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ABSTRACT

We present a method for representation a Computer Science Research organization by using
the ACM Computing Subjects classification tree. The representation comprises head subjects
of the upper level as well as their gaps and offshoots found by parsimoniously mapping main
subject clusters, extracted from the data on similarity ACM research topics according to
the working in the organization, onto the ACM classification. A robust method for possibly
overlapping clustering is described. A real-world example of the representation is provided.



Contents

1

Introduction: ACM Computing Classification System as a domain ontol-

ogy fit for representing 1
Ontology representation of a subject cluster 3
Building a subject cluster 7
3.1 Similarity clustering: A review . . . . . . . ... Lo 7
3.2 Additive cluster model and iterative extraction . . . . . . . . ... ... .. 8

3.2.1 Pre-specified intensity . . . .. .. ..o 10

3.2.2  Optimal intensity . . . . . . .. ... oo 11
An example of implementation 12
Conclusion 13

Introduction: ACM Computing Classification Sys-
tem as a domain ontology fit for representing

ACM Computing Classification System (ACMC) is a conceptual three level classification of
the Computer Science subject area built to reflect the vast and changing world of computer
oriented writing. This classification was first published in 1991 and then thoroughly revised
in 1998 and it is being revised since [1]. It comprises eleven major partitions (first-level
subjects):

A. General Literature

Hardware

Computer Systems Organization
Software

Data

Theory of Computation
Mathematics of Computing
Information Systems

Computing Methodologies

“ - T 2= 80U aw

Computer Applications
K. Computing Milieux
These are subdivided into 81 second-level topics. For example, item I. Computing

Methodologies consists of eight subjects:

1.0 GENERAL

I.1 SYMBOLIC AND ALGEBRAIC MANIPULATION



1.2 ARTIFICIAL INTELLIGENCE

1.3 COMPUTER GRAPHICS

.4 IMAGE PROCESSING AND COMPUTER VISION
1.5 PATTERN RECOGNITION

1.6 SIMULATION AND MODELING (G.3)

1.7 DOCUMENT AND TEXT PROCESSING (H.4, H.5)

which are further subdivided into third-layer topics as, for instance, .5 PATTERN RECOG-
NITION which consists of seven topics:

1.5.0 General

1.5.1 Models

1.5.2 Design Methodology
1.5.3 Clustering

e Algorithms

e Similarity measures

1.5.4 Applications
1.5.5 Implementation (C.3)

I.5.m Miscellaneous

These are further subdivided in unlabeled subtopics such as those two shown for topic
[.5.3 Clustering.

As can be seen from the examples above, there are a number of collateral links between
topics both on the second and the third layers - they are in the parentheses in the ends of
some topics.

The ACMC is used, mainly, as a device for annotation and search for publications in
collections such as that on the ACM portal [1], that is, for the library and bibliographic
applications. Meanwhile, as an adequate domain ontology, it can and should be used for other
means as well. The ACMC tree has been applied as a gold standard for ontologies derived by
web mining systems such as the CORDER engine [2]. The ACMC tree is used in determining
the semantic similarity in information retrieval [3] and an e-Learning applications [4] as well
as for matching software practitioners’ needs and software researchers’ activities [5]. Here we
propose its use for representing research organizations in such a way that the organization’s
research topics are parsimoniously mapped onto the ACMC topology.

The art of representation of various items on an ontology is of interest in many areas such
as text analysis, web mining, bioinformatics and genomics. In web mining representations are
extracted from domain ontologies: the ontologies are used to automatically characterize usage
profiles by describing user’s interests and preferences for web personalisation [6]. There are
also recommender systems for on-line academic research papers [7], which extract user profiles
based on an ontology of research topics. In bioinformatics several clustering techniques
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have been successfully applied in the analysis of gene expression profiles and gene function
prediction incorporating gene ontology information into clustering algorithms [8].

However, this line of thinking has never been applied to representing research organiza-
tions. The very idea of representing research organizations may seem rather odd because
conventionally it is only the accumulated body of results that does matter in the sciences,
and these always have been and still are provided by individual efforts. The assumption of
individual research efforts implicitly underlies systems for reviewing and comparing different
research departments in countries such as the United Kingdom in which scientific organiza-
tions are subject to regular comprehensive review and evaluation practices. The evaluation
is based on the analysis of individual researchers’ achievements, leaving the portrayal of a
general picture to subjective declarations by the departments [9]. Such an evaluation pro-
vides for the assessment of relative strengths among different departments, which is good for
addressing issues of funding. There exists yet another aspect, that of the integral portrayal
rather than comparative analysis of the developments. This aspect is important for decisions
regarding long-term or wide-range issues of scientific development such as national planning
or addressing the so-called ’South—North divide’ between developed and underdeveloped
countries. The latter would require comparing between integral systems of scientific scope
and capabilities of scientific organizations and university departments in both the South and
North (see, for instance, The United Nations Millennium Project task force web-site [10]).

Potentially, the ACMC representations can be used for such actions as:

i Overview of scientific subjects being developed in an organization.
ii Positioning the organization over ACMC.

iii Overview of scientific disciplines being developed in organizations over a country or
other territorial unit, with a quantitative assessment of controversial subjects, for ex-
ample, those in which the level of activity is not sufficient or the level of activities by
far excesses the level of results.

iv Assessing the scientific issues in which the character of activities in organizations does
not fit well onto the classification; these can be potentially the growth points or other
breakthrough developments.

v Planning research restructuring and investment.

2 Ontology representation of a subject cluster

In our approach, we consider a research organization as consisting of one or several groupings
of people working together on scientific problems of their interest. A grouping may be not
necessarily formal nor needs it to consist of more than a single researcher. Each of the
groupings can be represented by a set of ACMC topics of the third or second level - those
pertaining to the problems of interest to the grouping; we refer to this set as a subject
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cluster. Mapping a subject cluster to the ACMC may lead to different portrayals of that on
the ACMC tree whose root corresponds to the entire field of Computer Science. A cluster
can fit quite well into the classification or not (see Figure 1), depending on how much its
topics are dispersed among the tree nodes.

I Good subject cluster

Figure 1: Two clusters of second-layer topics, presented with checked and diagonal lined
boxes, respectively. The check box cluster fits all within one first -level category (with one
gap only), whereas the diagonal line box cluster is dispersed among two categories on the
right. The former fits the classification well; the latter does not fit at all.

The best possible fit would be when all topics in the subject cluster fall within a parental
node in such a way that all the siblings are covered and no gap occurs. The parental tree
node, in this case, can be considered as the head subject of the cluster. A few gaps, that is,
head subject children topics not included in the cluster, although diminish the fit, still leave
the head subject unchanged. A larger misfit occurs when a cluster is dispersed among two
or more head subjects. One more type of misfit may emerge when almost all cluster topics
fall within the same head subject node but one or two of the topics offshoot to other parts
of the classification tree (see Figure 2).

I Topicin subject cluster

Offshoot _

Figure 2: Three types of features of mapping of a subject cluster to the ontology.

Such offshoots, when persist at subject clusters in different organizations, may show
some tendencies in the development of the science, that the classification tree has not taken
into account yet. The total count of head subjects, gaps and offshoots, each type weighted
accordingly, can be used for scoring the extent of the fit between a research grouping and
the classification tree as illustrated on Figure 3. The greater the score, the worse the fit.



Head subject 1
Gap 1
Offshoot 2

Totd: 1H+1G+20

2

Figure 3: Scoring a mapping of subject cluster to the ontology.

When the topics under consideration relate to deeper levels of classification, such as the
third layer of ACMC, the scoring may allow some tradeoff between different possibilities
for selecting the head subjects. Such a case is presented on Figure 4. The subject cluster
consists of third-layer topics presented by checked boxes. The cluster can be considered as
pertaining to two head subjects as on (A) or, just one, the upper category on (B), with
the "cost” of three more gap nodes added, and one offshoot subtracted. Depending on the
relative weighting of gaps, offshoots and multiple head subjects, either mapping can minimize
the total misfit. In fact, the gaps and offshoots are determined by the head subjects specified.

Head subject 2
Gap 3
Offshoot 1

Totd 2H+3G+10

Head subject 1
Gap 6
Offshoot 0

Total 1H+6G

Figure 4: Tradeoff between different mappings of the same subject cluster: mapping (B) is
better than (A) if gaps are much cheaper than additional head subjects.

Altogether, the set of subject clusters, their head subjects, offshoots and gaps constitutes
what can be referred to as a profile of the organization in consideration. Such a representation
can be easily accessed and expressed as an aggregate. It can be further elaborated by
highlighting representation subjects in which the organization members have been especially
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successful (i.e., publication in best journals, award or other recognition) or distinguished by
another feature (i.e., industrial product or inclusion to a teaching program).

The problem of parsimoniously mapping, that is, minimizing the total weight, for a
cluster was considered in [11] for a special application in genomics with a different weight
function.

Building a parsimonious mapping of a subject cluster can be achieved by recursively
building a parsimonious scenario for each node of the ACMC tree based on parsimonious
scenarios for its children. For the sake of simplicity, let us tackle a simplified problem in
which offshoots are not considered, that is, weight of an offshoot O is zero. Getting a head
subject will be referred to as a "head gain”. At each node of the tree, sets of gap and head
gain events are to be determined and iteratively raised to the parents under each of two
different assumptions that specify the situation ”above the parent”..

One assumption is that the head subject has been inherited at the parental node from its
own parent, and the second assumption is that it has not been inherited but gained in the
node only. It is necessary to distinguish these two cases since, clearly, it is only meaningful
to consider the loss of a head subject at a node if it was inherited at that node; similarly, it
is only meaningful to consider the gain of a head if it was not inherited. These assumptions
can be considered as parallel to those in the 2-state Markov chain probabilistic modeling:
each corresponding to a different state of the chain: head subject inherited from above or
not. Consider the parent-children system as shown in Figure 5, with each node assigned
with sets of gap and head gain events under the above two inheritance assumptions.

Let us denote the total number of events under the inheritance and non-inheritance
assumptions by e; and e, respectively, where head gains are weighted by the head penalty A
and gaps by the gap penalty g formerly denoted by H and G, respectively (either can be taken
to be unity; see discussion in [11]). A mapping result at a given node is defined by a pair of
sets (H, G), representing the tree nodes at which events of head gains and gaps, respectively,
have occurred in the subtree rooted at the node. We use (Hi, Gi) and (Hn, Gn) to denote
mapping results under the inheritance and non-inheritance assumptions, respectively. Our
results for the case of a binary tree [11], can be extended to arbitrary taxonomies to derive
the parental inconsistency score from those of its children, in a parsimonious scenario, under
the inheritance or non-inheritance assumption, respectively. At a leaf node the four sets
Hi, Gi, Hn and Gn are empty, except that Hn ={a} if topic cluster a is present in the
given leaf or Gi ={a} if a is not present. The algorithm then will compute parsimonious
scenarios for parental nodes according to the topology of the tree, proceeding from the
leaves to the root in the manner described in [11]. Specifically, in a parsimonious scenario,
the total number of events, weighted by h and ¢, can be derived from those of its children
(indicated by subscripts 1, 2 and 3 for the case of three children on Figure 5) as e¢; =
min(e,; + en2 + €3 + g, €1+ €in +€;3) or e, = min(e;; + €0+ €3+ h, €1 + epa + €y3), under
the inheritance or non-inheritance assumption, respectively; the proof given in [11] for the
binary tree case can be easily extended to an arbitrary rooted tree.
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Parent Head Gap

Inherited  Hi Gi
Not-inher. Hn Gn

T

Child1 Head Gap Child2 Head Gap Child3 Head Gap
Inherited Hil  Gil Inherited H2 Gi2 Inherited Hi3 Gi3
Not-inherited Hn1 ~ Gnl Not-inherited Hn2 Gn2 Not-inherited Hn3 Gn3

Figure 5: Events in a parent-children system according to a parsimonious scenario.

3 Building a subject cluster

3.1 Similarity clustering: A review

We consider that members of each research organization are engaged in a number of research
projects that are relevant to some of ACMC topics. This should give rise to a measure of
similarity between the topics. Specifically, an index of similarity between two topics should
be proportional to the number and importance of the projects that are relevant to both of
the topics. The degrees of relevance should be used as weighting coefficients to the projects.
Therefore, we assume that a survey of the projects of members of the organization can be
conducted in such a way that a set of ACMC topics that are worked on in the organization
can be discerned, along with a matrix of similarity indices between the topics. In this way,
the issue of determining of the subject clusters can be explicated as the well-known problem
of finding clusters, potentially overlapping, over a similarity matrix.

Similarity clustering emerged rather early — in graph theory, probably before the discipline
of clustering itself. A graph may be thought of as a structural expression of similarity data,
its nodes corresponding to entities with edges joining similar nodes. Cluster related graph-
theoretic concepts include: (a) connected component (a maximal subset of nodes in which
every pair of nodes is connected by a path), (b) bicomponent (a maximal subset of nodes in
which each pair of nodes belongs to a cycle), and (c) clique (a subset of nodes in which each
pair of nodes is connected by an edge).

Other, less straightforward, early clustering concepts include the B-coefficient method
for clustering variables using their correlation matrix [12] and the Wrozlaw taxonomy [13].
These are precursors to the ADDI and ADDI-S methods [14], described later, and the single
linkage method [15], respectively. Two more recent graph-theoretic concepts are also relevant:
mazimum density subgraph [16] and min-multi-cut in a weighted graph [17].

The density ¢(S) of a subgraph on S C I, where I is the set of all vertices is the ratio
of the number of edges in S to the number of elements of S. For an edge weighted graph
with weights specified by the matrix A = (a;;), the density ¢(S) is equal to the Raleigh
quotient sT As/s’s, where s = (s;) is the membership vector of S, viz. s; = 1if i € S and
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s; = 0 otherwise. A subgraph of maximum density represents a cluster. After removing
such a cluster from the graph, a maximum density subgraph of the remaining graph can
be found. This may be repeated until no “significant” clusters remain. To our knowledge,
this method has never been applied to real-world problems, probably because it involves
rather intensive computations. We consider that the maximum density subgraph problem
is of interest because it is a reasonable relaxation of the maximum clique problem and,
also, it fits well into the data recovery clustering approach [19]. The maximum value of
the Raleigh quotient of a symmetric matrix over any real vector s is equal to the maximum
eigenvalue and is attained at an eigenvector corresponding to this eigenvalue. This gives rise
to the so-called spectral clustering, a method of clustering based on first finding a maximum
eigenvector s* and then defining the spectral cluster by s; = 1if s7 > ¢ and s; = 0 otherwise,
for some threshold ¢. This method may have computational advantages when A is sparse.
Unfortunately, it does not necessarily lead to an optimal cluster, but empirically it produces
good clusters in most cases.

The concept of min-multi-cut is an extension of the max-flow min-cut concept in ca-
pacitated networks, and essentially seeks a partition of nodes into classes having minimum
summary similarities between classes or, equivalently, maximum summary similarities within
classes. When similarities are non-negative, this criterion may often lead to a highly unbal-
anced partition with one huge class and a number of singleton classes. This line of research
has led to using the normalized cut, proposed in [21], as a meaningful clustering criterion.
The normalized cut criterion assumes that the set of all vertices I should be split into two
parts, S and S, so that the normalized cut

nc(S) = a(S,S)/a(S,I) + a(S,S)/a(S,I)

is minimized. Here a(S,T) denotes the summary similarity between subsets S and 7. The
criterion nc(S) can be expressed as a Raleigh quotient for a generalized eigenvalue problem
[21], so the spectral clustering approach may be applied to minimizing the normalized cut
too.

3.2 Additive cluster model and iterative extraction

In the framework of the data recovery approach to clustering, a model for overlapping clus-
tering can be formulated as follows.

Let I be the set of entities, such as ACMC topics, under consideration and A = (a;;)
a similarity matrix over 7,7 € I. Any subset S C I can be one-to-one associated with a
“square-like” relation defined by a binary matrix r = (r;;) in such a way that r;; = 1 if both
i and j belong to S and r;; = 0, otherwise. In other words, r;; = s;s; where s = (s;) is the
membership vector of S so that for any ¢ € I, s; is 1 or 0 depending on whether ¢ € S or
not. The universal cluster S° = I corresponds to the universal relation 7 whose all entries
are unities.

Each cluster S C [ can be assigned with a number A, expressing the intensity of the
cluster, which is interpreted as the intensity of similarities between its elements. Assume
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that similarities in A are generated by a set of “additive clusters” S* C I along with their
intensities A\;, k = 0,1,..., K, in such a way that each a;; approximates the sum of the
intensities of those clusters that contain both ¢ and j so that:

K
CLZ‘j = Z )\kS?S? + /\0 + 6ij7 (1)

k=1
where s = (s¥) are the membership vectors of the unknown clusters S*, k = 1,2, ..., K,

and e;; are the residuals to be minimized. The intensity )¢ of the universal cluster I can be
considered as a similarity scale shift because the equation in (1) can be equivalently changed
to that without the universal cluster but with shifted similarities a;j = a;; — \o.

In this additive clustering model, introduced in [18], the intensities \g, k = 1,2,..., K,
and the shift A\ also have to be optimally determined. In the more general formulation of
the “categorical factor analysis” [14], these values may be user specified.

We note that the role of the parameter g in (1) is threefold: it can be considered as

1. an intercept of the bilinear data model, similar to that in the linear regression or

2. the intensity of the universal cluster I or

3. a ‘soft’ similarity threshold in the sense that it is the shifted similarity matrix a;;,
rather than the original A, is used to determine the clusters S*, k = 1,2, ..., K. This

role is of a special interest when )\ is user specified.

A computationally viable strategy for fitting model (1) is of iterative cluster extraction
[14]. According to this strategy, clusters and their intensities are found one by one starting
from the universal cluster Sy = I. To find a cluster, model (1) is restricted to K = 1 and
shifted a;; for a;;. That means that criterion

L*(S,\) = Z (a;j — \s;s;5)? (2)

i,j€l

is to be minimized with respect to unknown A and/or S. After a solution at k-th step
is found, similarities are updated by subtracting the cluster similarities taken into account
agj — agj — As;sj, k is increased by one, and the process reiterates. The optimal A can be
proven to be equal to the average within-S similarity, because of the quadratic nature of
the criterion. The initial step involves the universal cluster Sy = I and its optimal intensity,
which is the average value of all the initial similarities a;;.

This procedure does not necessarily lead to the optimal fitting of model (1), but it allows
for a useful decomposition of the data scatter, which is analogous to that due to the so-called

spectral decomposition of matrices over their eigen vectors in linear algebra. Specifically,

(A, A) = [" A" /s sM? + (B, E) (3)

k=0
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In this formula, the inner products (A, A) and (E, E) denote the sums of the squares of the
elements of the matrices, considering A and E as vectors; these are conventionally expressed
as the traces (sums of diagonal elements) of the products AT A and ETE, respectively. The
residual simiularity matrix on k-th step is denoted by A*. The optimal )\, is equal to ay,
the average of the residual similarities ay; for 4, j € S*.

Similarity data A may not be symmetric. However, it is not difficult to prove that if A
is not symmetric, it can be equivalently changed for symmetric A = (A+ AT)/2 [14]. For
the sake of simplicity, in this section, we assume that the diagonal entries a;; are all zero.

3.2.1 Pre-specified intensity

We first consider the case in which the intensity A of the cluster to be found is pre-specified.
Noting that s? = s; for any 0/1 variable s;, criterion (2) can be expressed as

LZ(S) = Z (&ij — )\SiSj)Q = Z a?j — 2)\ Z (aij — )\/Q)SiSj (4)
i,j€l i,j€l i,j€l

2

Since >, ;a;; is constant, for A > 0, minimizing (4) is equivalent to maximizing the

summary within-cluster similarity after subtracting the threshold value m = \/2:

f(S,m) =3 (ai —m)sis; = Y (ay — ). ()
ijel ijes
This criterion implies that, for an entity ¢ to be added to or removed from the S under
consideration, the difference between the value of (5) for the resulting set and its value for
S, f(S+ti,m)— f(S,m), is equal to £2f(i, S, 7) where

fi,S,m) = Z(aij —7) = Zaij —7|S].

Jjes JjeSs

This gives rise to a local search algorithm for maximizing (5): start with S = {i*, 7*} such
that a;«;« is maximum element in A, provided that a;-j« > 7. An element 7 € S may be added
to S if f(i,S,m) > 0; similarly, an element i € S may be removed from S if f(i,5,7) < 0.
The greedy procedure ADDI [14] iteratively finds an i ¢ S maximizing +f(i,.5,7) and an
i € S maximizing — f(i, S, 7), and takes the i giving the larger value. The iterations stop
when this larger value is negative. The resulting S' is returned along with its contribution to
the data scatter, 47 Y ,cq (4,5, 7). The following version of ADDI reducing the dependence
on the initial S proved successful in experiments. The computations here start from the
singleton S = {i}, for each i € I, so that |I| ADDI based results are generated; of these,
that cluster S is selected that contributes most to the data scatter, i.e., that minimizes the
square error L*(S) (4). In fact, the set of resulting clusters should be of interest on its own
since many of them coincide or almost coincide and the structure of not coinciding clusters
represents an overlapping structure of the similarity data.

The heuristic algorithm CAST [20], popular in bioinformatics, is in fact a version of the
ADDI algorithm, because it uses the same iterative process of adding or removing an entity
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by utilizing criterion ;¢ a;; > 7|S|, for the case of adding, with the }°,c 5 a;; referred to as
the affinity of ¢ to S — which is equivalent to criterion f(i,S, ) > 0.

Another property of the criterion is that f(i, S, 7) > 0 if and only if the average similarity
between a given ¢ € I and the elements of S is greater than 7, which means that the final
cluster S produced by ADDI/CAST is rather tight: the average similarities between i € I
and S is at least 7 if ¢ € S and no greater than 7 if i ¢ S [14].

Intuitively, changing the threshold 7 should lead to corresponding changes in the optimal
S. Indeed, it has been proven that the greater 7 is, the smaller S will be [14].

3.2.2 Optimal intensity

When A in (4) is not fixed but chosen to further minimize the criterion, it is not difficult to
prove that

L*(S) = (A, A) — [sT As/s"s)?, (6)

in line with the decomposition (3), with K =1 and L?(S) = (E, E). The proof is based on
the fact that the optimal X is the average similarity a(S) within S, i.e.,

A =a(S) = s" As/[s" s]?, (7)

since sTs = |S)|.
The decomposition (6) implies that an optimal cluster S must maximize the criterion

g'(S) = [s" As/s"s]” = a*(S)|S* (8)

According to (8), the maximum of ¢g?(S) may correspond to either positive or negative
value of a(S). The latter case may emerge when the similarity shift A\q is large and corre-
sponds to S being the so-called anti-cluster. In this paper, we do not consider this case, but
focus on maximizing (8) for positive a(S) only. This is equivalent to maximizing the Raleigh
quotient,

g(S) = sTAs/s"s = a(9)|S] 9)

It should be pointed out that this criterion not only emerges in the data recovery frame-
work but it also fits into some other frameworks such as (i) maximum density subgraphs and
(ii) spectral clustering.

To maximize g(.5), one may utilize the ADDI-S algorithm [14], which is the same as the
algorithm ADDI/CAST, described above, except that the threshold 7 is recalculated after
each step as m = a(S)/2, corresponding to the optimal A in (7).

A property of the resulting cluster S, similar to that for the constant threshold case,
holds: the average similarity between ¢ and S is at least half the within-cluster average
similarity a(S)/2 if i € S, and at most a(5)/2if i € S.
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To obtain a set of (not necessarily disjoint) clusters within the framework of the additive
clustering model, one can repeatedly extract a cluster S using ADDI-S and then replacing
A by the residual matrix A — a(S)ss”.

ADDI-S utilizes no ad hoc parameters, so the process of iterative extraction of clusters
can be halted by using either or all of the following criteria:

i A pre-specified number of clusters is reached.

ii A pre-specified proportion of the data scatter (A, A) taken into account by the found
clusters according to (3), such as 60%, is reached.

iii Next cluster takes into account less than a pre-specified proportion of the data scatter,
such as 3% or 5%.

4 An example of implementation

Let us describe how this approach can be implemented by using the data from a survey at
the Department of Computer Science, Faculty of Science & Technology, New University of
Lisboa (DI-FCT-UNL).

For simplicity, we use only data of the second level of ACM, each having a code V.v
where V=A B,... K, and v =1,.., mK, with mK being the number of second level topics.
Each member of the department supplied three ACM subjects most relevant to their current
research. These comprise altogether 26 of the 59 topics at the second level in ACMC. (We
omit two subjects of the second level, General and Miscellaneous, occurred in every first-level
division as they do not contribute to the representation.)

We define similarity between two ACM subjects, V.v and W.w, as the number of members
of the department that work on both of them. In principle, the measure can be further
elaborated by taking into account various structural aspects of the department’s structure
such as formally defined working groups, grant projects, etc. This measure serves as the
base for finding subject clusters. It is important to notice that clusters are not necessarily
disjoint; they may overlap.

With the algorithm ADDI-S applied to the 26x26 similarity matrix, we get the following
6 clusters (with the halt at reaching the threshold of 4% contribution to the data scatter):

1. CI1 (contribution 27.08%, intensity 2.17), 4 items: D3, F1, F3, F4;

2. CI2 (contribution 17.34%, intensity 0.52), 12 items: C2, D1, D2, D3, D4, F3, F4, H2,
H3, H5, 12, 16;

3. ClI3 (contribution 5.13%, intensity 1.33), 3 items: C1, C2, C3;
4. Cl4 (contribution 4.42%, intensity 0.36) , 9 items: F4, G1, H2, 12, 13, 14, I5, 16, I7;

5. Cl5(contribution 4.03%, intensity 0.65), 5 items: E1, F2, H2, H3, H4;
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6. CI6 (contribution 4.00%, intensity 0.64), 5 items: C4, D1, D2, D4, K6.

The next 7th cluster’s contribution is just 2.5%. These clusters mapped to the ACMC are
presented on Figure 5, in which only those first-level categories that overlap them are shown.

One can see the following:

- The department covers, with a few gaps and offshoots, six head subjects shown on the
Figure using pentagns filled in by different patterns;

- The most contributing cluster, with the head subject F. Theory of computation, com-
prises a very tight group of a few second level topics;

- The next contributing cluster has not one but two head subjects, D and H, and offshoots
to every other head subject in the department, which shows that this cluster currently is the
structure underlying the unity of the department;

- Moreover, the two head subjects of this cluster come on top of two other subject clusters,
each pertaining to just one of the head subjects, D. Software or H. Information Systems. This
means that the two-headed cluster signifies a new direction in Computer Sciences, combining
D and H into a single new direction, which seems a feature of the current developments in-
deed; this should eventually get reflected in an update of the ACM classification (by raising
D.2 Software Engineering to the level 17);

- There are only three offshoots outside the department’s head subjects: E1. Data struc-
tures from H. Information Systems, G1. Numerical Analysis from I. Computing Methodolo-
gies, and K6. Management of Computing and Information Systems from D. Software. All
three seem natural and should be reflected in the list of collateral links between different
parts of the classification tree.

5 Conclusion

We have shown that ACMC can be used as an ontology structure for representing CS research
activities. Altogether, to apply this approach to a Computer Science organization such as a
University department, one needs to perform the following steps:

e surveying the members of ACMC subjects they are working on; this can be supple-
mented with indication of the degree of success achieved (good publication, award,
etc.);

e deriving similarity between ACMC topics resulting from the survey and clustering
them. (A similarity measure involving ACMC-tree inheritance is under development.);
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Figure 6: Six subject clusters in the DI FCT UNL represented over the ACMC ontology.
Head subjects are shown with differently patterned pentagons. Topic boxes shared by dif-
ferent clusters are split-patterned.

e mapping clusters to the ACMC, which should be done in a parsimonious way by min-
imizing the weighted sum of counts of head subjects, gaps and offshoots;

e aggregating results from different clusters and, potentially, different organizations;

e interpretation of the results.

In principle, the approach can be extended to other areas of science or engineering, pro-
vided that these areas have been systematized into comprehensive ontologies or taxonomies.
Potentially, this approach could lead to a useful instrument of visually feasible comprehensive
representation of developments in any field of human activities prearranged as a hierarchy
of relevant topics.
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