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ABSTRACT

In this paper, we consider approximability of four covering/packing type problems which have
important applications in computational biology. The problems considered in this paper are
the triangle packing problem, the full sibling reconstruction problem under two parsimonious
assumptions, the maximum profit coverage problem and the 2-coverage problem. We provide
approximation algorithms and inapproximability results for various values of parameters of
interest for these problems. Our inapproximability constant for the triangle packing prob-
lem improves slightly upon the best-known inapproximability constant that can be achieved
from previous results [14]; this is done by directly transforming the inapproximability gap
of H̊astad for the problem of maximizing the number of satisfied equations for a set of equa-
tions over GF(2) [26] and is interesting in its own right. Our inapproximability results on full
siblings reconstruction problems answers open questions about the computational complex-
ities of these problems posed by Berger-Wolf et al. [5]. Our results on the maximum profit
coverage problem provides almost matching upper and lower bounds on the approximation
ratios for this problem posed by Hassin and Or [25].



1 Introduction

We consider four problems motivated by four different applications in bioinformatics. Each
of them concerns with packing or covering. We start with the precise definitions of the
problems and later describe their motivations.

Triangle Packing Problem (TP)

In TP we are given an undirected graph. A triangle is a cycle of 3 nodes. The goal is to find
(pack) a maximum number of node-disjoint triangles in G.

Full Sibling Reconstruction Problems, 4-ALLELEn,ℓ and 2-ALLELEn,ℓ

We consider the problem of reconstructing sibling relationships based on a genetic sample
of individuals from the same generation. Each individual is represented by a string of ℓ
pairs of symbols (each symbol represents a unique DNA string, or an allele). The objective
is to reconstruct possible groups of siblings, i.e. groups of individuals whose genetics are
consistent with having the same parents according to Mendelian laws of inheritance. Below
is the formal definition of two versions of the problem.

Definition 1
(a) An ℓ-locus individual (genetic sample) is a sequence S = ((S1,1, S1,2), (S2,1, S2,2), . . . , (Sℓ,1, Sℓ,2)]
of ordered pairs of symbols over an alphabet.
(b) A set A of ℓ-locus individuals satisfies the 4-allele condition [4] at a locus j if and only
if | ∪T∈A {Tj,1, Tj,2}| ≤ 4.
(c) A set A of ℓ-locus individuals satisfies 2-allele condition [4] at a locus j if and only if
each A ∈ A has a permutation σA of {1, 2} such that | ∪A∈A {Aj,σA(k)}| ≤ 2 for k = 1 and
k = 2.
(d) A set A of ℓ-locus individuals is full siblings under the k-allele condition (k ∈ {2, 4}) if
and only for it satisfies the k-allele condition at every locus.

Note that any set of two individuals is always a full sibling set under either condition. We
now state the full sibling reconstruction problem based on the two parsimonious constrains
as outlined in [4, 5, 15] We can simultaneously state two versions of the problem, with k = 2
and k = 4:

Problem name: k-allele problem with parameter ℓ (k-ALLELEn,ℓ) with k ∈
{2, 4}.
Instance: a set A of n ℓ-locus individuals.

Valid Solutions: a collection S of sets of individuals (sibling groups) such that

• A = ∪B∈SB (S covers A);
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• each B ∈ S is full sibling set under the k-allele condition;

Objective: minimize |S|.

Although various full sibling reconstruction methods have been investigated previously
experimentally, there were no theoretical investigation of the computational complexities of
these problems. A natural parameter of interest is the maximum size of any full sibling set
a; we denote the corresponding problem by a-k-ALLELEn,ℓ in the discussion below. Both
2-4-ALLELEn,ℓ and 2-2-ALLELEn,ℓ are trivial. Furthermore, if a is a constant, both a-4-
ALLELEn,ℓ and a-2-ALLELEn,ℓ can be posed as a set-cover problem with a polynomially
many sets with the maximum set size being a and thus have a (1 + ln a)-approximations
(by using standard algorithms for the set-cover problem [38]). For general a, since any two
individuals can be put in the same sibling group, both a-4-ALLELEn,ℓ and a-2-ALLELEn,ℓ

have a trivial a
2
-approximation.

Maximum Profit Coverage Problem (MPC) [25]

We have family of m sets S over a universe U of n elements. For each A ∈ S we have a
non-negative cost qA and for each i ∈ U we have a non-negative profit wi. For P ⊂ S we
define the profit c(P) =

∑
i∈∪S∈PS wi −

∑
A∈P

qA. The goal is to find a subcollection of sets
P that maximizes c(P). A natural parameter for this problem is a = maxA∈S |A|. MPC
admits a PTAS in Euclidean space but otherwise its complexity was unknown.

2-Coverage Problem

Given S and U as in the MPC problem above and an integer k > 0, a valid solution is P ⊂ S
such that |P| ≤ k; the goal is to maximize the number of elements that occur in at least two
of the sets from P . Another natural parameter of interest here is the frequency f , i.e., the
maximum number of times any element occurs in various sets.

1.1 Motivation

In this section we discuss the motivations for the problems considered in this paper. We
discuss one motivation in details and mention the remaining ones very briefly.

For wild populations, the growing development and application of molecular markers pro-
vides new possibilities for the investigation of many fundamental biological phenomena, in-
cluding mating systems, selection and adaptation, kin selection, and dispersal patterns. The
power and potential of the genotypic information obtained in these studies often rests in our
ability to reconstruct genealogical relationships among individuals [21]. These relationships
include parentage, full and half-sibships, and higher order aspects of pedigrees [12, 13, 29].
In this paper we are only concerned with full sibling relationships from single generation
sample of microsatellite markers
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Several methods for sibling reconstruction from microsatellite data have been proposed
[1, 2, 11, 34–37, 39]; Most of the currently available methods use statistical likelihood models
and are inappropriate for wild populations. Recently, a fully combinatorial approach [4, 5, 15]
to sibling reconstruction has been introduced. Our approach uses the simple Mendelian
inheritance rules to impose constraints on the genetic content possibilities of a sibling group.
A formulation of the inferred combinatorial constraints under the parsimony assumption
of constructing the smallest number of groups of individuals that satisfy these constraints
leads to the full sibling problems discussed in the paper. More specifically, an individual is
represented by an ordered sequence of ℓ positions, called loci, say p = (p1, . . . , pℓ), where pi

is multiset of two elements (alleles). An individual p can be a child of a pair of parents, say
q and r, if for each i ∈ {1, . . . , ℓ} we have pi ⊆ qi ∪ ri and pi ∩ si 6= ∅ for s ∈ {r, q}; a set
S of individuals are full siblings if one can construct a pair of parents, say q and r, such
that every p ∈ S can be a child of q and r. Both the 4-allele and the 2-allele constraints
encode the above biological conditions for full siblings with varying strictness. In this paper
we study of worst-case computational complexity issues of these approaches together with
additional experimental results that did not appear in [5].

MPC has applications in clustering identification of molecules [25]. The 2-coverage prob-
lem has motivations in optimizing multiple spaced seeds for homology search (for relevant
concepts, see e.g. [40]). For application of TP to genome rearrangement problems, see [3, 14].

1.2 Some Problems Useful for Reductions

Several additional known problems will be used for (in)approximability results. Below we
list many of these problems together with the known relevant results. Recall that a a
(1 + ε)-approximate solution (or simply an (1 + ε)-approximation) of a minimization (resp.
maximization) problem is a solution with an objective value no larger (resp. no smaller) than
1 + ε times (resp. (1 + ε)−1 times) the value of the optimum, and an algorithm achieving
such a solution is said to have an approximation ratio of at most 1 + ε. A problem is r-
inapproximable under a certain complexity-theoretic assumption means that the the problem
does not have a r-approximation unless the complexity-theoretic assumption is false.

3-LIN-2 We are given a set of linear equations modulo 2 with 3 variables per equation.
Our goal is to maximize the number of equations that are satisfied with a certain value
assignment to the variables. A well-known result by H̊astad [26] shows the following result:
for every ε < 1

2
it is NP-hard to differentiate between the instances that have at least (1−ε)m

satisfied equations from those that have at most
(

1
2

+ ε
)
m satisfied equations.

MAX-CUT on a 3-regular graph (3-MAX-CUT) An instance is a 3-regular graph,
i.e., a graph G = (V,E) where the degree of every vertex is exactly 3 (and thus |E| = 3

2
|V |).

The goal is to find V ′ ⊆ V such that score(V ′) = | {u, v} |{u, v} ∈ E and|{u, v}∩V ′| = 1 } |
is maximized. We will need the following inapproximability result for this problem proved
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in [8]. For every constant ε > 0, it is NP-hard to decide whether an instance G of 3-MAX-
CUT with |V | = 336n vertices has a valid solution with a score below (331 − ε)n or above
(332 + ε)n.

Independent set problem for a a-regular graph A set of vertices are called indepen-
dent if no two of them are connected by an edge. The goal is to find an independent set of
maximum cardinality when the input graph is a-regular, i.e., every vertex has degree a. It is
well-known that this problem is NP-hard for a ≥ 3 and Ω

(
a

ln a

)
-inapproximable for general

a assuming P6=NP [27].

Graph Coloring The goal is to produce an assignment of colors to vertices of a given
graph G = (V,E) such that no two adjacent vertices have the same color and the number
of colors is minimized. Let ∆∗(G) denote the maximum number of independent vertices
in a graph G and χ∗(G) denote the minimum number of colors in a coloring of G. The
following inapproximability result is a straightforward extension of a hardness result known
for coloring of G [19]: for any two constants 0 < ε < δ < 1, χ∗(G) cannot be approximated
to within a factor of |V |ε even if the ∆∗(G) ≤ |V |δ unless NP⊆ZPP.

Weighted set-packing We have a collection of sets each with a non-negative weight over
an universe. Our goal is to select a collection of mutually disjoint sets of total maximum
weight.

Densest Subgraph problem (DS) We are given a graph G = (V,E) and a positive
integer 0 < k < |V |. The goal is to pick k vertices such that the subgraph induced by
these vertices has the maximum average degree. The densest subgraph problem is (1 + ε)-
inapproximable for some constant ε > 0 unless NP⊆BPTIME(2nε

) [31]. A more general

weighted version of DS admits a O(m
1

3
−ε)-approximation for some constant ε > 0 [20].

Maximum coverage problem This is the same as the 2-coverage problem except that
every the number of elements that occur in at least one of the selected sets is maximized.
It is known that the maximum coverage problem can be approximated to within a ratio

of 1 −
(
1 − 1

k

)k
> 1 − (1/e) either by a greedy algorithm [32] or by LP-rounding [40] and

approximation with ratio better than 1−(1/e) is not possible unless P = NP [18]. Obviously,
the same lower bound carries over to 2-coverage also for arbitrary f .

1.3 Our Results and Techniques

1.3.1 Triangle Packing (TP)

We show that TP is 154
153

≈ 1.0065-inapproximable assuming P6= NP . This is done by a
careful reduction from 3-LIN-2 that roughly shows that it is NP-hard to distinguish between
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instances of TP that has a cost of at most 152k as opposed to a cost of at least 153k for
every k.

The reduction is described in Section 2, but here we make the following two relevant
comments regarding the reduction (see Section 2 for more details):

• One can have a somewhat larger construction but with the extra property that the
resulting graph is 4-regular. In [9] it is shown that it is NP-hard to differentiate
between 3-regular graphs that have 200n nodes and a maximum independent set has
either (a) at least (98−ε)n nodes, or (b) at most (97−εn) nodes. We can replace those
graphs with their line-dual, and we will have graphs of 300n nodes in which we can find
at least about 98n or at most about 97n triangles, hence with cost of at most about
101n or at least about 101.5n, which gives a worse 204

203
-inapproximability. A proof

of Caprara and Rizzi [14] is yet earlier and it implies a still worse inapproximability
constant.

• Our construction can be improved using smaller amplifiers of Chleb́ık and Chleb́ıková [17].
More significant improvement is also possible, because amplifier property is stronger
than necessary in this context and smaller graphs can be used. Back-of-the-envelope
estimate would give 131

130
-inapproximability.

1.3.2 4-ALLELEn,ℓ and 2-ALLELEn,ℓ

a = 3 This is the smallest non-trivial value of a. We prove 305
304

≈ 1.0032-inapproximability
for both problems when ℓ = O(n3) assuming P6= NP . The reduction is from triangle packing
to a generic version that covers both problems for this case; loci are introduced carefully via
a “labeling” procedure to ensure a faithful reduction. Also, either problem (for any ell)
has an easy

(
7
6

+ ε
)
-approximation for any constant ε > 0 using the results of Hurkens and

Schrijver [28].

a = 4 We prove 6725
6724

≈ 1.00014-inapproximability for both problems even with the restric-
tion of ℓ = 2 assuming P6=NP. The combination a = 4 and ℓ = 2 represent the second
smallest non-trivial values of them. The hardness result is obtained by reducing 3-MAX-
CUT via an intermediate geometric mapping; the idea of this proof and that for the case
of a = 6 described next are inspired by some gadgets used in [7, 8]. Also, either problem
has an easy

(
3
2

+ ε
)
-approximation for any constant ε > 0 using the result of Berman and

Krysta [10].

a = 6 and ℓ = O(n) This combination of a and ℓ represents a slightly higher value of a and
a moderate value of ℓ. We prove 1182

1181
≈ 1.00084-inapproximability for 4-ALLELEn,ℓ only

even with the restriction of ℓ = O(n) assuming P6=NP. The inapproximability constant is
better than the correspoding one for a = 4 and ℓ = 2 but worse than the corresponding one
in a = 3 and ℓ = O(n3). The result is obtained by reducing 3-MAX-CUT via a (different)
intermediate geometric mapping.
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a = nδ This case represents all sufficiently large values of a. We prove nε-inapproximability
for both problems assuming NP6⊆ZPP. Here 0 < ε < δ < 1 are any two constants. We reduce
the hard instance of the graph coloring problem as described in the previous section.

In general, additional loci are used carefully in many of the above reductions to rule out
possibilities that would violate the validity of our reductions.

1.4 Maximum Profit Coverage (MPC)

For MPC we prove almost matching lower and upper bounds on approximability:

(i) MPC is NP-hard for a ≥ 3 and Ω
(

a
ln a

)
-inapproximable for arbitrary a assuming P6=NP

even if every set has weight a− 1, every element has weight 1 and every set contains exactly
a elements. The hard instances can further be restricted such that each element is a point
in some underlying metric space and each set correspond to a ball of radius α for some fixed
specified α. The reduction is from the independent set problem on a-regular graphs.

(ii) MPC is polynomial-time solvable for a ≤ 2. Otherwise, we provide, for any constant
ε > 0, a

(
a+1
2

+ ε
)
-approximation for fixed a and a (0.6454a + ε)-approximation otherwise

via the weighted set-packing problem. The (0.6454a + ε)-approximation for arbitrary a
can be achieved via a very careful polynomial-time dynamic programming implementation
of the 2-IMP approach in Berman and Krysta [10] that implicitly maintains subsets for
possible candidates for improvement that cannot be explicitly enumerated due to their non-
polynomial number.

1.4.1 2-coverage

For the 2-coverage problem:

• We observe that, for f = 2, the 2-coverage problem is (1 + ε)-inapproximable for
some constant ε > 0 unless NP⊆BPTIME(2nε

) (the 1− (1/e)-inapproximability result
for maximum coverage does not hold under the assumption of f = 2) and admits a

O(m
1

3
−ε′)-approximation for some constant ε′ > 0 by identifying with the DS problem.

• For arbitrary f , we show a O(
√

m)-approximation.

Note that a significantly better than O( 3
√

m)-approximation for 2-coverage would imply a
better approximation for DS than what is currently known.

2 Inapproximability Result for Triangle Packing

Note that the above theorem gives a 154
153

≈ 1.0065-inapproximability for TP.
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Theorem 2 For every constant ε > 0, it is NP-hard to decide whether an instance G of
TP with |V | = 228k vertices has a valid solution with a maximum number of triangles below
(76 + ε)k or above (76.5 − ε)k.

Proof. Inapproximability bound for a maximization problem has the following form: for
every ε < 1

2
k−1 it is NP-hard to differentiate between the instances that have profit at least

(1 − ε)m from those that have a profit at most (1 − k−1 + ε)m; in the case of minimization
problems we switch the profit with cost. As stated before, a well-known result by H̊astad [26]
shows that the the 3-LIN-2 problem has inapproximability parameter k = 2.

Berman and Karpinski [9] described a way of reducing the number of occurrences of vari-
ables in equations: replace occurrences of a variable, say x, with separate original variables,
say, from a set Vx with m elements, add 6m additional checker variables, say, set Cx, and
connect Vx ∪ Cx with equations of the form x′ + x′′ = 1 mod 2, for {x′, x′′} ∈ Ex.

The graph (Vx ∪ Cc, Ex) is called amplifier, and it has the following properties: it is
bipartite, each terminal has 2 neighbors and each checker has 3 neighbors, and every set of
nodes A has a cut of size at least min(|A ∩ Vx|, |A − Vx|).

The amplifier property allows to normalize assignments of values to Vx∪Cx. As the graph
is bipartite, with parts A0 and A1, we say that assigning value b to x′ ∈ Ai corresponds to
assigning b + 1 mod 2 to x. Let Bb be the set of variables in Vx ∪ Cx with assignment that
corresponds to assigning b to x, and suppose that B0 has more elements of Vx. In this case
we modify the assignment such that it corresponds to assigning 0 to x; some ℓ terminal
variable will change values, which changes the satisfaction of ℓ original equations. On the
other hand, we have at least ℓ equations that correspond to the cut between B0 and B1 and
we will gain satisfaction of those, hence the normalization cannot decrease the number of
satisfied variables.

A technical detail is that when we may need to modify the original equations when we
use original variables that correspond to negations of the actual value that we assign.

As a result, if we started with 2n equations, we had 6n variable occurrences, we cre-
ated amplifiers with 60n edges/equations and all these equations are satisfied in the normal
solutions, so now it is hard to tell if we can satisfy at least (60 + 2 − ε)n equations or
at most (60 + 1 + ε)n equations, which means that the restricted version of 3-LIN-2 has
inapproximability parameter of k = 62.

We can adapt this construction to show inapproximability of the problem of minimum
triangle cover, or TCP (triangle cover with pairs): given a graph, we can cover it with sets
that are either (a) triangles, or (b) have at most two nodes. We minimize the number of sets
in the cover.

Suppose that we have an instance with n nodes, then a solution with n/3 − a triangles
has the cost of ⌈n/3 + a/2⌉. (We will skip the rounding later). We can also say that if we
fail to cover a nodes with triangles, then the cost is n/3 + a/6. Inapproximability remains
the same if we multiply the cost by 3, to be n + a/2 (we can talk about small cost and large
cost.

We formulate an equivalent slightly more general version of the problem, TCPD: besides
normal nodes we have don’t care nodes, and if we fail to cover a normal nodes the (large)
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cost is is n+a/2. To apparently more general version can be reduced to the ordinary version
as follows: create three copies of the graph, and connect with triangles copies of each don’t
care node. It is easy to see that every triangle is either contained in a copy or it connects
copies of the same don’t care node.

A solution in the new graph can be normalized as follows. Consider a copy that has the
minimal number of uncovered nodes, say a. Then the entire graph had at least 3a uncovered
nodes and the (small) cost is at least n+a/2. If we restrict the solution to triangles contained
in a single copy, we have at most a normal nodes uncovered, so the (large) cost is n + a/2.

Now we reduce 3-LIN-2 to TCPD. A variable with m occurrences is replaced with an
amplifier with m terminals and 6m checkers, and in turn, we each node of the amplifier with
a triangle, and an edge by identifying nodes of two triangles. One can see that such a graph
has 11m nodes, of which 10m correspond to edges within the amplifier and m correspond to
connections between the terminal nodes and the (original) equations with 3 variables. (We
assume, without loss of generality, that m is even).

We will identify our solution with assigning 0/1 values to variable: when we use a triangle,
it corresponds to value 1, and when we do not use, it corresponds to value 0. A normalized
solution covers all the nodes in such a structure with the exception of the connection nodes
that correspond to copies with value 0 assigned. If there is a minority of connection nodes
that corresponds to a different value of the original variable than the majority, say, with a
elements, then we have a cut of a edges of the amplifier that correspond to a nodes that are
not covered with triangles and are not connection nodes. The normalization covers these at
least a nodes and changes the status a connections.

What we need is a gadget for an equation with 3 variables that has the following property:
when the number of the covered connections is correct (0 or 2 in case “= 0 mod 2”, 1 or 3
in case “= 1 mod 2”) then we can cover all normal nodes, otherwise we can cover all but
one normal node. In this case the number of unsatisfied equation corresponds exactly to the
number of uncovered nodes. Moreover, if normalize value on a connection, we loose at most
one covered normal node, so normalization can be performed without a loss. Fig. 1 shows
that for the case of “= 1 mod 2” the gadget uses 6 nodes in addition to the connection
nodes, and in the other case, 4 nodes. We can always toggle all the equations (and variable
values) and have the same number of them satisfied, so we can make sure that we have no
more larger gadgets than the smaller gadgets.

Summarizing, we start with 2n equations, of which we must either leave (1 − ε)n unsat-
isfied, or only εn, and we create a graph with 11× 3× 2n + 5× 2n = 76n nodes,of which we
must either leave (1−ε)n uncovered by triangles, or only εn, leading to the cost of (76.5−ε)n
or (76 + ε)n, which gives inapproximability parameter of k = 153. ❑
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Figure 1: Equation gadgets. Connection nodes are circles, don’t care node are large black
nodes, normal nodes are small dots. The left gadget is for equation x + y + z = 1 mod 2. If
three connection nodes are covered, we can cover normal nodes with a triangle, if 1 is covered,
we can cover 2 connections, 1 don’t care and 3 normal with 2 triangles. Now, the cases when
the equation is not satisfied. We can “pretend” that one more connection is covered, then
we cover the rest, leaving 1 node uncovered. However, we cannot cover all nodes. When
0 connections are covered, we cannot cover more than one of them using triangles that do
not include don’t care node, and if we use on of these, we have to cover 7 nodes. When 2
connections are covered, we have to cover 4 nodes with one optional don’t care, so again, we
cannot cover all. The right gadget is for equation x + y + z = 0, so the gadget should be
able to cover 1 or 3 connection nodes. The analysis is similar.

3 Inapproximability for 4-ALLELEn,ℓ and 2-ALLELEn,ℓ

for a = 3

Theorem 3 Both 4-ALLELEn,ℓ and 2-ALLELEn,ℓ are 305
304

-inapproximable even if a = 3
assuming P 6=NP and (for any ℓ) have an easy

(
7
6

+ ε
)
-approximation for any constant ε > 0.

Proof. We reduce the Triangle Packing (TP) problem to our problem. We will use the
inapproximability result for TP as described in Section 2.

To treat both 4-ALLELEn,ℓ and 2-ALLELEn,ℓ in an unified framework in our reduction,
it is convenient to introduce the 2-label cover problem. The inputs are the same as in 4-

ALLELEn,ℓ or 2-ALLELEn,ℓ except that each locus has just one value (label) and a set
is individuals are full siblings if on every locus they have at most 2 values. Thus, each
individual can be thought of as an ordered sequence of labels. An instance of the 2-label
cover problem can be translated to an instance of our problem by replacing each label in
each locus in the following manner:

• for 4-ALLELEn,ℓ, the label the value v is replaced by the pair (v, v′) where v′ is a new
symbol;

• for 2-ALLELEn,ℓ the value v is replaced by the pair (v, v).

We will reduce an instance of TP to the 2-label cover problem by introducing an individual
for every node of the graph G with n nodes and providing label sequences for each node
(individual) such that:
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(⋆) three individuals corresponding to a triangle of G have at most two values on every
locus, and

(⋆⋆) three individuals that do not correspond to a triangle of G have three values on some
locus.

Note that, since any pair of individuals can be full siblings, the above properties imply that
TP has a solution with t triangles if and only if the 2-label cover can be covered with n−t

2

sibling groups. Thus, Theorem 2 implies that it is NP-hard to decide on instances of 228k
individuals whether the number of full sibling groups is above (76−ε)k or below (75.75+ε)k,
thereby giving 305

304
≈ 1.0032-inapproximability.

The index of a locus, which we call the coordinate, is defined by:

(a) an “origin” node a, and

(b) optionally, a certain edge e.

Thus, we will have at most O(|V |·|E|) loci. The respective label of a node v at this coordinate
is the distance from a to v, assuming every edge except e has length 1 while e has length 0.
Let dist(u, v) denote the distance between nodes u and v.

It is easy to see that Property (⋆) holds. Consider a triangle {u, v, w} and assume that u
has the minimum label value of L, i.e., it is the nearest with respect to the origin node that
defined this locus. Then labels of v and w are at least L and at most L + 1, hence we have
at most two labels.

It is a bit more involved to verify Property (⋆⋆). Consider a non-triangle {u, v, w} in a
labeling defined by u (with no edge). u has label 0 and v, w have positive labels which may
be equal: if not, we are done; if yes, let L =dist(u, v) =dist(u,w).

Consider the two shortest paths from u to v and w, respectively, such that they share a
maximally long initial part; so for some node x dist(u, v) =dist(u, x)+dist(x, v),
dist(u,w) =dist(u, x)+dist(x,w) and the shortest paths from x to v and w have to be disjoint.
Let {x, y} be an edge on a shortest path from x to v and now set its length to 0.

First, observe that dist(y, w) ≥dist(x,w), since otherwise dist(y, w) ≤dist(x,w) − 1,
dist(u,v) = dist(u,x)+dist(x,y)+dist(y,v) and also dist(u,w) =dist(u, x)+dist(x, y)+dist(y, w)
and we found a longer common prefix of shortest paths from u to v and w.

Now when we shrink e = {x, y} by setting its length to zero, the labels of u and w are
unchanged and the label of v drops by 1; we have only two labels only if the labels of u, v
and w are 0, 1 and 1, respectively, which implies that {u, v} and {u,w} are edges.

In this case we label nodes by distances from v; v gets 0, u gets 1, if w also gets 1 then
we have edges {u, v}, {u,w} and now we witnessed {v, w}, hence {u, v, w} is a triangle.

This completes the hardness reduction.
On the algorithmic side, Hurkens and Schrijver [28] have a schema that approximates

triangle packing within 1.5 + ǫ, which means roughly that ca. (1/3)rd of nodes are left
uncovered by triangles and their covering cost increases by 1.5 factor, so the extra cost is ca.
1/6 of the total (plus ǫ, of course), thus the approximation ratio is 7/6 + ε. ❑
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4 Inapproximability for 4-ALLELEn,ℓ and 2-ALLELEn,ℓ

for a = 4 even if ℓ = 2 and for 4-ALLELEn,ℓ for a = 6

even if ℓ = O(n)

Theorem 4 Assuming P 6=NP, there is no 6726
6725

-approximation algorithm for 2-ALLELEn,ℓ

or 4-ALLELEn,ℓ even if a = 4. Also, either problem (for any ℓ) has an easy
(

3
2

+ ε
)
-

approximation for any constant ε > 0.

Proof. We will prove the result for 2-ALLELEn,ℓ only; a proof for 4-ALLELEn,ℓ can be
obtained by appropriate modification of the proof and is deferred to the full version of the
paper. We will prove the result by showing that, for any constant ε > 0, 2-ALLELEn,ℓ

cannot be approximated to within a ratio of 6725
6724

− ε > 6726
6725

unless P=NP.
We will reduce an instance G = (V,E) of 3-MAX-CUT to 2-ALLELEn,ℓ and use the

previously proven result on 3-MAX-CUT as stated in Section 1.2. For notational simplicity,
let m = |E|. We will provide a reduction from an instance G = (V,E) of 3-MAX-CUT with
336n vertices to an instance of 4-ALLELE10m,ℓ with ℓ = 2. The reduction will satisfy the
following properties:

(i) a solution of 3-MAX-CUT with a score of x correspond to a solution of 2-ALLELE24m,2

with 14m − x sibling groups;

(ii) a solution of 2-ALLELE24m,2 with z sibling groups can be transformed in polynomial
time to another solution of 2-ALLELE24m,2 with 14m−y ≤ z sibling groups (for some
positive integer y) such that this solution correspond to a solution of 3-MAX-CUT with
a score of y.

Note that this provides the required gap in approximability. Indeed, observe that (with
m = 336× 3

2
× n = 504n) 3-MAX-CUT has a solution of score below (331− ε)n if and only

if 2-ALLELE24m,2 has a solution with at least 14× 504n− (331− ε)n = (6725 + ε)n sibling
groups and conversely 3-MAX-CUT has a solution of score above (332 + ε)n if and only if
2-ALLELE24m,2 has a solution with at most 14 × 504n − (332 + ε)n = (6724 − ε)n sibling
groups; thereby the inapproximability gap is 6725

6724
− ε.

When we look at one locus only, a set of full siblings can have a very limited set of values
for alleles. Consider first the case in which every individual has two different elements (alleles)
at this locus. We can then view each individual {u, v} as an edge in an undirected graph with
the two elements u and v representing two nodes in the graph. Three edges (individuals)
can be full siblings if they form a path or a cycle; if they do not form a connected graph
their union has more than 4 elements, and if they are of the form {u, v}, {u,w}, {u, x} then
also they violate the 2-allele condition. Four edges can be full siblings if they form a cycle
since they must have only 4 nodes and 3 edges incident on the same node violate the 2-allele
condition. The other members in a full sibling group for an individual {u, u} can be subsets
of either { {u, v}, {v, v} } or { {u, v}, {u,w}, {v, w} }. In our reduction cycles of length 3 will
not exist, so full siblings sets of size larger than two will be paths of 3 edges, cycles of 4 edges
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and triples of the form {u, u}, {u, v}, {v, v}. For the purpose of the reduction, it would be
more convenient to reformulate the properties (i) and (ii) of the reduction described above
by the following obviously equivalent properties:

(i’) a solution of 3-MAX-CUT with a score of m−x correspond to a solution of 2-ALLELE24m,2

with 13m + x sibling groups;

(ii’) a solution of 2-ALLELE24m,2 with z sibling groups can be transformed in polynomial
time to another solution of 2-ALLELE24m,2 with 13m+y ≤ z sibling groups (for some
positive integer y) such that this solution correspond to a solution of 3-MAX-CUT with
a score of m − y.

We now describe our reduction. We are given a cubic graph G with 2n nodes (and thus with
m = 3n edges) and we will construct an instance J of 2-ALLELE24m,2. We replace each
node u of G with a gadget Gu that consists of 36 individuals (see Figure 2). Our individuals
have two loci. According to the first locus, individuals are edges in a 4-regular graph. Gadget
Gu is a 3× 12 grid. The rows are closed to form rings of 12 edges, and every fourth column
is similarly closed to form a ring on 3 edges. This leaves 6 connected groups of 3 nodes each
with 3 neighbors only (e.g., the second, third and fourth node from left on the first row is one
such group); these groups are connected to similar groups in other gadgets. A connection
between two gadgets consists of two 2 × 3 grids; for each grid the two rows come from two
above-mentioned groups of nodes, one from each gadget.

α α αβ β βγ γ γδ δ
β γ

µ

a connection between
two node gadgets

κ
λ

α,
δ

α,
δ

α,
δ

µ µ µ µ µ µ µ µ µ

Figure 2: Node gadget Gu for a node u (left) and connections between two node gadgets
(right) used in the proof of Theorem 4. The dashed lines indicate wrap-around connections
between boundary nodes of the node gadget. The edge labels indicate the values (alleles) in
the second locus of each edge (individual). The wrap-around horizontal edges have label δ.

We can view the second locus as labels on edges. A one-letter label a corresponds to a
“pair with a repeat”, i.e., (a, a), and two-letter label a, b is a “normal pair” (a, b). Inside
the 3× 12 grid of a node gadget the labels of horizontal edges are equal if one edge is above
another, and in a 12-edge ring of such edges labels repeat in a cycle of 4 (and each has one
letter). We have similar situation for vertical edges inside the grid. The “wrap-around”
edges (in every 4th column) are labeled with proper pairs α, δ such that they intersect the
labels of their neighbors. We assume that these labels are unique to every Gu (in Figure 2,
these would be labels δu and αu).
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The edges that connect node gadgets are labeled µ where µ is the same in all node gadgets
and the labels of gadget edges that take part in the connection are the same in all gadgets
(thus β and γ are without implicit subscripts).

It is easy to see that every cycle of 4 edges in our new graph is indeed a full siblings set:
according to the first locus they are surely so and according to the second locus we can have
only two distinct labels on a cycle, e.g., {αu, λ} or {β, µ}. Edges with a “normal pair” label
α, δ do not belong to any cycle of length 4.

It is a bit more non-trivial to check that we have only two types of full sibling sets of 3
edges: subsets of 4-cycles, and sets with repeat label α, repeat label δ and normal label α, δ
that include “wrap-around” edges and adjacent horizontal edges (one at each end). Basically,
if we have two horizontal edges from “different columns” in a set, we cannot add any other
label — with the exception we have just described. Recall that a full sibling set of 3 edges
forms a path; thus combination of labels like λ, δ and κ is not full siblings.

We give each edge a potential. By default it is equal to 0.25. The exceptions are: an
edge with the label α, δ has a potential of 0.5, an edge with label µ that is not a center of a
group of three nodes in the node gadget that defined an edge connection has a potential of
0.5 and an edge with label µ that is a center of a group of three nodes in the node gadget
that defined an edge connection has a potential of 0.

By previous observations, no full siblings set has a potential exceeding 1. Note also that
for each node of G we distributed a potential of 19.5, so no cover with full siblings sets can
use fewer than 19.5 × 2n = 39n = 13m sets.

Assume that in G we have a cut with 3n− c = m− c edges, i.e., a partition of the set of
nodes into A and B such that only c edges (of m = 3n edges) are inside the partitions. We
will show a cover with 39n + c full siblings sets. First we use cycles that correspond to gray
squares in every gadget Gu such that u ∈ A, and if u ∈ B we use cycles that correspond to
white square. This is 12 sets per gadgets. Next, in each gadget we use 3 triples centered
on α, δ edges. Next, in a connection between A and B we have either two edges labeled β
already covered, or two edges labeled γ: in the diagram, suppose that the “lower gadget” is
in A, then γ is in a gray square of that gadget; and as the upper gadget is in B and in that
edge the upper γ is covered by a white cycle, it is already covered. Thus we can use a cycle
with two β edges and two µ’s, and one µ is left out. This happens twice in a connection
between two gadget, so we add two cycles and one pair of left-out µ’s, a total of 3 sets.

If a connection is inside A or inside B, then the uncovered edges have one β and one γ
and they form a path of 5 edges, which can be covered with 2 sets, and since this happens
twice, we use 4 sets.

Summarizing, we used 2n × (12 + 3) + 3n × 3 + c = 39n + c sets. This proves (i’).
Now, we prove (ii’). Suppose that we have a cover with 39n + c sets. We have to

normalize it so it will have the form of a cover derived from a cut, without increasing the
number of sets. The potential introduced above allows to make local analysis during the
normalization. A set with potential p < 1 has a penalty of 1 − p, and we have the sum of
penalties equal c.
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We can assign the penalty to node gadgets. If a set with a penalty is contained in some
Gu than the assignment is clear. If we have a set of two edges, then we assign penalty of
0.25 to each edge with potential 0.25 and if such an edge is contained in Gu, we assign the
penalty to Gu.

If Gu has a penalty of 1 or more, we remove Gu from consideration and recursively
normalize the cover of the remaining gadgets. Once we make this normalization, we partition
the remaining nodes into A and B. If a node u has at most one neighbor in A we insert u
to A, meaning, we cover it with gray cycles etc, and we will add 19.5 + 1 sets (an edge not
covered counts as half of a set, because we can combine them in pairs).

A B’ C D’ E

A’ B C’ D E’

Thus remains to normalize the cover of Gu assuming that its
penalty is at most 0.75. Consider the central horizontal cycle of the
grid of Gu: it has 12 edges, and no two of them can belong to the
same full sibling set with more than 2 edges; moreover, the sets of at
least 3 edges to which they belong are fully contained in Gu. Because
Gu obtain at most 0.75 in penalties, at least 9 edges of that 12-cycle are covered by full
siblings 4-cycles. Consider the longest connected fragment of such covered edges; assume
that they are covered with gray cycles.

Suppose that the last two cycles in that fragment are A and B in the last diagram. We
want to change the solution without increasing the number of set and use also cycle C. If
C contains a set S used in the current solution, we can enlarge S (making some other sets
smaller) and our fragment is extended. If C contains two edges contained in two-edge sets,
we can combine the sets so the latter two are in one set, and again we can force C into our
solution. So every edge of C is in a different set from the current solution and at most one
of these sets is a pair.

Consider the edge on the boundary of B′ and C; if it is in a set of more than 3 edges,
that set is contained in C – and we excluded that case, or in B′ – but only two edges of B′

remain uncovered. Hence this edge is contained in a set with two edges only, and it gets a
penalty of 0.25 that is delivered to Gu.

Consider the edge on the boundary of C and C ′. According to our case analysis, it is
contained in a set of at least 3 edges, and which has only one edge in C, so this set is
contained in C ′. Because A covers one edge of C ′, we have a set of exactly 3 edges that gets
a penalty of 0.25, and thus Gu already got 0.5 of penalty.

We repeat the same reasoning at the other end of the fragment and we double the penalty
to 1. The only doubt we can have is that we are counting one of the penalties twice. But
this is not possible: the other end of the fragment cannot be covered by C, and it cannot be
covered by D, as we use the set C ′ \B which overlaps D. If the other end of our fragment is
covered with E, then we get penalties for the boundary of D and D′, and for the set D′ \E
and we have no double counting. Other cases are similar.

Now an explicitly normalized node gadget has a center row covered with 12 cycles of
the same color. The wrap-around edges with α, δ labels can be included in paths of 3 edges
– and with potential 1; note that after we committed ourselves to 12 “central” cycles, the
edges of such a path do not belong to any other set with more than two edges. Now the



– 15 –

uncovered edges are only in the connection gadgets and they form sets of 5 edges, with no
connections between them. We have two such 5-tuples for each connection.

We split the nodes according to the colors used in their gadgets: gray cycles are in set A
and white cycles are in set B. If we have a 5 tuple of an A − B connection, its uncovered
edges form a cycle and an edge, so we can cover it with 1.5 sets and we cannot do any better.
If we have an A−A or B −B connections, the uncovered edges form a path of 5 edges and
we much cover them with two sets.

This completes the hardness reduction.
On the algorithmic side, we can use the result of Berman and Krysta [10]. For polynomial

time, we have to round the rescaled weights to small integers, so the approximation ratio
should have some ǫ added. The 2-IMP with rescaled weight has an approximation ratio of
βa, where for a = 3 β = 2/3, for a = 4 β = 0.6514 and for a > 4 β = 0.6454. We can
greedily find a maximal packing with sets of size 4 and find 1/2 of the remaining sets of size
3 using 2-IMP algorithm of [10]. Easy analysis shows that that this gives an approximation
ratio of 3/2. ❑

Theorem 5 Assuming P 6=NP, there is no 1182
1181

-approximation algorithm for 4-ALLELEn,ℓ

even if a = 6 and ℓ = O(n).

Proof. We will prove the result by showing that, for any constant ε > 0, 4-ALLELEn,ℓ

cannot be approximated to within a ratio of 1181
1180

− ε unless P=NP. Our starting point again
is the 3-MAX-CUT problem and the known result about it as stated in Section 1.2. For
notational simplicity, let m = |E|. We will provide a reduction from an instance G = (V,E)
of 3-MAX-CUT with 336n vertices to an instance of 4-ALLELE10m,ℓ with ℓ = O(m3). The
reduction will satisfy the following properties:

(i) a solution of 3-MAX-CUT with a score of x correspond to a solution of 4-ALLELE10m,ℓ

with 3m − x sibling groups;

(ii) a solution of 4-ALLELE10m,ℓ with z sibling groups can be transformed in polynomial
time to another solution of 4-ALLELE10m,ℓ with 3m− y ≤ z sibling groups (for some
positive integer y) such that this solution correspond to a solution of 3-MAX-CUT
with a score of y.

Note that this provides the required gap in approximability. Indeed, observe that (with
m = 336× 3

2
× n = 504n) 3-MAX-CUT has a solution of score below (331− ε)n if and only

if 4-ALLELE10m,ℓ has a solution with at least 3 × 504n − (331 − ε)n = (1181 + ε)n sibling
groups and conversely 3-MAX-CUT has a solution of score above (332 + ε)n if and only if
4-ALLELE10m,ℓ has a solution with at most 3 × 504n − (332 + ε)n = (1180 − ε)n sibling
groups; thereby the inapproximability gap is 1181

1180
− ε.

Consider an instance G = (V,E) of the 3-MAX-CUT with 336n vertices. For conceptual
ease, our reduction is separated into two phases:

• We define “gadgets” for vertices and edges of G to obtain a new graph G′ = (V ′, E ′).
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• We then create an instance of 4-ALLELE6m,ℓ from G′.

Figure 3: A vertex gadget and its states.
The gadget has six internal edges, three
outgoing black edges and three outgoing
gray edges.

Figure 4: Connection between two adja-
cent vertex gadgets via black-black and
gray-gray connection corresponding to an
edge e = {u, v} ∈ E. The black-black con-
nection will be denoted by e′ and the gray-
gray connection will be denoted by e′′.

For every vertex v ∈ V , we have a gadget as shown in Figure 3. There are two kinds of
nodes in the gadget: black and gray. The six edges coming out of the gadget are called black
or gray depending on whether they are incident on a black or a gray node of the gadget,
respectively; the remaining six edges are called internal edges. An interesting property of
the gadget that we will use is that there are only two minimal ways to cover the gadget using
adjacent stars1 as shown in Figure 3. They are called the black and gray states of the gadget
and correspond to two states of the vertex that denote in which partition of the 3-MAX-CUT
the vertex belongs to. A “normal” state of a vertex gadget correspond to either a black or
a gray state.

We now state how to connect two vertex gadgets corresponding to an edge in G. This is
shown in Figure 4. In essence we traverse the gadget in clockwise order, select the first two
free edges exactly one of which is black and black-black and gray-gray edges are fused. The
intuition behind this is that if the two vertex gadgets are in different normal states then the
both of the fused edges will be covered by the set of stars that cover each gadget, otherwise
one such edge will not be covered.

For the convenience of understanding of the reader, we show in Figure 5 the transforma-
tion when G is a 3-regular graph on 4 vertices. Note however that G is not a valid input for
our reduction since our input graph must have at least 336 vertices.

We now state how to create an instance of 4-ALLELEℓ,10m with ℓ = O(n) from G′. For

every edge e = {u, v} of G′ we have two new individuals. We will denote them by ẽ1 (or
˜{u,v}1) and ẽ2 (or ˜{u,v}2). Thus, in all we have 12 · |V | + 2 · |E| = 10m individuals. We

define the following.

Definition 6
(a) An allowed triplet (of edges) of G′ is a set of three edges that form a star. A forbidden
triplet of edges of G′ is any set of three edges of G′ that is not an allowed triplet.

1A star is a set of three edges with exactly one common vertex.
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Figure 5: G′ corresponding to a 3-regular graph G of 4 vertices. G is not a valid input for
our reduction since our input graph must have at least 336 vertices.

(b) By an allowed triplet (of individuals) of 4-ALLELEℓ,10m we mean a set of three indi-

viduals {ẽi, f̃ j, g̃k} (for every i, j, k ∈ {1, 2}) such that {e, f, g} is an allowed triplet of G′ A
forbidden triplet of 4-ALLELEℓ,10m is any triplet that is not an allowed triplet.

The loci of the 10m individuals are now set in the following manner. We first describe
the values in the first locus of every individual. Every vertex of the graph corresponds to a
new symbol. An individual corresponding to an edge {u, v} has the set of alleles {u, v} in
this first locus.

Note that, according to the first locus, the following cannot be a full siblings: a set of
three or more disjoint edges or an edge and a path of two edges. Thus, the only possibilities
for a full sibling group are: a cycle of 4 edges (or part of it), three edges incident on the same
vertex (a star), a path of three edges, and any pair of edges. Thus, to prohibit forbidden
triplets, it suffices to design a gadget for every path of 3 edges in the graph (a cycle of 4
edges is automatically prohibited since it contains at least one such path). There are O(n)
such paths of three edges. For every such path consisting of edges e, f and g, we need to

design a gadget that will disallow the individuals {ẽi, f̃ j, g̃k} to be full siblings but will allow
any other combinations of three individuals to be full siblings. We will design a gadget that
will disallow the individuals ẽ, f̃ , g̃ to be full siblings but will allow any other combinations
of three individuals to be full siblings. Select a new locus, say i, five symbols, say q1, q2, q3, q4

and q5, and put the following values in this locus for the individuals: (ẽi,1, ẽi,2) = (q1, q2),

(f̃i,1, f̃i,2) = (q3, q4), (g̃i,1, g̃i,2) = (q5, q5) and (h̃i,1, h̃i,2) = (q1, q1) for all h ∈ E \ {e, f, g}. It

is now easy to see if at most two of the individuals from the set of individuals {ẽ, f̃ , g̃} are
selected in a full sibling group, then any number of remaining individuals can be selected to
be in this group without violating the full sibling condition for this locus. Finally, we need
to make sure that no two individuals are identical, i.e., every pair of individuals differ in at
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least one locus, while still allowing any subset of individuals to be in a full sibling group.
The only two individuals that can be identical are of the form ẽ1 and ẽ2 for some e. Thus, it
suffices if we add a new locus, introduce two symbols a and b, and put (ẽ1

i,1, ẽ1
i,2) = (a, a)

and (ẽ2
i,1, ẽ2

i,2) = (b, b).
Consider a solution V ′ ⊆ V of 3-MAX-CUT with a score of x. For each vertex v ∈ V ′,

set the state of its gadget in G′ to gray and set the state of all remaining vertex gadgets in G′

to black. Every star {e, f, g} in each vertex gadget in G′ (with exactly two edges being the

interior edge of the same gadget) correspond to a set of six individuals {ẽ1, ẽ2, f̃1, f̃2, g̃1, g̃2}
that can be full siblings. By our observation before, this covers all individuals except for

one pair of individuals {d̃1, d̃2} for every edge {u, v} ∈ E with |{u, v} ∩ V ′| ∈ {0, 2}. The
number of such edges in E is obviously m − x. We can have a new full sibling group of
each such pair of individuals (we cannot cover more than one such pair together because
of the forbidden triplet gadgets). This gives a solution of 4-ALLELEℓ,10m with exactly
3 · |V | + (m − x) = 3m − x full sibling groups.

Conversely, suppose that we have a solution of 4-ALLELEℓ,10m with y full sibling groups.
We first show how to “normalize” this solution to obtain another solution with y′ ≤ y full
sibling groups such that:

(a) All sibling groups are either

(a1) a set of two individuals (a pair) of the form {d̃1, d̃2} for some edge d ∈ E ′ that
is not an internal edge of a vertex gadget or,

(a2) a set of six individuals {ẽ1, ẽ2, f̃1, f̃2, g̃1, g̃2} corresponding to a star {e, f, g} ⊆ E ′

with two of edges of star being internal edges of the same vertex gadget.

(b) When the full sibling groups of size 6 of 4-ALLELEℓ,10m are mapped back to the vertices
of G′ every vertex of G′ is in normal (black or gray) state.

If this can be done, then the same argument as stated in the previous paragraph implies
that y′ = 3m − x for some x and this solution of 4-ALLELEℓ,10m provides a solution of
3-MAX-CUT with a score of x.

First, we make the following trivial modification to our solution that does not increase
the number of sibling groups. We replace every sibling group A by a sibling group A′ with
the largest number of individuals, if any, that properly includes A. After this, because of the
forbidden triplet gadgets, it is easy to see that every sibling group contain either exactly two
individuals or exactly six individuals. Moreover, every sibling group of exactly six individuals
corresponding to a star {e, f, g} ⊆ E ′.

Suppose that our requirement (a) is violated. Thus, we have an edge d ∈ E ′ but d̃1

and d̃2 appear in different sibling groups. If at least one of them belong to a group of six
individuals, we can put the other one in the group also. Otherwise they belong to two

different pairs, say {d̃1, ẽj} and {d̃2, ẽj′} (for some j, j′ ∈ {1, 2}). Then, the regrouping

{d̃1, d̃2} and {ẽj, ẽj′} reduces the number of such violations by one. Repeating the above
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steps will finally reduce the number of such violations to zero. We then again replace every
sibling group A by a sibling group A′ with the largest number of individuals, if any, that
properly includes A. After this, because of the forbidden triplet gadgets, it is easy to see

that every sibling group contain either exactly two individuals d̃1 and d̃2 that correspond to
a non-internal edge d ∈ E ′ or exactly six individuals that correspond to a star {e, f, g} ⊆ E ′

with exactly two of the three edges being internal edges.
Now, suppose that (b) is not true. Since each vertex gadget of G′ is

covered by triplets, two such triplets, say the triplets {a, b, f} and {b, c, g},
must exist that have one edge in common. Considering “shifting” the triplet
{b, c, g} clockwise, i.e., replacing it by the triplet {c, d, q}. If the triplet
{c, d, q} already existed, we can remove one copy and cover the individuals

{g̃1, g̃2} corresponding to the uncovered edge g by a pair and stop. Other-
wise, the triplet {d, e, r} must exist in our collection. We now “shift” this
triplet clockwise to replace it by {e, p, s}. If the triplet {e, p, s} already

existed, we can remove one copy and cover the individuals {r̃1, r̃2} corresponding to the
uncovered edge r by a pair and stop. Otherwise, the triplet {p, a, h} must exist in our col-
lection. We now “shift” this triplet clockwise to replace it by {a, b, f}. Since {a, b, f} exists

in our collection, we can remove one copy and cover the individuals {h̃1, h̃2} corresponding
to the uncovered edge h by a pair and stop. ❑

5 Inapproximability for 4-ALLELEn,ℓ and 2-ALLELEn,ℓ

for a = nδ

Lemma 7 For any two constants 0 < ε < δ < 1 with a = nδ, 4-ALLELEn,ℓ and 2-

ALLELEn,ℓ are nε-inapproximable assuming NP6⊆ZPP.

Proof. For any two constants 0 < ε < δ < 1, consider a hard instance G = (V,E) of the
graph coloring problem with n vertices [n] = {1, 2, . . . , n} and ∆∗(G) ≤ |V |δ. As observed
in the proof of Theorem 3, it will be sufficient to translate this to an instance J of the 2-
label cover problem. We will have a individual for every vertex i. We will translate an edge
{i, j} ∈ E to exactly n−2 “forbidden triplets” of individuals { {i, j, k} | k ∈ [n]\{i, j}} of the
2-label cover problem such that each of these set of individuals cannot be a full sibling group.
We call {i, j} as the “anchor” of these triplets. The translation is done by by introducing a
new locus and three labels a, b and c, putting a and b as the labels of individuals i and j in
this locus, and putting c as the label of every other individual in this locus. Finally, we use
the following distinctness gadgets, if necessary, to ensure that all the individuals are distinct.
There are at most O(n2) such gadgets. The purpose of such gadgets is to make sure no two
individuals are identical, i.e., every pair of individuals differ in at least one locus, while still
allowing any subset of individuals to be in a full sibling group. Consider a pair of individuals
u and v that have the same set of loci. Select a new locus, two symbols, say a and b, and
put a in the locus of all individuals except v and put b in the locus of v.
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It suffices to show that our reduction has the following properties:

(1) A set of x vertices of G are independent if and only if the corresponding set of x
individuals in J is a valid full sibling group.

(2) If G can be colored with k colors then J can be covered with k sibling groups.

(3) If J can be covered with k′ sibling groups then G can be colored with no more than 2k
colors.

Suppose that we have a set S of independent vertices in G. Suppose that the corresponding
set of individuals in J cannot be a full sibling group and thus must include a forbidden
triplet {i, j, k} with {i, j} as the anchor. Then {i, j} ∈ E, thus S is not an independent set.
This verifies Property (1).

Suppose that G can be colored with k colors. We claim that the set of individuals
corresponding to the set of vertices with the same color constitute a sibling group for either
problem. Indeed, since the set of vertices of G with the same color are mutually non-adjacent,
they do not include a forbidden triplet. This verifies Property (2).

Finally, suppose that the instance of the generated 2-label cover problem has a solution
with k′ sibling groups. For each sibling group, select a new color and assign it to all the
individuals in the group. Now, map the color of individuals in J to the corresponding
vertices of G = (V,E). Let E ′ ⊆ E be the set of edges which connect two vertices of the
same color. Note that in the graph G′ = (V,E ′) every vertex is of degree at most one since
otherwise the sibling group that contains these three individuals corresponding to the three
vertices that comprise the two adjacent edges has a forbidden triplet. Thus, we can color
the vertices of G′ from a set C of two colors. Obviously, the graph G′′ = (V,E \ E ′) can be
colored with colors from a set D of k′ colors. Now, it is easy to see that G can be colored
with at most k ≤ 2k′ colors: assign a new color to every pair in C × D and color a vertex
with the color (c, d) ∈ C × D where c and d are the colors that the vertex received in the
coloring of G′ and G′′, respectively. This verifies Property (3). ❑

6 Maximum Profit Coverage (MPC)

Lemma 8
(a) MPC is NP-hard for a ≥ 3 and Ω

(
a

ln a

)
-inapproximable for arbitrary a assuming P 6=NP

even if every set has weight a− 1, every element has weight 1 and every set contains exactly
a elements. The hard instances can further be restricted such that each element is a point
in some underlying metric space and each set correspond to a ball of radius α for some fixed
specified α.
(b) MPC is polynomial-time solvable for a ≤ 2. Otherwise, for any constant ε > 0, the
MPC problem has a

(
a+1
2

+ ε
)
-approximation algorithm for fixed a and a (0.6454a + ε)-

approximation algorithm otherwise.
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Proof.
(a) Consider an instance of the independent set problem on a a-regular graph G = (V,E).
Build the following instance of the MPC problem. The universe U is E. For every vertex
v ∈ V , there is a set Sv consisting of the edges incident on v. Finally, set the weight of every
element to be 1 and the weight of every set to be a− 1. Note that each set contains exactly
a elements.

It is clear that an independent set of x vertices correspond to a solution of the MPC
problem of profit x by taking the sets corresponding to the vertices in the solution. Con-
versely, suppose that a solution of the MPC problem contains two sets S and S ′ that have a
non-empty intersection. Since each set contains exactly a elements, removing one of the two
sets from the solution does not decrease the total profit. Thus, one may assume that every
pair of sets in a solution of the MPC problem has empty intersection. Then, such a solution
involving x sets of total profit x correspond to an independent set of x vertices.

If one desires, one can further restrict the instance of the MPC problem in (a) above
to the case where each element is a point in some underlying metric space and each set
correspond to a ball of radius α for some fixed specified α. All one needs to do is to use the
standard trick of setting the weight of each edge in the graph to be α and define the distance
between two vertices to be the length of the shortest path between them.
(b) Consider the weighted set-packing problem and let a denote the maximum size of any
set. For fixed a, it is easy to use the algorithm for the weighted set-packing as a black box
to design a a/2-approximation for the MPC problem. For each set Si of MPC, consider all
possible subsets of Si and set the weight w(P ) of each subset P to be the sum of weights
of its elements minus qi. Remove any subset from consideration if its weight is negative.
The collection of all the remaining subsets for all Si’s form the instance of the weighted
set-packing problem.

It is clear that a solution of the weighted set-packing will never contain two sets S and S ′

that are subsets of some Si since then the solution can be improved by removing the sets S
and S ′ and adding the set S ∪ S ′ to the solution (the solution cannot contain the set S ∪ S ′

because of the disjointness of sets in the solution). Thus, at most one subset of any Si is
used the solution of the weighted set-packing. If a subset S of some Si was used, we use
the set Si in the solution of the MPC problem; note that the elements in Si \ S must be
covered in the solution by other sets since otherwise there is a trivial local improvement. In
this way, a solution of the weighted set-packing of total weight x corresponds to a solution
of the MPC problem of total profit x. Conversely, in an obvious manner a solution of the
MPC problem of total profit x corresponds to solution of the weighted set-packing of total
weight x.

For a ≤ 2, weighted set-packing can be solved in polynomial time via maximum perfect
matching in graphs.

For fixed a > 2, Berman [6] provided an approximation algorithm based on local im-
provements for this problem produces an approximation ratio of a+1

2
+ ε for any constant

ε > 0. An examination of the algorithm in [6] shows that the running time of the procedure

for our case is O
(
2(a+1)2ma+1

)
= O(ma+1).
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When a is not a constant, Algorithm 2-IMP of Berman and Krysta [10] can be adapted
for MPC to run in polynomial time. For polynomial time, we have to round the rescaled
weights to small integers, so the approximation ratio should have some ǫ added. The 2-IMP
with rescaled weight has an approximation ratio of 0.6454a for any a > 4. However, we
need a somewhat complicated dynamic programming procedure to implicitly maintain all
the subsets for each Si without explicit enumeration.

Here are the technical details of the adaptation. We will view sets that we can use as
having names and elements. A name of A is a set N(A) given in the problem instance, and
elements form a subset S(A) ⊂ N(A). The profit w(S) is sum of weights of elements minus
the cost of the naming set, p(A) = w(S(A)) − c(N(A)).

The algorithm attempts to insert two sets to the current packing and remove all sets that
overlap them; this attempt is succesful if the sum of weights raised to power α > 1 increases;
more precisely, the increase should be larger then some δ, chosen is such a way that it is
impossible to perform more than some polynomial time of succesful attempts. As a result,
we can measure the weights of sets with a limited precision, so we have a polynomially many
different possible weights.

When we insert set with name B that overlaps a set A currently in the solution, we have
a choice: remove set A from the solution or remove A∩B from B. If we also insert a set with
name C we have the same dilemma for A and C. Our choice should maximize the resulting
sum of wα(S) for S in the solution.

If we deal with two sets, we can define the quantities
xA = p(A − B)
xB = p(B − A)
wAB = w(A ∩ B).

If we include A ∩ B in A, the modified profit is (xA + wAB)α + xα
B.

If we include A ∩ B in B, and remove A, the modified profit is (xB + wAB)α.
Our problem is that we know y1 = xα

A and y1 = wAB but we do not know xB, because the
exact composition of B depends on many decisions. Thus we do not know of the following
inequality holds for x = xB + xAB:

(y1 + y2)
+(x − y2)

α ≤ xα.

It is easy to see that the left-hand-side grows slower than the right-hand side, so once the
inequality holds, it is true for all larger x. For this reason it is never optimal to split A ∩ B
between the two sets, instead we allovate the overlap to one of them.

The situation is similar when we insert two sets. To decide how to handle each overlap of
the (names of) sets that we are inserting with the sets already in the solution, it suffices to
know their profits. Because we measure profits with a bounded precision, we can make every
possible assumption about these two profits, make the decisions and check if the resulting
profits are consistent with the assumption; if not, we ignore that assumptions. Among
assumptions that we do not ignore, we select one with the largest increase of profits raised
to power α. If one of them is positive, we perform the insertion.



– 23 –

Thus we can select a pair of insertion in polynomial time even though we have a number
of candidates that is proportional to n2a. Thus our algorithm runs in polynomial time
even for a >> log n. Therefore we can achieve the approximation ratio of 2-IMP, i.e.,
0.6454a+ ε, which is better than factor a offered by a greedy algorithm: keep inserting a set
with maximum profit that does not overlap an already selected set. ❑

7 2-coverage problem

Lemma 9
(a) For f = 2, the 2-coverage problem is (1 + ε)-inapproximable for some constant ε > 0

unless NP⊆BPTIME(2nε

) and admits a O(m
1

3
−ε′)-approximation for some constant ε′ > 0.

(b) For arbitrary f , the problem admits a O(
√

m)-approximation.

Proof.
(a) Consider an instance < G, k > of the densest subgraph problem. Then, define an
instance of the (k, 2)-coverage problem such that U = E, there is a set for every vertex in
V that contains all the edges incident to that vertex, and we need to pick k sets. Note that
for this instance f = 2.

For the other direction, define a vertex for every set, connect two vertices if they have a
non-empty intersection with a weight equal to the number of common elements. This gives
an instance of weighted DS whose goal is to maximize the sum of weights of edges in the
induced subgraph and admits a O(m

1

3
−ε)-approximation for some constant ε > 0 [20].

(b) For notational convenience it will be convenient to define the (k, ℓ)-coverage problem (for
ℓ ≥ 1) which is same as the 2-coverage problem with k sets to be selected except that every
element must belong to at least ℓ selected sets (instead of two selected sets). We will also
use the following notations. OPT(k, ℓ,S) is the maximum value of the objective function for
the (k, ℓ)-coverage problem on the collection of sets in S and A(k, ℓ,S) is the value of the
objective function for the (k, ℓ)-coverage problem on the collection of sets in S computed by
our algorithm. For notational convenience, let ℘ = 1 − (1/e). We will give both an O(k)
and an O(m/k) approximation which together gives the desired approximation.

The following gives an O(k)-approximation. Create a new set Ti,j = Si ∩ Sj for every
pair of indices i 6= j. Run the (k/2, 1)-coverage ℘-approximation algorithm on the Ti,j’s and
output the elements and, for each selected Ti,j, the corresponding Si and Sj. Note that each
element is covered at least twice. One can look at all the

(
k

2

)
pairwise intersections of sets

in an optimal solution of (k, 2)-coverage on S, consider the k/2 pairs that have the largest
intersections and thus conclude that an optimal solution of 2-coverage on S covers no more
than O(k) times the number of elements in an optimal solution of the (k/2, 1)-coverage on
the Ti,j’s.

To get an O(m/k)-approximation, first note that OPT((k/2), 1,S) ≥ OPT(k, 2,S). Run
the ℘-approximation algorithm to select the collection of sets T ⊆ S to approximate
OPT((k/2), 1,S). For each remaining set in S \ T , remove all elements that do not be-
long to the sets in T and remove all elements that are already covered twice in T . We know
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that if we were allowed to choose all of the m− k remaining sets in S \ T we would cover all
the elements in the sets T . But since we are allowed to choose only additional k/2 sets, we
choose those k/2 sets from S \ T that cover the maximum number of elements in the union
of sets in T . This involves again running the ℘-approximation algorithm. We will cover at
least a fraction k/(2m) of the maximum number of elements. ❑

8 Conclusion and Further Research

In this paper we investigated four covering/packing problems that have applications to sev-
eral problems in bioinformatics. Several questions remain open on the theoretical side.
For example, can stronger inapproximability results be proved for 4-ALLELEn,ℓ and 2-

ALLELEn,ℓ intermediate values of a and ℓ that are excluded in our proofs?
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