectory as indicated by the sequence of dots shown
in the figure. I called this axis, Process-Inferring Symmetry Axis, or simply PISA. It does not have
the problems associated with the Blum axis.

3 Symmetry-Curvature Duality

The Process-Grammar relies on two structural factors in a shape: symmetry and curvature. Mathe-
matically, symmetry and curvature are two very different descriptors of shape. However, a theorem
that I proposed and proved in [3] shows that there is an intimate relationship between these two
descriptors. This relationship will be the basis of the entire paper. The theorem will be a crucial
step in our argument:

SYMMETRY-CURVATURE DUALITY THEOREM (Leyton, 1987): Any section of curve, that
has one and only one curvature extremum, has one and only one symmetry axis. This axis is forced
to terminate at the extremum itself.

Figure 4: Illustration of the Symmetry-Curvature Duality Theorem.

The theorem can be illustrated by looking at Fig 4. On the curve shown, there are three extrema:
m1, M , and m2. Therefore, on the section of curve between extrema m1 and m2, there is only one
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extremum, M . What the theorem says is this: Because this section of curve has only one extremum,
it has only one symmetry axis. This axis is forced to terminate at the extremum M . The axis is
shown as the dashed line in the figure.

It is valuable to illustrate the theorem on a closed shape, for example, that shown in Fig 5. This
shape has sixteen curvature extrema. Therefore, the above theorem tells us that there are sixteen
unique symmetry axes associated with, and terminating at, the extrema. They are given as the
dashed lines shown the figure.

Figure 5: Sixteen extrema imply sixteen symmetry axes.

4 The Interaction Principle

The reason for involving symmetry axes is that it will be argued that they are closely related to
process-histories. This proposed relationship is given by the following principle:

INTERACTION PRINCIPLE (Leyton, 1984): Symmetry axes are the directions along which
processes are hypothesized as most likely to have acted.

The principle was advanced and extensively corroborated in Leyton [7], in several areas of perception
including motion perception as well as shape perception. The argument used in Leyton [7] to justify
the principle, involves the following two steps: (1) A process that acts along a symmetry axis tends
to preserve the symmetry; i.e. to be structure-preserving. (2) Structure-preserving processes are
perceived as the most likely processes to occur or to have occurred.
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5 The Inference of Processes

We now have the tools required to understand how processes are recovered from shape. In fact, the
system to be proposed consists of two inference rules that are applied successively to a shape. The
rules can be illustrated by considering Fig 6.

Figure 6: The processes inferred by the rules.

The first rule is the Symmetry-Curvature Duality Theorem which states that, to each curvature
extremum, there is a unique symmetry axis terminating at that extremum. The second rule is the
Interaction Principle, which states that each of the axes is a direction along which a process has
acted. The implication is that the boundary was deformed along the axes; e.g. each protrusion was
the result of pushing out along its axis, and each indentation was the result of pushing in along its
axis. In fact, each axis is the trace or record of boundary-movement!

Under this analysis, processes are understood as creating the curvature extrema; e.g. the pro-
cesses introduce protrusions and indentations etc., into the shape boundary. This means that, if one
were to go backwards in time, undoing all the inferred processes, one would eventually remove all
the extrema. Observe that there is only one closed curve without extrema: the circle. Thus the
implication is that the ultimate starting shape must have been a circle, and this was deformed under
various processes each of which produced an extremum.

Corroboration: To obtain extensive corroboration for the above rules, let us now apply them to
a large catalogue of shapes: all shapes with up to, and including, eight curvature extrema. The
catalogue provides purely the outlines exhibited in Fig 7, 8, and 9. Most of these outlines come from
a paper by Richards, Koenderink & Hoffman [14], and the Process-Grammar was used to complete
the catalogue. What I have done is taken these outlines and applied to them the above three rules
for the recovery of process-history. The inference rules put the arrows on each shape, indicating
how the shapes were formed over time. As the reader can see, the inferred histories accord very
strongly with one’s sense of how these shapes were formed.
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Figure 7: The inferred histories on the shapes with 4 extrema.

Figure 8: The inferred histories on the shapes with 6 extrema.
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Figure 9: The inferred histories on the shapes with 8 extrema.
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6 Extremum Type

Any individual outline, together with the inferred arrows, will be called a process-diagram. The
reader should observe that, on each process-diagram in Figs 7–9, a letter-label has been placed at
each extremum (the end of each arrow). There are four alternative labels, M+, m−, m+, and M−,
and these correspond to the four alternative types of curvature extrema. The four types are shown
in Fig 10 and are explained as follows:

Figure 10: The four types of extrema.

First, understand the curve as the boundary of an object. Refer to the object side of the curve
as "solid" and the other side as "empty". Now observe that the first two kinds of extrema in Fig
10 have the same shape. They are the sharpest points on their respective curves. Their difference
is that they change the side on which the solid (shaded) and empty (non-shaded) occur; i.e., they
are figure/ground reversals of each other. The remaining two extrema are also the same shape as
each other. They are the flattest points on their respective curves. Again, they are figure/ground
reversals of each other.

Now notice the following important phenomenon: The above characterizations of the four
extrema types are purely structural. However, in surveying the shapes in Figs 7–9, it becomes clear
that the four extrema types correspond to four English terms that people use to describe processes.
Table 1 gives the correspondence:

EXTREMUM TYPE ←→ PROCESS TYPE

M+ ←→ protrusion
m− ←→ indentation
m+ ←→ squashing
M− ←→ internal resistance

Table 1: Correspondence between extremum type and process type.



– 9 –

It is important to understand that the entire psychological basis for peoples’ use of these four
process terms is explained by our inference rules. This is shown as follows: By the Interaction
Principle, the inferred process is along the symmetry axis. This symmetry axis is provided by the
PISA definition which I invented, given in section 2.

The fundamental fact is that PISA puts the axes on the convex side of the curve for the first two
extrema, M+ and m−, and on the concave side of the curve for the other two extrema, m+ and M−.
By the Interaction Principle, the inferred process arrows must be along these symmetry axes, and
must therefore be as shown in Fig 10. Notice that the arrows for the first two extrema are on the
convex side of the curve, and the arrows for the other two extrema are on the concave side.

As a consequence of this, we see that the first two arrows explain the sharpening of the curve
at the extremum, and the other two explain the flattening at the extremum. This shows why people
use the four process terms in the above table. It is entirely due to the mathematical properties of
the PISA symmetry definition.

No other symmetry axis in the history of mathematics has this property. That is, all other axes
would be "between" the sides of the curve; i.e., on the convex side; i.e., below the curves in all the
four cases in Fig 10. In fact, the Medial Axis of Blum would not only put the axis below the curve,
in the third and fourth case, but the axis would move downwards away from the curve, and would
therefore not correspond to any meaningful process.

A detailed comparison between PISA and the other symmetry definitions is given in my book
Symmetry, Causality, Mind, and this comparison shows the extreme inappropriateness of the other
definitions of symmetry.

Finally, let us understand the meaning of the four symbols M+, m−, m+, M−. First choose
the direction of traveling along the curve to be that which keeps the solid on the left side of the
curve. Then define curvature as the rate of anti-clockwise rotation. Denote a curvature maximum
and minimum by M and m, respectively; and denote positive and negative curvature by + and −,
respectively. Then, in the curvature function, the four kinds of extrema are as illustrated by the
graph in Fig 11.

7 The Method to be Used

What we have done so far is to lay the ground-work of the Process-Grammar. The grammar will
characterize the way shapes deform into each other in terms of the events that occur at their most
important points: the curvature extrema. It turns out that there are essentially six transitions that
can happen at the curvature extrema. These six transitions will constitute the grammar.

Our procedure establishing this will be as follows: Let us imagine that we have two stages in the
history of the shape. For example, imagine being a doctor looking at two X-rays of a tumor taken
a month apart. Observe that any doctor examines two such X-rays (e.g., on a screen), in order to
assess what has happened in the intervening month. If one considers the way the doctor’s thinking
proceeds, one realizes that there is a basic inference rule that is being used: The doctor tries, where
possible, to explain processes seen in the later shape as extrapolations of processes already seen in
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Figure 11: A curvature function showing the four kinds of extrema.

the earlier shape. That is, the doctor tries to maximize the description of history as extrapolations.
We will show how to discover these extrapolations.

Recall that the processes we have been examining are those that move along symmetry axes,
creating extrema. As a simple first cut, we can say that extrapolations have one of two forms:

(1) Continuation: The process simply continues along the symmetry axis, maintaining
that single axis.

(2) Bifurcation: The process branches into two axes, i.e., creating two processes
out of one.

Now recall, from section 6, that there are four types of extrema M+, m−, m+, and M−. It is
necessary therefore to look at what happens when one continues the process at each of the four
types, and at what happens when one branches (bifurcates) the process at each of the four types. This
means that there are eight possible events that can occur: four continuations and four bifurcations.

8 Continuation at M+ and m−

Let us start by considering continuations, and then move on to bifurcations. It turns out that, when
one continues a process at either of the first two extrema, M+ or m−, nothing significant happens,
as follows:
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First consider M+. Recall from Table 1 (p8), that the M+ extremum corresponds to a protrusion.
Fig 12 shows three examples of M+, the three protrusions. We want to understand what happens
when any one of the M+ processes is continued. For example, what happens when the protruding
process at the top M+ continues pushing the boundary further along the direction of its arrow?

Figure 12: Continuation at M+ and m− do not change extremum-type.

The answer is simple: The boundary would remain a M+ extremum, despite being extended
further upwards. Intuitively, this is obvious: A protrusion remains a protrusion if it continues.
Therefore, from now on, we will ignore continuation at M+ as structurally trivial.

Now observe that exactly the same considerations apply with respect to any m− extremum. For
example, notice that the same shape, Fig 12, has three m− extrema. Observe also that, in accord with
Table 1 (p8), each of these corresponds to an indentation. It is clear that, if the process continues at a
m−, the boundary would remain m−. Again, this is intuitively obvious: An indentation remains an
indentation if it continues. As a consequence, we will also ignore continuation at m− as structurally
trivial.

In summary, the two cases considered in this section, continuation at M+ and at m−, are
structurally trivial. It will now be seen that continuations at the remaining two extrema, m+ and
M−, induce much more interesting effects on a shape.

9 Continuation at m+

According to Table 1 (p8), a m+ extremum is always associated with a squashing process. An
example is shown in the top of the left shape in Fig 13. Notice therefore that the process explains
the flattening at this extremum, relative to the greater bend at either end of the top.

Our goal is to understand what happens when the process at this m+ extremum is continued
forward in time; i.e., the downward arrow pushes further downward. Clearly, a continuation of the
process can result in the indentation shown at the top of the right shape in Fig 13.
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Figure 13: Continuation at m+.

The structural change, in going from the left to the right shape, should be understood as follows:
First, the m+ at the top of the left shape changes to the m− at the top of the right shape. Notice that
the m− extremum corresponds to an indentation, as predicted by Table 1 (p8).

An extra feature should be observed: On either side of the m− extremum, at the top of the right
shape, a small circular dot has been placed. Such a dot marks a position where the curvature is
zero; i.e., the curve is, locally, completely straight. If one were driving around this curve, the dot
would mark the place where the steering wheel would point straight ahead.

With these facts, one can now describe exactly what occurred in the transition from the left
shape to the right shape: The m+ extremum at the top of the left shape has changed into a m−

extremum at the top of the right shape, and two points of zero curvature, 0, have been introduced on
either side of the m−. One can therefore say that the transition from the left shape to the right shape
is the replacement of m+ (left shape) by the triple, 0m−0 (right shape). The transition is therefore:

m+ −→ 0m−0.

This transition will be labeled Cm+ meaning Continuation at m+. Thus the transition is given fully
as:

Cm+ : m+ −→ 0m−0.

This mathematical expression is easy to translate into English. Reading the symbols, from left to
right, the expression says:

Continuation at m+ takes m+ and replaces it by the triple 0m−0.

It is worth having a simple phrase defining the transition in Fig 13. Notice that, since the extremum
m+ in the left shape is a squashing, and the extremum m− in the right shape is an indentation, the
transition can be described as:

A squashing continues till it indents.
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Figure 14: Continuation at M−.

10 Continuation at M−

We will now investigate what happens when the process at the fourth and final extremum M− is
continued forward in time. As an example, consider the M− in the center of the bay in the left
shape in Fig 14. In accord with Table 1 (p8), the process at this extremum is an internal resistance.
In order to understand this process, let us suppose that the left shape represents an island. Initially,
this island was circular. Then, there was an inflow of water at the top (creating a dip inwards). This
flow increased inward, but met a ridge of mountains along the center of the island. The mountain
ridge acted as a resistance to the inflow of water, and thus the bay was formed. In the center of the
bay, the point labeled M− is a curvature extremum. One can view it as the point on the bay with
the least amount of bend (more rigorously it is a negative maximum).

Now return to the main issue of this section: What happens when the upward resistive arrow
(terminating at the M− extremum) is continued along the direction of the arrow. This could happen
for example, if there is a volcano in the mountains, that erupts, sending lava down into the sea.
The result would therefore be the shape shown on the right in Fig 14. In other words, a protrusion
would be formed into the sea.

The structural change, in going from the left to the right shape, should be understood as follows:
First, the M− in the center of the bay (left shape) changes into the M+ at the top of the right shape,
the protrusion.

An extra feature should be observed: On either side of the M+ extremum, at the top of the right
shape, a small circular dot has been placed. Such a dot again marks a position where the curvature
is zero; i.e., the curve is, locally, completely straight.

Thus we can describe what has happened in the transition from the left shape to the right shape:
The M− extremum in the bay of the left shape has changed into a M+ extremum at the top of the
right shape, and two points of zero curvature, 0, have been introduced on either side of the M+. In
other words, the M− in the left shape has been replaced by the triple, 0M+0 in the right shape. The
transition is therefore:

M− −→ 0M+0.

This transition will be labeled CM− meaning Continuation at M−. Thus the transition is given
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Figure 15: Bifurcation at M+.

fully as:
CM− : M− −→ 0M+0.

This mathematical expression is easy to translate into English. Reading the symbols, from left to
right, the expression says:

Continuation at M− takes M− and replaces it by the triple 0M+0.

It is worth having a simple phrase defining the transition in Fig 14. Notice that, since the extremum
M− in the left shape is a resistance, and the extremum M+ in the right shape is a protrusion, the
transition can be described as:

A resistance continues till it protrudes.

Comment: We have now gone through each of the four extrema, and defined what happens when
the process at the extremum is allowed to continue. The first and second extrema involved no
structural change, but the second and third extrema did.

11 Bifurcation at M+

We now turn from continuations to bifurcations (branchings) at extrema. Again, each of the four
extrema will be investigated in turn.

First we examine what happens when the process at a M+ extremum branches forward in time.
As an example, consider the M+ at the top of the left shape in Fig 15. In accord with Table 1 (p8),
the process at this extremum is a protrusion. The effect of bifurcating is shown in the right shape.
One branch goes to the left, and the other goes to the right.

The structural change, in going from the left to the right shape, should be understood as follows:
First observe that the single M+ at the top of the left shape, splits into two copies of itself, shown
at the ends of the two branches in the right shape.
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There is also another feature. In the center of the top of the right shape, a new extremum has been
introduced, m+. Note that the process at this extremum is a squashing, as predicted in Table 1 on
p8. This process explains the flattening in the middle of the top, relative to the sharpening towards
either end of the top. The m+ extremum is a minimum, and is required mathematically, because
the two branching extrema are maxima M , and two maxima cannot exist without a minimum in
between.

With these facts, one can now describe exactly what occurred in the transition from the left
shape to the right shape: The M+ extremum at the top of the left shape has split into two copies of
itself in the right shape, and a new extremum m+ has been introduced. That is, the transition from
the left shape to the right shape is the replacement of M+ (left shape) by the triple, M+m+M+

(right shape). The transition is therefore:

M+ −→M+m+M+.

This transition will be labeled BM+, meaning Bifurcation at M+. Thus the transition is given fully
as:

BM+ : M+ −→M+m+M+.

This mathematical expression is easy to translate into English. Reading the symbols, from left to
right, the expression says:

Bifurcation at M+ takes M+ and replaces it by the triple M+m+M+.

It will also be worth having a simple phrase to summarize the effect of the transition in Fig 15. The
structure formed on the right shape has the shape of a shield, and therefore, the transition will be
referred to thus:

Shield-formation.

12 Bifurcation at m−

Next we examine what happens when the process at a m− extremum branches forward in time. As
an example, consider the m− at the top of the left shape in Fig 16. In accord with Table 1 (p8), the
process at this extremum is an indentation. The effect of bifurcating is shown in the right shape.
One branch goes to the left, and the other goes to the right. That is, a bay has been formed! Thus
one can regard the transition from the left shape to the right one as the stage preceding Fig 14 on
p13.

The structural change, in going from the left to the right shape in Fig 16, should be understood
as follows: First observe that the single m− at the top of the left shape, splits into two copies of
itself, shown at the ends of the two branches in the right shape.

There is also another feature. In the center of the top of the right shape, a new extremum has
been introduced, M−. Note that the process at this extremum is a resistance, as predicted in Table
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Figure 16: Bifurcation at m−.

1 on p8. This process explains the flattening in the middle of the bay, relative to the sharpening
towards either end of the bay.

With these facts, one can now describe exactly what occurred in the transition from the left
shape to the right shape: The m− extremum at the top of the left shape has been replaced by the
triple, m−M−m− in the right shape. The transition is therefore:

m− −→ m−M−m−.

This transition will be labeled Bm− meaning Bifurcation at m−. Thus the transition is given fully
as:

Bm− : m− −→ m−M−m−.

This mathematical expression is easy to translate into English. Reading the symbols, from left to
right, the expression says:

Bifurcation at m− takes m− and replaces it by the triple m−M−m−.

It will also be worth having a simple phrase to summarize the effect of the transition in Fig 16. The
obvious phrase is this:

Bay-formation.

13 The Bifurcation Format

The previous two sections established the first two bifurcations: those at M+ and m−. The next
two sections will describe the remaining two bifurcations. However, before giving these, it is worth
observing that the first two bifurcations allow us to see that bifurcations have the same format as
each other, which is shown as follows:

E −→ EeE.
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Figure 17: Bifurcation at m+.

An extremum E is sent to two copies of itself, and a new extremum e is introduced between the
two copies. The new extremum e is determined completely from E as follows: Extremum e must
be the opposite type from E; that is, it much change a Maximum (M ) into a minimum (m), and
vice versa. Furthermore, extremum e must have the same sign as E, that is, "+" or "-".

14 Bifurcation at m+

Next we examine what happens when the process at a m+ extremum bifurcates, forward in time.
As an example, consider the m+ at the top of the left shape in Fig 17. In accord with Table 1 (p8),
the process at this extremum is a squashing.

The effect of bifurcation is that m+ splits into two copies of itself – the two copies shown on
either side of the right shape. One should imagine the two copies as sliding over the surface till
they reached their current positions.

The other crucial event is the introduction of a new extremum M+ in the top of the right
shape. This is in accord with the bifurcation format described in the previous section. Notice
that the upward process here conforms to Table 1 on p8, which says that a M+ extremum always
corresponds to a protrusion.

Thus the transition from the left shape to the right shape is the replacement of the m+ extremum
at the top of the left shape by the triple m+M+m+ in the right shape. The transition is therefore:

m+ −→ m+M+m+.

This transition will be labeled Bm+ meaning Bifurcation at m+. Thus the transition is given fully
as:

Bm+ : m+ −→ m+M+m+.

This mathematical expression is easy to translate into English. Reading the symbols, from left to
right, the expression says:
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Figure 18: Bifurcation at M−.

Bifurcation at m+ takes m+ and replaces it by the triple m+M+m+.

It will also be worth having a simple phrase to summarize the effect of the transition, as follows:
Notice that the main effect in Fig 17 is that the initial squashing process is pushed to either side
by the breaking-through of an upward protrusion. Thus the transition can be summarized by the
following phrase:

Breaking-through of a protrusion.

15 Bifurcation at M−

Now we establish the final bifurcation. We examine what happens when the process at a M−

extremum bifurcates, forward in time. As an example, consider the M− in the center of the bay,
in left shape, in Fig 18. In accord with Table 1 (p8), the process at this extremum is an internal
resistance.

The effect of bifurcation is that M− splits into two copies of itself – the two copies shown at
the two sides of the deepened bay in the right shape. One should imagine the two copies as sliding
over the surface till they reached their current positions.

The other crucial event is the introduction of a new extremum m− in the bottom of the right shape.
This is in accord with the bifurcation format described in section 13. Notice that the downward
process here conforms to Table 1 on p8, which says that a m− extremum always corresponds to an
indentation.

Thus the transition from the left shape to the right shape is the replacement of the M− extremum
in the middle of the left shape by the triple M−m−M− in the right shape. The transition is therefore:

M− −→M−m−M−.
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This transition will be labeled BM− meaning Bifurcation at M−. Thus the transition is given fully
as:

BM− : M− −→M−m−M−.

This mathematical expression is easy to translate into English. Reading the symbols, from left to
right, the expression says:

Bifurcation at M− takes M− and replaces it by the triple M−m−M− .

It is also worth having a simple phrase to summarize the effect of the transition, as follows: Notice
that the main effect in Fig 18 is that the initial resistance process is pushed to either side by
the breaking-through of a downward indentation. Thus the transition can be summarized by the
following phrase:

Breaking-through of an indentation.

16 The Process-Grammar

Having completed the bifurcations, let us now put together the entire system that has been developed
in sections 7 to 15. Our concern has been to describe shape evolution by what happens at the most
significant points on the shape: the curvature extrema. We have seen that the evolution of any
smooth shape can be decomposed into into six types of phase-transition defined at the extrema
involved. These phase-transitions are given as follows:

PROCESS GRAMMAR

Cm+ : m+ −→ 0m−0 (squashing continues till it indents)
CM−: M− −→ 0M+0 (resistance continues till it protrudes)
BM+: M+ −→ M+m+M+ (sheild-formation)
Bm− : m− −→ m−M−m− (bay-formation)
Bm+ : m+ −→ m+M+m+ (breaking-through of a protrusion)
BM−: M− −→ M−m−M− (breaking-through of an indentation)

Note that the first two transitions are the two continuations, as indicated by the letter C at the
beginning of the first two lines; and the last four transitions are the bifurcations, as indicated by the
letter B at the beginning of the remaining lines.
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17 Scientific Applications of the
Process-Grammar

After I published the Process-Grammar in the journal Artificial Intelligence in 1988, scientists
applied it and the Symmetry-Curvature Duality Theorem to many disciplines.

It is worth considering a number of applications here, to illustrate various concepts of the
theory. In meteorology, Evangelos Milios [12] used the Process-Grammar to analyze and monitor
high-altitude satellite imagery in order to detect weather patterns. This allowed the identification
of the forces involved; i.e., the forces go along the arrows. It then becomes possible to make
substantial predictions concerning the future evolution of storms. This work was done in relation
to the Canadian Weather Service.

It is worth also considering the applications by Steve Shemlon, in biology. Shemlon [15]
developed a continuous model of the grammar using an elastic string equation. For example, Fig 19
shows the backward time-evolution, provided by the equation. It follows the laws of the Process-
Grammar. Notice how the shape goes back to a circle, as predicted in section 5. Fig 20 shows
the corresponding tracks of the curvature extrema in that evolution. In this figure, one can see that
the rules of the Process-Grammar mark the evolution stages. Shemlon applied this technique to
analyze neuronal growth models, dental radiographs, electron micrographs and magnetic resonance
imagery.

Let us now turn to an application of the Process-Grammar in Computer-Aided Design. Jean-
Philippe Pernot et al [13] have developed a CAD toolbox based on the Process-Grammar for the
use in design software for the automotive-aerospace industries. Their method is as follows: They
begin by defining a limiting line for a feature as well as a target line. For example, the first surface
in Fig 21 has a feature, a bump, with a limiting line given by its oval boundary on the surface, and its
target line given by the ridge line along the top of the bump. The Process-Grammar is then used to
manipulate the limiting line of the feature. Thus, applying the first operation Cm+ of the grammar
to the left-hand squashing process m+ in the surface, this squashing continues till it indents in the
second surface shown in Fig 21. With this tool-box, the designer is given considerable control over
the surface to produce a large variety of free-form features.

Now let us look at an application of the Process-Grammar to chemical engineering by John Peter
Lee [2]. Here the grammar was used to model molecular dynamics – in particular, the dynamical
interactions within mixtures of solvent and solute particles. Fig 22 represents the data shape, in
velocity space, of a single solute molecule as it interacts with other molecules.

The initial data shape is given by a sphere (in velocity space). This is deformed by the succes-
sively incoming data in such a way that, at any time, one can use my curvature inference rules on
the current shape, in order to infer the history of the data. In other words, one does not have to keep
the preceding data – one can use the rules to infer it. Incidently, the lines in Fig 22 correspond to
the axes associated with curvature extrema as predicted by the rules.

Also, we will mention the application of the Process-Grammar in geology to the formation of
volcanic islands. This work was done by T. W. Larsen [1] and Brian Mayoh [11]. The results, in
their computer simulations, look remarkably similar to the diagrams given earlier for the Process-
Grammar operations, demonstrating again the general validity of these operations.
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Figure 19: Continuous realization of the Process-Grammar for biological applications, by Steven
Shemlon [15] using an elastic string equation.

Figure 20: Shemlon’s use of the Process-Grammar to label the transitions in the above biological
example [15].
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Figure 21: Application of the Process-Grammar to computer-aided design by Jean-Philippe Pernot
et al [13].

Figure 22: Application of the Process-Grammar in molecular dynamics, by J.P. Lee [2].
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18 Artistic Applications of the Process-Grammar

The previous section reviewed some of the applications of the Process-Grammar in scientific disci-
plines. However, my book Symmetry, Causality, Mind (MIT Press), applied the grammar extensively
to reveal the compositions of paintings. In fact, a principal argument of my books is this:

Artworks are structured by the rules for memory storage. That is, the rules of
aesthetics are the rules for memory storage (Leyton, [7] [8] [10]).

For example, my book The Structure of Paintings (Springer-Verlag) has demonstrated this by de-
tailed and lengthy analyses of paintings by Picasso, Modigliani, Gauguin, Holbein, Ingres, Balthus,
Raphael, Cézanne, De Kooning, etc.

In Figure 23, the rules summarized in this paper for the extraction of history from curvature
extrema, are applied to Picasso’s Still Life. The reader can see that this gives considerable insight
into the composition of the painting.

Figure 23: Curvature extrema and their inferred processes in Picasso’s Still Life.
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