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ABSTRACT

We consider cyclic positional games of two players. Let
−→
G = (V,

−→
E ) be a directed graph

(digraph) and P : V = V1 ∪V2 ∪VT be a partition of its vertices (positions) in three subsets:
V1 and V2 are positions of players 1 and 2, respectively, and VT are the terminal positions.
Directed edges going from a position j ∈ V1 (respectively, j ∈ V2) are called the moves of
player 1 (respectively, 2). Furthermore, j ∈ VT if and only if the out-degree of j is 0. Given a

digraph
−→
G = (V,

−→
E ), a partition P : V = V1∪V2∪VT , and also an initial position j0 ∈ V1∪V2,

the triplet (
−→
G,P, j0) is called a positional cyclic game form. Name ”cyclic” is motivated as

follows. A mapping x1 (respectively, x2) that assigns a move (j, j′) to each position j ∈ V1

(respectively, j ∈ V2) is called a (positional) strategy of player 1 (respectively, 2). Each pair
of strategies x = (x1, x2) uniquely defines a play, that is, a directed path that begins in the
initial position j0 and either ends in a terminal position j ∈ VT or results in a simple directed

cycle (dicycle) c ∈ C = C(
−→
G). The obtained mapping g = g(

−→
G,P, j0) : X1×X2 → VT ∪C is

called the normal cyclic game form corresponding to (
−→
G,P, j0). Utility functions of players

1 and 2 are defined by two arbitrary mappings: u1 : VT ∪ C → R and u2 : VT ∪ C → R. A

game form g = g(
−→
G,P, j0) is called Nash-solvable if for every utility functions u = (u1, u2)

the obtained normal form game (g, u) has at least one Nash equilibrium in pure strategies.

In this paper we characterize Nash-solvable cyclic game forms g(
−→
G,P, j0) whose digraphs

are bidirected, that is, (j, j′) ∈
−→
E if and only if (j′, j) ∈

−→
E . We derive this characterization

from an old general criterion: a two-person game form g is Nash-solvable if and only if it is
tight.

Key words: game form, game in normal form, positional game, mean-payoff game,
cyclic game, Nash equilibrium, Nash-solvable, tight



1 Introduction. Main concepts and results

1.1 Nash-solvable game forms

Let A = {a1, . . . , ap} be a set of outcomes, I = {1, . . . , n} be a set of players, and Xi be
a set of strategies of a player i ∈ I. (In this paper we always assume that Xi is finite. In
particular, we do not consider mixed strategies.)

Furthermore, let X =
∏

i∈I Xi be the direct product of these n sets. An element of it,
n-tuple x = (xi, i ∈ I) ∈ X, is called a situation. A game form g : X → A is a mapping
that assigns an outcome a ∈ A to each situation x ∈ X. Typically, the mapping g is not
injective, that is, the same outcome can be assigned to several distinct situations. A two-
person (I = {1, 2}, n = 2) game form g can be represented by a matrix whose entries are
the outcomes of A; see examples in Figures 1 and 2.

In general, g is given by an n-dimensional table.
A utility function or payoff is a mapping u : I × A → R. Its value u(i, a) is interpreted

as the profit of player i ∈ I in case outcome a ∈ A is realized.
A utility function u is called zero-sum if

∑
i∈I u(i, a) = 0 for all a ∈ A.

A pair (g, u) is called a game in normal form.
Given a game (g, u), a situation x ∈ X is called a Nash equilibrium if u(i, g(x)) ≥

u(i, g(x′)) for each player i ∈ I and for each situation x′ = (x′j, j ∈ I) ∈ X that may differ
from x = (xj, j ∈ I) ∈ X only in the i-th coordinate, that is, x′j = xj whenever j 6= i. In
other words, in a situation x ∈ X no player i ∈ I can make a profit if he alone changes his
strategy, x′i for xi, while all other players apply the same strategies, x′j = xj for all j 6= i.

For zero-sum two-person games Nash equilibria are called saddle points.
A game (g, u) is called solvable if it has a Nash equilibrium.
A game form g is called Nash-solvable if for each utility function u the obtained game

(g, u) is solvable.
A two-person game form g is called zero-sum-solvable if for each zero-sum u the obtained

game (g, u) is solvable (that is, it has a saddle point).
Finally, a two-person game form g is called ±1-solvable if (g, u) is solvable for each zero-

sum utility function u that takes only two values, +1 and −1.

It appears that all three properties of a two-person game form g, Nash-, zero-sum-, and
±1-solvability, are equivalent to the following property.

To each outcome a ∈ A let us assign a Boolean variable and denote it, for simplicity,
by the same symbol a. Let g : X → A be a two-person game form, where I = {1, 2} and
X = X1 ×X2. We introduce two monotone disjunctive normal forms (DNFs)

F1 = F1(g) =
∨

x1∈X1

∧
x2∈X2

g(x1, x2); F2 = F2(g) =
∨

x2∈X2

∧
x1∈X1

g(x1, x2).

A game form g is called tight if these two DNFs define dual monotone Boolean functions,
that is, F d

1 = F2. For example, in Figure 1 only the third game form is tight and in Figure
2 the last two game forms are tight, while the first two are not.
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Figure 1: Nash-Solvability is monotone and ergodic
(1) F1 = c1c2 ∨ c3c4, F2 = c1c3 ∨ c2c4, F d

1 6= F2.
(2) F1 = c0 ∨ c1c2 ∨ c3c4, F2 = c0c1c3 ∨ c0c2c4, F d

1 6= F2.
(3) F1 = c0 ∨ c0c1c2 ∨ c0c3c4 ≈ c0, F2 = c0 ∨ c0c1c3 ∨ c0c2c4 ≈ c0, F d

1 = F2.
(4) F1 = c1c2 ∨ c3c4 ∨ c5c6, F2 = c1c3c5 ∨ c2c4c6, F d

1 6= F2.
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Figure 2: Solvability of cycles
(1) F1 = c1c2 ∨ c3c4, F2 = c1c3 ∨ c2c4, F d

1 6= F2.
(2) F1 = c0c1c4 ∨ c0c2c3, F2 = c0 ∨ c1c2 ∨ c1c3 ∨ c2c4, F d

1 6= F2.
(3) F1 = c1c2 ∨ c3c4 ∨ c1c4c5 ∨ c2c3c6, F2 = c1c3 ∨ c2c4 ∨ c1c4c6 ∨ c2c3c5, F d

1 = F2.
(4) F1 = c1 ∨ c2c3c4 ∨ c2c3c5 ∨ c2c4c6 = c1 ∨ c2(c3c4 ∨ c3c5 ∨ c4c6),
. F2 = c1c2 ∨ c1c3c4 ∨ c1c3c6 ∨ c1c4c5 = c1(c2 ∨ c3c4 ∨ c3c6 ∨ c4c5), F d

1 = F2.
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In other words, g is tight if and only if rows and columns of the corresponding matrix
form two dual (transversal) hypergraphs on the ground set A. The definition of tightness can
be reformulated in several equivalent ways. For example, g is tight if and only if B1∩B2 6= ∅
for any two sets of outcomes B1, B2 ⊆ A such that B1 (respectively, B2) has an outcome
in each column (respectively, row) of the matrix of g. In Appendix 1 we provide several
other combinatorial characterizations of tightness and show that, for two-person game forms,
tightness is equivalent to every type of solvability.

Theorem 1 The following properties of two-person game forms are equivalent:
(i) tightness; (ii) Nash-solvability; (iii) zero-sum solvability; (iv) ±1-solvability.

Game forms satisfying these properties will be called solvable.
Equivalence of (i), (iii), and (iv) was first proved in [10], see also [17]. This list was

extended by statement (ii) in [18]; see also [19], where it is shown that for three-person
game forms tightness is no longer necessary (this observation is due to Danilov, 1988) nor
sufficient for Nash-solvability. To make the paper self-contained, we will give these proofs
and examples in Appendix 1. Let us note that the proof of Theorem 1 given there (based
on some new ideas from [1] and [9]; see also [22]) differs from the original proof [18, 19].

1.2 Positional and normal cyclic game forms

The above general criterion of solvability can be applied to special classes of game forms. In
this paper we consider solvability of cyclic game forms.

Given a finite directed graph
−→
G in which loops and multiple arcs are allowed, a vertex

j ∈ V = V (
−→
G) is a position and an arc −→e = (j, j′) ∈ E(

−→
G) is a move from j to j′. A

position of out-degree 0, in which there are no moves, is called terminal. Let VT denote the
set of all terminal positions. Let us also fix an initial position j0 ∈ V . Furthermore, let us
introduce two players I = {1, 2} and a partition P : V = V1 ∪ V2 ∪ VT , assuming that player
i ∈ I is in control of all positions of Vi, for i = 1, 2.

Let C = C(
−→
G) denote the set of all simple directed cycles (dicycles) of digraph

−→
G . In

particular, a loop cj = (j, j) is a dicycle of length 1 and a pair of oppositely directed arcs
−→e = (j, j′) and −→e ′ = (j′, j) is a dicycle of length 2.

The dicycles and terminal positions form the set of outcomes, A = C ∪ VT .

Remark 1 Let us notice that we can easily get rid of all terminal positions VT . To do so,
for every such position j ∈ VT we introduce a new loop cj = (j, j). This loop is an outcome
corresponding to j. Obviously, after this transformation the sets of outcomes A and dicycles

C = C(
−→
G) coincide. In the sequel, we assume that VT = ∅, unless the opposite is mentioned

explicitly.

The triplet (
−→
G,P, j0) will be called a positional cyclic game form.

To introduce the corresponding normal game form we need the concept of strategies. A

strategy of a player i ∈ I = {1, 2} is a mapping xi that assigns a move −→e = (j, j′) ∈
−→
E to

each position j ∈ Vi.
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Remark 2 In other words, a strategy is a plan choosing a move in every possible position.
We assume that this choice is deterministic (not random, that is, we do not consider mixed
strategies), the chosen move is unique, and it depends only on the present position (not on
the previous positions and moves). In other words, in this paper we restrict ourselves by pure
positional strategies.

Let Xi denote the set of strategies of the player i ∈ I = {1, 2} and let X = X1 × X2.
Obviously, every two strategies (that is, a situation x = (x1, x2) ∈ X) determine a unique
move in each position j ∈ V \ VT . Furthermore, these moves define a unique path p = p(x)
(a play) that begins in the initial position j0 and either results in a dicycle c ∈ C or ends
in a terminal position j ∈ VT . By Remark 1, in the latter case p also results in a dicycle,

namely, in the loop cj = (j, j). Thus, we obtain a mapping g(
−→
G,P, j0) : X → A that is

called a normal cyclic game form.

Given g = g(
−→
G,P, j0), we extend it to a game (g, u) (in normal form) by introducing

a utility function u : I × C → R, whose value u(i, c) we interpret as a profit of the player
i ∈ I = {1, 2} when the play p = p(x) results in the dicycle c ∈ C. In this paper we assume
that u is an arbitrary function. (Let us remark, however, that the additive utility functions
are more frequent in the literature, see Section 1.5.) Let us also recall that cyclic game form
g is solvable if for every utility function u the obtained game (g, u) has a Nash equilibrium.

1.3 Properties of bidirected cyclic game forms

Given a digraph
−→
G = (V,

−→
E ), for each two vertices j, j′ ∈ V let us denote the number of

arcs from j to j′ in E by k(j, j′). We shall call G bidirected if k(j, j′) = k(j′, j) for each pair
j, j′ ∈ V .

Remark 3 We will see in Section 3 that both game forms, (
−→
G,P, j) and (

−→
G,P, j′), are not

solvable if k(j, j′) ≥ 2 and k(j′, j) ≥ 2. Hence, in a bidirected solvable game form k(j, j′)
can take only values 0 and 1; in other words, any two parallel edges are oppositely directed.

In particular, digraph
−→
G is not bidirected whenever (j, j′) ∈

−→
E , while (j′, j) 6∈

−→
E for some

j, j′ ∈ V .
Moreover, in a bidirected digraph set VT may contain only isolated vertices. In particular,

VT = ∅ whenever digraph
−→
G is bidirected and connected.

To each bidirected digraph
−→
G = (V,

−→
E ) we assign a (non-directed) graph G = (V,E) as

follows: E contains k (non-directed) edges between j and j′ whenever k(j, j′) = k(j′, j) = k;

furthermore, to every directed loop in
−→
G we assign a non-directed loop in G.

Obviously, the following three properties of a bidirected graph are equivalent:

(i)
−→
G is strongly connected, (ii)

−→
G is connected, (iii) G is connected.

We shall show that solvability of a connected bidirected game form is an ergodic property,
that is, it does not depend on the initial position. Moreover, the following stronger statement
holds.
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Proposition 1 Given a strongly connected digraph
−→
G = (V,

−→
E ) and a partition P : V =

V1∪V2 (recall that VT = ∅), solvability of cyclic game forms (
−→
G,P, j) is an ergodic property,

that is, either (
−→
G,P, j) is solvable for every j ∈ V or for no j ∈ V .

In the first case pair (
−→
G,P ) will be called solvable.

However, let us remark that, given also a utility function u, the values of games (
−→
G,P, j, u)

and (
−→
G,P, j′, u) might differ even in case of ±1 zero-sum u; see Section 1.6 and Appendix 2

for more details.
In particular, Proposition 1 holds when digraph

−→
G is bidirected and the corresponding

non-directed graph G is connected. In this case pair (G,P ) will be called solvable whenever

(
−→
G,P ) is solvable.

Standardly, we say that G′ = (V,E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and
E ′ ⊆ E. In this case we use the notation G′ ≤ G and G′ < G if at least one of the above to
containments is strict. Furthermore, we say that the pair (G′, P ′) is majorized by (G,P ) if
G′ = (V,E ′) is a subgraph of G = (V,E) and the partition P ′ = V ′ : V ′1 ∪V ′2 is a subpartition
of P : V = V1 ∪ V2 induced by the subset V ′ ⊆ V , that is, P ′ : V ′ = (V1 ∩ V ′) ∪ (V2 ∩ V ′).
Respectively, we use notation (G′, P ′) ≤ (G,P ) when G′ ≤ G and (G′, P ′) < (G,P ) when
G′ < G.

In particular, we can talk about connected and 2-connected components of a pair (G,P ).
A graph G (and every corresponding pairs (G,P )) is called 2-connected if G is connected
and it remains connected after deleting a vertex.

In Section 2 we will prove that solvability is a monotone decreasing property.

Proposition 2 If pair (G,P ) is solvable and (G′, P ′) ≤ (G,P ) then pair (G′, P ′) is solvable
too.

It is clear that pair (G,P ) is solvable if and only if every its connected component
is solvable. Hence, without loss of generality we can assume that graph G is connected.
Moreover, we can also assume that G is 2-connected, due to the following statement.

Proposition 3 A pair (G,P ) is solvable if and only if each its 2-connected component is
solvable.

Thus, it is sufficient to characterize all (maximal) 2-connected solvable pairs (G,P ).
In particular, Proposition 3 implies that pair (G,P ) is solvable if it has no 2-connected
components

Corollary 1 A pair (G,P ) is solvable whenever G is a forest. �
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1.4 Criterion of solvability for bidirected cyclic game forms

In this section we introduce a list L of solvable 2-connected pairs. Our main theorem will
claim that an arbitrary pair (G,P ) is solvable if and only if each its 2-connected component
is in L.

1.4.1 Solvability of simple cycles. Reducing (G,P ) to (G,P)

Proposition 4 Let G be a simple cycle, then a pair (G,P ) is solvable if and only if (|V1| > 1
and |V2| > 1), or (V1 = V, V2 = ∅), or (V2 = V, V1 = ∅).

In other words we can say that (G,P ) is not solvable if and only if

(|V1| = 1 and V2 6= ∅) or (|V2| = 1 and V1 6= ∅).
The proof will be given in Section 3. Let us remark, however, that none of these 2-

connected solvable pairs is maximal; see Section 1.4.2.

To characterize solvable 2-connected pairs (G,P ) we will need one more transformation.
To each pair (G,P ) with G = (V,E) and P : V = V1 ∪ V2 let us assign another pair (G,P)
with G = (V , E) and P : V = V1 ∪V2 = (V1 ∩V)∪ (V2 ∩V) defined as follows. Let V ⊆ V be
the set of all vertices of degree at least 3 in G. Such vertices will be called nodes. Given two
nodes j, j′ ∈ V and a simple path p = p(j, j′) between them such that p contains no other
node, we assign an edge e(p) between j and j′ and define E as the set of all such edges.

We will call p a 0-path (respectively, 1-path) if all vertices of p (respectively, all but
exactly one), including j and j′, are controlled by the same player. The corresponding edge
e(p) ∈ E will be called a 0-edge (respectively, 1-edge).

Similarly, when j = j′, we obtain concepts of 0- and 1-cycle in G by means of which we
can reformulate Proposition 4 as follows.

Proposition 5 If G is a simple cycle then a pair (G,P ) is solvable unless G is a 1-cycle.

Obviously, Propositions 4 and 5 are equivalent. Let us mention that pair (G,P ) is solvable
if G is a 0-cycle, in particular, a loop.

Let us also notice that if G is a simple cycle then G is empty, i.e., V = ∅; if G is any
other 2-connected graph then G is not empty and 2-connected too.

Given a pair (G,P) with the list of its 0- and 1-edges, we will call it solvable if each
corresponding pair (G,P ) is solvable. We will see that it is sufficient for solvability if at
least one corresponding pair (G,P ) is solvable. However, let us remark that the list 0- and
1-edges may be essential; see Propositions 6-9 below.

A pair (G,P) is called bipartite if G is a bipartite graph G = (V1,V2, E) and P : V = V1∪V2

is the corresponding partition. In a bipartite game form players 1 and 2 take turns.

In figures, we color positions of players 1 and 2 by white and black, respectively. By
the double, black-and-white, coloring we denote ‘uncertain” positions: j ∈ V1 or j ∈ V2,
both options are possible. In other words, a partition P with ` black-and-white positions
represents 2` distinct partitions rather than one. For example, each terminal position j ∈ VT

can be uncertain, since nothing depends on whether it is white or black.
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1.4.2 Solvable θ-pairs

Let us consider the family of bipartite pairs (GK ,PK) = (θK ,PK) given in Figure 3, where
K = 1, 2, . . .. For K ≥ 2 graphs θK contain two types of edges: simple (type 1) and parallel
(type 2); see Figure 3. Graph θ1 consists of two vertices and three parallel edges.

(θ1,P1) (θ2,P2) (θ3,P3)

...

= or

(K4,P) (K4,P ′) (K4,P ′′)

(K3,3,P)

Figure 3: Solvable 2-connected graphs.
Dashed lines can correspond to 1-edges, solid lines cannot.

Proposition 6 Pair (θK ,PK) is solvable unless it contains a 1-edge of type 2.

Let us remark that 1-edges of type 1 do not contradict solvability.
Let us also notice that the non-directed graph GK corresponding to GK = θK contains

a simple cycle as a proper (not induced) subgraph. It is easy to see that (θK+1,PK+1) >
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(θK ,PK) for all K and, hence, (θK ,PK) is an infinite chain of solvable 2-connected pairs.
This chain has no maximal element.

1.4.3 Solvable pairs (K4,P) and (K3,3,P)

Next, let G = K4 and P consist of two white, one black, and one black-and-white positions.
In fact, this case represents two subcases: (K4,P ′) and (K4,P ′′); see Figure 3.

Proposition 7 Pair (K4,P) is solvable unless it contains a 0- or 1-edge.

Let us remark that both pairs (K4,P ′) and (K4,P ′′) majorize (θ1,P1).

Now, let us consider the bipartite pair (K3,3,P) in Figure 3.

Proposition 8 Pair (K3,3,P) is solvable unless it contains a 1-edge.

Let us notice that bipartite pairs cannot contain 0-edges.
Let us also remark that (K3,3,P) > (K4,P ′′). Indeed, (K3,3 − e,P) contains two simple

paths of length 2; substitute two edges for them and get (K4,P ′′). On the other hand,
(K3,3,P) 6≥ (K4,P ′).

1.4.4 Solvable monochromatic pairs

A pair (G,P) is called monochromatic if V = V1, V2 = ∅ or V = V2, V1 = ∅. To characterize
solvable monochromatic pairs we introduce one more simple transformation. Given a pair
(G,P ), let us consider the corresponding pair (G,P), duplicate every 0-edge in it, and denote
the obtained pair by (G ′,P).

Proposition 9 A monochromatic pair (G,P) is solvable unless G ′ contains a 1-edge and
two more edge-disjoint simple paths between its ends.

Several examples of solvable (Y) and not solvable (N) monochromatic pairs are given in
Figure 4.

1.4.5 Main result

In Sections 7, we will derive the following criterion of solvability summarizing the above seven
propositions. Let us denote by L the list of 2-connected solvable pairs (G,P ) corresponding
to pairs (G,P) from Propositions 4 - 9; see Figures 3 and 4.

Theorem 2 A pair (G,P ) is solvable if and only if every its 2-connected component is in
L.
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N
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N

Y Y

→ - - -
+

-

+

→

→

Figure 4: Monochromatic case

This result for the bipartite pairs was announced in [14, 15, 16]. In this paper, we extend
it to arbitrary pairs and give the complete proof. Thus, we obtain necessary and sufficient
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conditions of solvability for the bidirected (not necessarily bipartite) cyclic game forms. In
general, characterization of solvability still remains an open problem.

By means of Theorem 2 we can verify solvability of a bidirected cyclic game form

(
−→
G,P, j0)) in polynomial time as follows. First, we check whether digraph

−→
G is bidirected.

If it is not, Theorem 2 is not applicable; if it is, we construct the corresponding pair (G,P )
and then (G,P). Then we construct all its 2-connected components and verify whether they
belong to the list L. If they all do then the considered game form is solvable, otherwise it is
not.

1.5 Mean-payoff cyclic games and mean-solvable cyclic game forms

In this paper we study solvability of cyclic game forms (
−→
G,P, j0) with respect to arbitrary

utility functions u : I × C → R, where I = {1, 2} and C is the set of all simple directed

cycles (dicycles) of
−→
G . However, the so-called additive utility functions are more frequent in

the literature, [2, 3, 4, 11, 12, 24, 26, 29, 31, 32, 36, 38].

A local utility function is a mapping u` : I ×
−→
E → R. The value u`(i, e) is interpreted as

a profit of player i ∈ I = {1, 2} in case the move e
−→
E appears in the play p. Given u`, the

additive utility function ua : I ×C → R is defined by formula: ua(i, c) = (|c|−1
∑

e∈c u`(i, e),
where c ∈ C is a dicycle and |c| is the number of edges (or vertices) in c. It is easy to see that
if play p results in a dicycle c ∈ C then ua(i, c) is the limit mean profit of the player i ∈ I
per one move. Cyclic games with additive utility functions are known as mean-payoff games.
Naturally, we can introduce the concepts of mean-solvability and zero-sum mean-solvability
for cyclic game forms. It appears that the latter concept is trivial.

Theorem 3 ([11, 12, 31, 32, 24]) Each zero-sum mean-payoff game (
−→
G,P, j0, u) has a value

(in pure positional strategies). In other words, each cyclic game form (
−→
G,P, j0) is zero-sum

mean-solvable.

This statement was proved in case of a complete bipartite graph
−→
G in [31], for bipartite

−→
G in [12], and for arbitrary

−→
G in [24]. There are several further extensions of this result,

[29, 36]. It was recently shown in [4] that mean payoff games can be solved in expected sub-
exponential time. Then a deterministic sub-exponential algorithm for solving an important
special case, the so-called parity games, was proposed in [26]. However, the question as to
whether this class of games can be solved in polynomial time remains open, even though the
corresponding decision problem is in NP∩ co-NP, [29].

In October 2007, Vorobyov obtained a strongly polynomial algorithm [37].

Furthermore, let us notice that, obviously, every solvable cyclic game form is mean-
solvable. However, solvability and zero-sum solvability are equivalent, while mean-solvability
and zero-sum mean-solvability are not. In other words, not all cyclic game forms are mean-

solvable. For example, (
−→
G,P, j0) is not mean-solvable when

−→
G is the bidirected complete
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3× 3 bipartite digraph, [20, 24]. In fact, this example is minimal, since (
−→
G,P, j0) is mean-

solvable whenever
−→
G is a bidirected 2 × n bipartite digraph, [21]. However, no general

characterization of the mean-solvable cyclic game forms is known.

Recently, a similar special type of payoff was considered in [5, 7].

Let (
−→
G,P, j0) be a game form of n ≥ 2 players I = {1, . . . , n} and Xi be the set of (pure

positional) strategies of a player i ∈ I. Each situation x = (x1, . . . xn) ∈ X1 × . . .×Xn = X
defines a play p = p(x) that can terminate in a final position j ∈ VT or result in a dicycle
c ∈ C. In the former case we introduce a standard additive payoff u(i, p) =

∑
e∈p u`(i, e),

where u` : I ×
−→
E → R is a given local payoff, while in the latter case we define u(i, c) = −∞

for each player i ∈ I. In other words, we assume that cycles are possible but extremely
unattractive for all players. Thus, we obtain a utility function u : I × A → R, where
A = C ∪ VT is the set of outcomes.

In [7], it was conjectured that the obtained game (
−→
G,P, j0, u) has a Nash equilibrium

whenever u ≥ 0, or in other words, each game form (
−→
G,P, j0) is Nash-solvable with respect

to non-negative utility functions. Partial results in this direction and examples showing that
non-negativity of u is essential are given in [7].

1.6 Criteria of ergodicity for cyclic game forms

As we mentioned in Section 1.3, solvability of a bidirected pair (G,P ) is an ergodic property,
that is, if G is bidirected then solvability of a cyclic game form (G,P, j) does not depend on
j.

However, the result of the game (G,P, j, u) can depend on j.

As we also mentioned, any cyclic game form (
−→
G,P, j) is zero-sum mean-solvable, that is,

for every zero-sum mean payoff u the corresponding game (
−→
G,P, j, u) has a value v(

−→
G,P, j, u)

(in pure positional strategies). Yet, this value might depend on j. If it does not, then pair

(
−→
G,P ) is called ergodic.

Furthermore, given two positions j′, j′′ ∈ V , we will use notation j′ ≤ j′′ if v′ =

v(
−→
G,P, j′, u) ≤ v(

−→
G,P, j′′, u) = v′′ for each zero-sum mean payoff u.

Proposition 10 Pair (
−→
G,P ) is ergodic if and only if j′ ≤ j′′ for all j′, j′′ ∈ V .

Proof By definition, (
−→
G,P ) is ergodic if and only if v′ = v′′ for all j′, j′′ ∈ V . Hence, it is

sufficient to notice that if j′ ≤ j′′ and j′′ ≤ j′ then v′ = v′′. �

Simple necessary and sufficient conditions for ergodicity, as well as for j′ ≤ j′′ were
obtained in [25].

Given a pair (
−→
G,P ), where

−→
G = (V,

−→
E ) is a digraph and P : V = V1 ∪ V2 is a partition

of its positions, we assume that each position j ∈ V has a strictly positive out-degree, or in

other words, there is no dead-end in
−→
G .
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Let Q : V = V 1 ∪ V 2 be another partition of V with the following properties:

(i) Both sets V 1 and V 2 are not empty.

(ii) There is no arc e = (j1, j2) ∈
−→
E such that j1 ∈ V 2∩V1, j2 ∈ V 1 or j1 ∈ V 1∩V2, j2 ∈ V 2.

In other words, player 1 (respectively, player 2) cannot leave V 2 for V 1 (respectively, V 1 for
V 2).

(iii) For each j1 ∈ V 1 ∩ V1 (respectively, j2 ∈ V 2 ∩ V2) there is an arc e = (j1, j
′
1) ∈

−→
E

such that j′1 ∈ V 1 (respectively, e = (j2, j
′
2) ∈

−→
E such that j′2 ∈ V 2). In other words, player

1 (respectively, player 2) cannot be forced to leave V 1 for V 2 (respectively, V 2 for V 1).

In particular, (iii) implies that both induced digraphs
−→
G [V 1] and

−→
G [V 2] have no dead-

ends.

Given a partition Q : V = V 1 ∪ V 2 satisfying (i, ii, iii), we will say that player 1
(respectively, 2) is in control of V 1 (respectively, of V 2) and call Q a contra-ergodic partition

of the pair (
−→
G,P ).

Proposition 11 ([25]). (a) A pair (
−→
G,P ) is ergodic if and only if it admits no contra-

ergodic partition. (b) Furthermore, j′ ≤ j′′ if and only if there is no contra-ergodic
partition Q : V = V 1 ∪ V 2 such that j′ ∈ V 1 and j′′ ∈ V 2.

Proof “If parts of (a) and (b)”. Given a pair (
−→
G,P ), let us suppose that a contra-ergodic

partition Q : V = V 1 ∪ V 2 exists and define a zero-sum local payoff u` : I ×
−→
E → R

as follows. For an arc e =
−→
E from j to j′ we set u`(e) = +1 if j, j′ ∈ V 1, u`(e) = −1

if j, j′ ∈ V 2, and otherwise u`(e) can take any value. (Standardly, for a zero-sum payoff

we denote u`(1, e) = −u`(2, e) by u`(e).) Obviously, v(
−→
G,P, j′, u) = +1 for j′ ∈ V 1 and

v(
−→
G,P, j′′, u) = −1 for j′′ ∈ V 2. Indeed, by (i,ii,iii), each player i ∈ I = {1, 2} can lock the

opponent 3 − i within V i and, by this, guarantee profit 3 − 2i per each move. Thus, value

depends on the initial position and, hence, pair (
−→
G,P ) is not ergodic. Moreover, relation

j′ ≤ j′′ does not hold.

“Only if part of (a) and (b)”. Let us suppose that (
−→
G,P ) is not ergodic, or in other

words, j′ ≤ j′′ does not hold for some j′, j′′ ∈ V and a zero-sum payoff u : I × C → R, that

is, v′ = v(
−→
G,P, j′, u) > v(

−→
G,P, j′′, u) = v′′. Let us choose a number v such that v′ > v > v′′

and set V 1 = {j ∈ V | v(
−→
G,P, j, u) > v} ⊆ V and V 2 = {j ∈ V | v(

−→
G,P, j, u) ≤ v} ⊆ V.

By this definition, j′ ∈ V 1 6= ∅, j′′ ∈ V 2 6= ∅, V 1 ∩ V 2 = ∅, and V 1 ∪ V 2 = V ; in other
words, Q : V = V 1 ∪ V 2 is a partition of V satisfying (i). Moreover, (ii) and (iii) hold for Q
too. Indeed, (iii) follows, since each player i ∈ I = {1, 2} in each position j ∈ Vi has a move

(j, `) that keeps the value, that is, v(
−→
G,P, j, u) = v(

−→
G,P, `, u). Also (ii) follows, since in

each position player 1 (respectively, 2) has no move that increase (respectively, decrease) the
value; see Section 2.1 for more details. Thus, Q is a contra-ergodic partition and, moreover,
j′ ≤ j′′ does not hold. �

Let us remark that both “only if parts” are shown for arbitrary (not necessarily additive)
utility functions. Hence, the following claim holds.
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Corollary 2 Given a digraph (
−→
G = (V,

−→
E ), partition P : V = V1 ∪ V2, positions j′, j′′ ∈ V,

and a zero-sum (not necessarily additive) payoff u : C → R, if v′ and v′′ exist and v′ > v′′

then there is a contra-ergodic partition Q : V = V 1 ∩ V 2 such that j′ ∈ V 1 and j′′ ∈ V 2. �

Example 1.1 Let us consider four bipartite bidirected pairs such that the corresponding non-
directed graphs are c2, c4, c6, and p4. It is easy to verify that the first two pairs are ergodic,
while the last two are not; they admit three and one contra-ergodic partitions, respectively.

Although conditions (i, ii, iii) look simple, yet, somewhat surprisingly, given a bipartite

pair (
−→
G,P ) (and positions j′, j′′ ∈ V ), it is NP-hard to verify whether a contra-ergodic

partition Q : V = V 1 ∪ V 2 (such that j′ ∈ V 1 and j′′ ∈ V 2) exist.

Proposition 12 ([25]). The following two decision problems are co-NP-complete already
for bipartite pairs:

(a) whether (
−→
G,P ) is ergodic ? (b) whether j′ ≤ j′′ ?

Moreover, each of the four subproblems of (b) defined by the extra assumptions:

(b11) j′ ∈ V1, j
′′ ∈ V1, (b12) j′ ∈ V1, j

′′ ∈ V2,

(b21) j′ ∈ V2, j
′′ ∈ V1, (b22) j′ ∈ V2, j

′′ ∈ V2,

is co-NP-complete too.

These claims were also shown in [25]. Yet, due to space limits (two pages for the whole
paper), the proofs were only sketched. We will give complete proofs in Appendix 2.

Now we will derive several simple corollaries of Proposition 11 for the bipartite case.

Corollary 3 Let (
−→
G,P ) a bipartite pair in which

−→
G = (V,

−→
E ) and P : V = V1 ∪ V2;

furthermore, let Q : V = V 1 ∪ V 2 be a contra-ergodic partition in it. Then Vi ∩ V ` 6= ∅ for

all four cases i, ` = 1, 2; moreover, in
−→
E there is no arc between V 1 ∩ V2 and V 2 ∩ V1.

Proof It follows, since (
−→
G,P ) is bipartite and (i,ii) hold for Q. �

A bipartite pair (
−→
G,P ) will be called semi-complete if between every two vertices j1 ∈ V1

and j2 ∈ V2 there is an arc, from j1 to j2 or from j2 to j1.

Corollary 4 Each semi-complete bipartite pair is ergodic.

Proof It follows immediately from Corollary 3. �

Corollary 5 A bidirected bipartite pair (
−→
G,P ) is ergodic if and only if the corresponding

contra-directed bipartite graph G is complete.
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Proof “If part”. Obviously, if G is complete then no partition Q can satisfy (i) and (ii).
“Only if part”. Assume indirectly that G is not complete, that is, there are two vertices

j1 ∈ V1 and j2 ∈ V2 such that there is no arcs between j1 and j2 in
−→
E . Then let us set

V 1 = (V2 \ {j2}) ∪ {j1} and V 2 = (V1 \ {j1}) ∪ {j2}) to obtain a contra-ergodic partition
Q : V = V 1 ∪ V 2. �

Now let us consider ergodicity for digraphs with loops.

Corollary 6 Given a pair (
−→
G,P ) such that

−→
G has a loop ej = (j, j) at a vertex j ∈ Vi,

where i ∈ I = {1, 2}, if (
−→
G,P ) is ergodic then player i has a strategy that results in ej for

every initial position j0 ∈ V .

Proof Without loss of generality, assume that i = 1. Let V j ⊆ V denote the set of all
positions from which player 1 can enforce ej. More precisely, let V j

0 = {j}; furthermore, let
V j

1 ⊆ V1 denote the set of all positions from which there is a move to V j
0 ; let V j

2 ⊆ V2 be the
set of all positions from which each move results in V j

0 ∪ V
j
1 ; let V j

3 ⊆ V1 be the set of all
positions from which there is a move to V j

0 ∪ V
j
1 ∪ V

j
2 ; let V j

4 ⊆ V2 be the set of all positions
from which each move results in V j

0 ∪V
j
1 ∪V

j
2 ∪V

j
3 ; etc. Finally, let us define Vj as the union

of all obtained sets Vj = V j
0 ∪ V

j
1 ∪ V

j
2 ∪ V

j
3 . . ..

It is easy to see that partition Q : V = V j ∪ V \ V j satisfies (ii) and (iii). Moreover,
V j 6= ∅, since j ∈ V j. Hence, Q is contra-ergodic unless V j = V . It is also clear that player
i has a strategy that results in ej whenever the game begins in a position from V j. �

Corollary 7 A pair (
−→
G,P ) is not ergodic whenever

−→
G has two loops ej1 and ej2 such that

j1 ∈ V1 and j2 ∈ V2.

2 Proofs of Propositions 1, 2, and 3

2.1 Maxmin and minmax depend on the initial position

Given a cyclic game (
−→
G,P, j, u) with a zero-sum utility function u, although we cannot

guarantee that the value v = v(
−→
G,P, j, u) exists, yet, in every game there exist maxmin

v1 = v1(
−→
G,P, j, u) and minmax v2 = v2(

−→
G,P, j, u). They represent the values that player 1

and, respectively, player 2 can guarantee. Inequality v1 ≤ v2 holds for every fixed
−→
G,P, u,

and j. Furthermore, given
−→
G,P , and u, maxmin and minmax can depend on the initial

position j ∈ V , that is, v1 = v1(j) and v2 = v2(j).

Lemma 1 For each move from j to j′ we have:

(i) v1(j
′) ≤ v1(j) and v2(j

′) ≤ v2(j) whenever j ∈ V1 and

(ii) v1(j
′) ≥ v1(j) and v2(j

′) ≥ v2(j) whenever j ∈ V2.

Moreover, for every position j ∈ V = V1 ∪ V2 there are moves (j, j′) and (j, j′′) such that
(i’) v1(j

′) = v1(j) and (ii’) v2(j
′′) = v2(j).
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Proof Indeed, by definition of maxmin and minmax, we have:

v1(j) = max{v1(j
′) | (j, j′) ∈

−→
E },

v2(j) = max{v2(j
′′) | (j, j′′) ∈

−→
E } for j ∈ V1;

v1(j) = min{v1(j
′) | (j, j′) ∈

−→
E },

v2(j) = min{v2(j
′′) | (j, j′′) ∈

−→
E } for j ∈ V2.

These equalities imply (i,i’) and (ii,ii’), respectively. �

In other words, both maxmin and minmax do not increase (respectively, decrease) with
any move of player 1 (respectively, 2); moreover, in each position there are two moves that
keep unchanged maxmin in minmax, respectively. However, these two moves can be distinct,
since we cannot guarantee that (i’) and (ii’) hold simultaneously. For example, let j ∈ V1

and there are exactly two moves (j, j′) and (j, j′′) from j which result in positions j′ and j′′

such that v1(j
′) = v2(j

′) = 0, v1(j
′′) = −1, v2(j

′′) = 1. Then v1(j) = 0 and v2(j) = 1.

Let us recall Theorem 1 and from now on (except Appendix 1 and Section 3.2) restrict
ourselves by the zero-sum ±1 payoffs. Then maxmin v1(j) and minmax v2(j) take only
values ±1, too. Since v1(j) ≤ v2(j) for all j ∈ V , pairs (v1(j), v2(j)) can take only three
pairs of values: (−1,−1), (1, 1), and (−1, 1) that define the partition V = V−∪V+∪V±. Let

us consider three induced subgraphs
−→
G− =

−→
G [V−],

−→
G+ =

−→
G [V+],

−→
G± =

−→
G [V±] and three

partitions P−, P+, P± induced on sets V−, V+, V± by the original partition P : V = V1 ∪ V2.
For zero-sum ±1 games we can reformulate Lemma 1 as follows.

Lemma 2 All three digraphs
−→
G− =

−→
G [V−],

−→
G+ =

−→
G [V+], and

−→
G± =

−→
G [V±] have no dead-

ends. Furthermore, player 1 has no moves from V− to V±, from V± to V+, and from V− to
V+, while player 2 has no moves from V+ to V±, from V± to V−, and from V+ to V−. �

In other words, in the sequence V−, V±, V+ player 1 can move only from right to left,
while player 2 only from left to right, and each player can always stay in the same set. These
observations easily imply the following two claims.

Corollary 8 Triplets (
−→
G−, P−, j), (

−→
G+, P+, j), and (

−→
G±, P±, j) form cyclic game forms if

the initial position j belongs to V−, V+, and V±, respectively.

Corollary 9 The original pair (
−→
G,P ) is not ergodic whenever at least two of the three sets

V−, V+, and V± are not empty.

Proof First claim follows from Lemma 2 immediately. The second one follows from Lemma
2 and criterion of ergodicity given by Proposition 11. Indeed, Q : V = V 1 ∪ V 2 is a
contra-ergodic partition whenever both sets are not empty and V 1 = V+, V

2 = V− ∪ V± or
V 1 = V+ ∪ V±, V 2 = V−. Obviously, V 1 and V 2 are not empty if and only if at least two of
the three sets V−, V+, and V± are not empty. �
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2.2 Uniformly non-solvable pairs

By definition and Theorem 2, cyclic game form (
−→
G,P, j) is not solvable if and only if there is

a utility functions u such that j ∈ V± in the obtained game (
−→
G,P, j, u). We can strengthen

this claim as follows. A pair (
−→
G,P ) will be called uniformly non-solvable if there is a utility

function u such that for every initial position j ∈ V the obtained game (
−→
G,P, j, u) is not

solvable, that is, −1 = v1(j) < v2(j) = 1 for each j ∈ V , or in other words, V± = V .

Lemma 3 Pair (
−→
G±, P±) is uniformly non-solvable.

Proof Suppose that V± 6= ∅ for some payoff u and consider the subgame (
−→
G±, P±, j, u±),

where u± : C(
−→
G±) → {−1,+1} is the restriction of u to the dicycles of digraph

−→
G±. By

definition of V±, we have −1 = maxmin = v1(j) < v2(j) = minmax = 1 for every j ∈ V±.

In other words, game form (
−→
G±, P±, j) is not solvable for each j, that is, pair (

−→
G±, P±) is

uniformly non-solvable. �

Lemma 4 Furthermore, let us choose two arbitrary vertices j′, j′′ ∈ V± and add the extra

arc e = (j′, j′′) to digraph
−→
G±. The obtained pair (

−→
G ′±, P±) is uniformly non-solvable.

Proof Without loss of generality we can assume that j′ ∈ V1. In this case let us extend

u± to u′± : C(
−→
G ′±) → {−1,+1} by setting u′±(c) = −1 for every dicycle c that contains the

new arc e. Let us consider the obtained game (
−→
G ′±, P±, j, u

′
±) and show that −1 = v′1(j) <

v′2(j) = 1 for every initial position j. The second equality is obvious, since the only new
move e = (j′, j′′) belongs to player 1, while the set of strategies of player 2 remains the same.

Yet, we have to show that v′1(j) = −1, that is, player 1 cannot use the new move e
in a strategy that will guarantee the result +1. This is not fully obvious. Although, by
definition, u′±(c) = −1 for every dicycle c that contains e, yet, perhaps, e could create a
vital “communication” for player 1. However, this cannot happen either. Indeed, obviously,
v′1(j

′′) = −1, since if j = j′′ is the initial position then player 1 will immediately lose after
move e = (j′, j′′). Furthermore, since v′1(j

′′) = −1 and e = (j′, j′′) results in j′′, this move is
useless as a communication. Thus, v′1(j) = −1, while v′2(j) = 1 for all j ∈ V±. �

Similarly to the non-directed case, we will say that pair (
−→
G,P ) is majorized by

−→
G ′, P ′)

if the digraph
−→
G = (V,

−→
E ) is a subgraph of (

−→
G ′ = (V ′,

−→
E ′) (that is, V ⊆ V ′,

−→
E ⊆

−→
E ′)

and partition P : V = V1 ∪ V2 is a subpartition of P ′ = V ′ : V ′1 ∪ V ′2 induced by the subset

V ⊆ V ′ (that is, P : V = (V ′1 ∩ V ) ∪ (V ′2 ∩ V )). Standardly, we use the notation
−→
G ≤

−→
G ′

and (
−→
G,P ) ≤ (

−→
G ′, P ′).

Theorem 4 If (i) cyclic game form (
−→
G,P, j0) is not solvable, (ii) (

−→
G,P ) ≤ (

−→
G ′, P ′), and

(iii) for every position j′ ∈ V ′ in
−→
G ′ there is a directed path from j′ to j0, then (iv) (

−→
G ′, P ′)

is uniformly non-solvable.
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Proof Since (
−→
G,P, j0) is not solvable, there is a utility function u : C(

−→
G)→ {−1,+1} such

that the corresponding game (
−→
G,P, j0, u) is not solvable either, that is, −1 = maxmin =

v1(j0) < v2(j0) = minmax = 1. In other words, V± 6= ∅; in particular, j0 ∈ V±. Then,

by Lemma 3, the induced pair (
−→
G±, P±) is uniformly non-solvable, that is, game form

(
−→
G±, P±, j) is not solvable for every j. In other words, −1 = maxminv1(j) < v2(j) =

minmax = 1 for every initial position j ∈ V± of the game (
−→
G±, P±, j, u±), where u± :

C(
−→
G±)→ {−1,+1} is the restriction of u to C(

−→
G±).

To prove that pair (
−→
G ′, P ′) is uniformly non-solvable we will define a similar utility

function u′ : C(
−→
G ′) → {−1,+1} such that which −1 = maxmin = v′1(j) < v′2(j) =

minmax = 1 for every j ∈ V ′. To get u′ we will extend u± from C(
−→
G±) to C(

−→
G ′). To do so,

we set u′(c) = u±(c) for each dicycle c in C(
−→
G±). Now we will extend, step by step, digraph

−→
G± to

−→
G ′, so that in each step we obtain a uniformly non-solvable pair. Thus, to get u′

from u, first, we reduce u from C(
−→
G ) to C(

−→
G±) getting u± and then extend it to C(

−→
G ′).

Step A1. Let us add to digraph
−→
G± all arcs (j′, j′′) ∈

−→
E ′ such that j′, j′′ ∈ V±. The

obtained pair (
−→
G 1, P1) is uniformly non-solvable, by Lemma 4.

Step B1. By condition (iii) of the Theorem, since j0 ∈ V±, there is an arc (j′, j′′) in
−→
G ′ such that j′′ ∈ V±, while j′ 6∈ V±. Let us add this arc (together with vertex j′) to

digraph (
−→
G 1). Obviously, the obtained pair (

−→
G 2, P2) is uniformly non-solvable, since move

in position j′ is forced.

Step A2. Now let us add to digraph
−→
G 2 all arcs (j, j′) ∈

−→
E ′ for j ∈ V±. By Lemma 4,

the obtained pair (
−→
G ′2, P2) is uniformly non-solvable.

By this, we extend u′ from C(
−→
G 1) = C(

−→
G 2) to C(

−→
G ′2) as follows. If C contains (j, j′)

then u′(C) = −1 for j ∈ V1 and u′(C) = +1 for j ∈ V2.

Now we can proceed with Step B2, etc., until we obtain the final digraph C(
−→
G ′) and

show that pair (
−→
G ′, P ′) is uniformly non-solvable. �

Example 2.1 As an illustration, let us consider four pairs (
−→
G k, Pk), k = 1, 2, 3, 4 in Figure

1. The first and the last pairs are uniformly non-solvable; (
−→
G 3, P3) is uniformly solvable,

moreover, it is ergodic; finally, (
−→
G 2, P2) is not solvable, yet, not uniformly. Let us notice

that (
−→
G 1, P1) < (

−→
G 2, P2) < (

−→
G 3, P3).

This example shows that condition (iii) of Theorem 4 is essential. Indeed, both extensions

(
−→
G 1, P1) to (

−→
G 2, P2) and (

−→
G 2, P2) to (

−→
G 3, P3) satisfy (i) and (ii) but (iii) and (iv) fail.

2.3 Propositions 1, 2, and 3 follow from Theorem 4

Let us notice, however, that condition (iii) automatically holds if digraph
−→
G ′ is strongly

connected, or in particular, if
−→
G ′ is bidirected and the corresponding graph G′ is connected.

Hence, Theorem 4 implies Proposition 2.
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Furthermore, Proposition 1 follows from Theorem 4, too. Indeed, conditions (ii) and

(iii) of the theorem hold whenever
−→
G =

−→
G ′ is a strongly connected digraph. Hence, in this

case solvability does not depend on the initial position. Moreover, Proposition 1 can be
strengthened as follows.

Proposition 13 If digraph
−→
G is strongly connected then a pair (

−→
G,P ) is either solvable or

uniformly non-solvable. �

Finally, let us derive Proposition 3 from Theorem 4. Again, we will prove a stronger

claim : Given K digraphs
−→
Gk = (Vk,

−→
E k), where k ∈ [K] = {1, . . . , K}, with a unique

common vertex j0, that is, Vk′ ∩Vk′′ = {j0} for each two distinct k′, k′′ ∈ [K], then obviously,

K arc-sets are pairwise disjoint. Let
−→
G = (V,

−→
E ) be the union of these K digraphs, that is,

V = ∪K
k=1Vk and

−→
E = ∪K

k=1

−→
E k.

Lemma 5 Digraph
−→
G is strongly connected if and only if all digraphs

−→
G k are strongly con-

nected for k = 1, . . . , K.

Proof Each of the above digraphs is strongly connected if and only if each its vertex can be
reached by a (simple) directed path from j0 and, vice versa, j0 can be reached by a (simple)

directed path from each vertex. Clearly, this property holds for
−→
G if and only if it holds for−→

G k for all k ∈ [K] = {1, . . . , K}. �

In the rest of this section, we will assume that digraphs
−→
G k are strongly connected for

k = 1, . . . , K. Hence, digraph
−→
G is strongly connected, too.

Furthermore, let Pk : Vk = V k
1 ∪ V k

2 be K partitions such that j0 ∩K
k=1 V

k
i either for i = 1

or for i = 2, in other words, position j0 belongs to the same player, 1 or 2, in all partitions.
Let P : V = V1∪V2 be the union of these partitions, that is, V1 = ∪K

k=1V
k
1 and V2 = ∪K

k=1V
k
2 .

Lemma 6 Cyclic game form (
−→
G,P, j0) is solvable if and only if (

−→
G k, Pk, j0) are solvable for

all k = 1, . . . , K.

Proof Given an arbitrary zero-sum payoff u, the following formulas, obviously, hold for
maxmin and minmax:

vi = max(vk
i | k = 1, . . . , K) if j0 ∈ V1 and

vi = min(vk
i | k = 1, . . . , K) if j0 ∈ V2 for i ∈ I = {1, 2},

where vi = vi(
−→
G,P, j0) and vk

i = vk
i (
−→
G k, Pk, j0) for k = 1, . . . , K are maxmin if i = 1 and

minmax if i = 2. Now, it is easy to see that maxmin and minmax are equal for all u in game

(
−→
G,P, j0, u) if and only if they are equal for all u in all games (

−→
G k, Pk, j0, u) for k = 1, . . . , K.

�

Let us recall that, by Proposition 13, solvability is ergodic, that is, it does not depend
on the initial position. Hence, we can strengthen Lemma 6 as follows.
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Lemma 7 Pair (
−→
G,P ) is solvable if the pairs (

−→
G k, Pk) are solvable for all k = 1, . . . , K,

otherwise pair (
−→
G,P ) is uniformly non-solvable. �

Let us summarize. We have defined an operation of the union of pairs with a unique
common position and proved that the resulting pair is solvable (and strongly connected) if
and only if all involved pairs are solvable (and strongly connected). Obviously, this operation
can be applied several times successively and the same conclusion can be proved by induction.

Let us apply this construction to pairs whose digraphs are bidirected (and the corre-
sponding non-directed graphs are connected). It is easy to see that each connected graph
can be obtained in this way from its 2-connected components and some edges. Obviously, a
pair corresponding to a single edge is solvable. This and Lemma 7 imply Proposition 3 and,
in particular, Corollary 1. �

3 Solvability of cycles. Proof of Proposition 5

As an introductory example let us study solvability of a bidirected cyclic game form (
−→
G,P, j0)

such that the corresponding graph G is a simple cycle, G = CK . By Proposition 1, solvability
in this case is ergodic, does not depend on j0. Hence, in fact, we study solvability of the
pair (G,P ). Four cases are given in Figure 1, where G1 = C2, G2 = C3, and G3 = G4 = C4,
respectively. It is not difficult to verify that the last two game forms are solvable, while the
first two are not. To see this, let us construct the corresponding normal game forms and
check that the last two are tight, while the first two are not; see Figure 1.

Obviously, pair (G,P ) is solvable when G is a loop. Moreover, (G,P ) is also solvable
when G is a 0-cycle, that is, V1 = ∅, V2 = V or V2 = ∅, V1 = V . Indeed, in this case one
player, 1 or 2, respectively, is a dummy.

3.1 1-cycles are not solvable

The simplest non-solvable pair is (G,P ) = (C2, P ); see Figure 1. Graph G = (V,E) consists
of two vertices and two edges; players, 1 and 2, control one position each. The corresponding

pair (
−→
G,P ) is given in Figure 1 (1). Digraph

−→
G contains four dicycles. Each player has

two strategies. Thus, all four outcomes of the corresponding 2 × 2 normal game form are
distinct. Hence, it is not solvable.

More generally, let (G,P ) = (CK , P ) be a 1-cycle, say, V1 = {j0}, V2 = V \ {j0},
and |V | = K ≥ 2. We will show that (G,P ) is not solvable. The corresponding digraph
−→
G contains 2K + 2 dicycles: K “short”, of length 2 each, and two “long”, of length K
each, the ”clockwise” and ”counter-clockwise” dicycles. Let us introduce a payoff u as
follows: u(c) = −1 if cycle c is long and u(c) = +1 if c is short. Player 1 controls only the
initial position j0 and has two strategies: to begin ”clockwise or counter-clockwise”. Player
2 has 2K−1 strategies, yet, all of them, but two, are definitely losing, since they always
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result in a short cycle. (Recall that player 2 is the minimizer.) Only two strategies, the
clockwise and counter-clockwise, can be winning. Yet, there is no guarantee. The clockwise
or counter-clockwise strategy of player 2 wins only if player 1 begins correspondingly. In
these two cases two long cycles appear; otherwise (if layer 1 begins clockwise and 2 proceeds
counter-clockwise, or vice versa) a short cycle appears and player 1 wins. Thus, removing
all dominated strategies of player 2, we reduce normal form of the original game to the 2× 2
matrix with a1,1 = a2,2 = +1 and a1,2 = a2,1 = −1. This matrix has no saddle point in pure
strategies.

Remark 4 It is important to notice that both players are restricted to their positional strate-
gies, that is, the move in a position can depend only on this position but not on the preceding
positions or moves. By this assumption, player 2 is not aware of the move of player 1 in j0.
In other words, both players choose their (positional) strategies simultaneously.

3.2 Passing through a simple cycle

Given a pair (G,P ) such that G = CK = (V,E) is a simple cycle of length K (that is, V =
{j0, j1, . . . , jK−1} (by convention, jK = j0) and E = {(jk−1, jk), k ∈ [K] = {1, . . . , K}}, the

corresponding digraph
−→
G = (V,

−→
E ) containsK short dicycles {ck = ((jk−1, jk), (jk, jk−1)), k ∈

[K]} that are in one-to-one correspondence with E and two long dicycles directed clockwise
cL and counter-clockwise cR. As before, we assume that j0 ∈ V1 is the initial position.

Now let us make an extra assumption that player 1 begins clockwise, by move (j0, j1),
and that player 2 knows it. The obtained game can be easily solved in positional strategies,
since it is reduced to a finite positional game with perfect information whose tree is a
caterpillar. Indeed, in each position jk ∈ Vi, where k = 1, . . . , K − 1, the corresponding
player i ∈ I = {1, 2} has two olptions: either to return to jk−1 (and by this finish the game
in ck) or to proceed with jk+1. If k + 1 = K then the game is over; it results in the long
cycle cL and, hence, dicycles cR and cK cannot appear at all.

Now let us consider a zero-sum utility function uL such that uL(cL) = 0 (that is, cL is
a draw) and uL(ck) take values −1 and +1 for k = 1, . . . , K − 1. It is easy to see that all
these K − 1 values are uniquely determined if we assume that the game is a draw, that is,
the optimal strategies result in cL. Indeed, in this case we must have

uL(ck) = (−1)i whenever jk ∈ Vi, where i = 1, 2; and k = 1, . . . , K − 1. (1)

It is easy to see that otherwise one of the players, 1 or 2, wins.
As we already mentioned, the value uL(cK) is irrelevant.

Now let us assume alternatively that player 1 begins counter-clockwise, by move (jK , jK−1),
and again player 2 knows it. Now in each position jk ∈ Vi, where k = 1, . . . , K − 1, the
corresponding player i ∈ I = {1, 2} has two options: either to return to jk+1 (and by this
finish the game in ck+1) or to proceed with jk−1. If k−1 = 0 then the game is over; it results
in the long dicycle cR and, hence, dicycles cL and c1 cannot appear at all.
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Now let us consider a zero-sum utility function uR such that uR(cR) = 0 (that is, cR
is a draw) and uR(ck) take values −1 and +1 for k = 2, . . . , K. All these K − 1 values
are uniquely determined if the game is a draw, that is, the optimal strategies result in cR.
Indeed, in this case instead of (1) we obtain

uR(ck) = (−1)i whenever jk−1 ∈ Vi, where i = 1, 2; and k = K, . . . , 2. (2)

Now, the value uR(c1) is irrelevant.

Lemma 8 Equations (1) and (2) hold simultaneously, that is, uL(ck) = uR(ck) for k =
2, . . . , K − 1, if and only if

(i) pair (CK , P ) is a 0-cycle (with V1 = V, V2 = ∅) and
uL(c1) = uL(ck) = uR(ck) = uR(cK) = −1 for k = 2, . . . , K − 1, or

(ii) pair (CK , P ) is a 1-cycle (with V1 = {j0}, V2 = V \ {j0}) and
uL(c1) = uL(ck) = uR(ck) = uR(cK) = +1 for k = 2, . . . , K − 1.

Proof “If parts”. It is easy to verify that in both cases equations (1), (2) hold and, moreover,
uL(ck) = uR(ck) for k = 2, . . . , K − 1.

“Only if parts”. Obviously, equations (1), (2) and uL(ck) = uR(ck) for k = 2, . . . , K −
1 imply that uL(c1) = uR(c2) = uL(c2) = uR(c3) = . . . = uL(ck−1) = uR(ck) = . . . =
uL(cK−1) = uR(cK). Hence, by equations (1) and (2), all positions j1, . . . , jK−1 must belong
to the same player i ∈ I = {1, 2}. Obviously, cases (i) and (ii) appear for i = 1 and i = 2,
respectively. �

Remark 5 In Section 3.1 we have already seen that game (CK , P, j0, u) is not solvable if
pair (CK , P ) is a 1-cycle, V1 = {j0}, V2 = V \ {j0}, and u(ck) = +1 for all k = 1, . . . , K,
while u(cL) = u(cR) = −1 (or 0). This is Case (ii) of Lemma 8. In this case, cycle G = CK

can be passed both ways, clockwise and counter-clockwise. The Lemma is instrumental not
only in the proof of Proposition 4 but of Theorem 2 as well; see Sections 5-7.

3.3 All cycles are solvable, except 1-cycles

Let (CK , P, j0, u) be a cyclic game, where j0 ∈ V1, and u be a utility function. (In particular,
now u(cL) and u(cR) can take only values ±1, not 0.) The following case analysis will
complete the proof of Proposition 4.

Clearly, player 1 wins if he can begin clockwise, with (j0, j1), (respectively, counter-
clockwise, with (jK , jK−1)) and force a winning short cycle or cL, provided u(cL) = 1 (re-
spectively, or cR, provided u(cR) = 1).

We have to show that if player 1 cannot do this then player 2 wins, unless (G,P ) is a
1-cycle. This is not obvious, since player 2 does not know whether player 1 begins clockwise
or counter-clockwise.
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Let us partition the set of strategies of player 1 in two subsets, X1 = XL
1 ∪ XR

1 , where
the strategies of XL

1 (respectively, of XR
1 ) choose move (j0, j1) (respectively, (jK , jK−1)) in

the initial position j0 = jK , and consider the corresponding partition of the normal form:

X = X1 ×X2 = (XL
1 ×X2) ∪ (XR

1 ×X2) = XL ∪XR.

As we already mentioned in Section 3.1, each of two subgames, defined by XL and XR, is
the normal form of a finite positional game with perfect information. Hence, player 2 has a
winning strategy in each subgame, since player 1 has not. However, the corresponding two
winning strategies x`

2 and xr
2 may differ, x`

2 6= xr
2, and we have yet to prove that player 2

has a strategy x2 ∈ X2 winning in both subgames XL and XR simultaneously, or in other
words, winning in the total game X, unless (G,P ) is a 1-cycle.

Let us consider two special strategies xL
2 and xR

2 of player 2 that in all positions of V2

choose to move clockwise and counter-clockwise, respectively. We prove Proposition 5 by
the following case analysis.

Case 1: xL
2 and xR

2 are unique winning strategies in XL and XR, respectively.
In this case we have to consider two subcases: V1 = {j0} and |V1| > 1.

Case 1.1 : V1 = {j0}, V2 = V \ {j0}. In this case we obtain a 1-cycle, which is not
solvable, according to Section 3.1. More precisely, there is a unique payoff, u(ck) = +1 for
k = 1, . . . , K and u(cL) = u(cR) = −1, such that in the obtained game no player has a
winning strategy.

Case 1.2 : |V1| > 1; in other words, there is an m ∈ {1, . . . , K − 1} such that jm ∈ V1.
In this case we can define a uniformly winning strategy x2 by setting x2(jk) = xL

2 (jk) for
k < m and x2(jk) = xR

2 (jk) for k > m. Of course, jk ∈ V2 in both cases.

Case 2 : player 2 has winning strategies x`
2 in XL and xr

2 in XR distinct from xL
2 and xR

2 ,
respectively. In other words, x`

2 (respectively, xr
2) chooses the counter-clockwise (respectively,

clockwise) move in some position jkL
(respectively, jkR

). Let us assume that we have fixed
the minimum such kL and the maximum such kR and consider the following three subcases.

Case 2.1 : kL < kR. Let us define strategy x2 as follows: x2(jk) = xL
2 (jk) for k ≤ kL,

x2(jk) = xR
2 (jk) for k ≥ kR, and x2(jk) is arbitrary when kL < k < kR.

Case 2.2 : kL > kR. Let us define x2 as follows: x2(jk) = xL
2 (jk) for k ≤ kL and

x2(jk) = xR
2 (jk) for k ≥ kL.

Case 2.3 : kL = kR = m. Then we have to consider two subsubcases: V2 = {jm} and
|V2| > 1.

Case 2.3.1 : V2 = {jm}. Again we obtain a 1-cycle, which is not solvable. There is a
unique payoff (u(ck) = −1 for k = 1, . . . , K and u(cL) = u(cR) = +1) such that in the
obtained game no player has a winning strategy.

Case 2.3.2 : |V2| > 1. Then, except jm, there is another position jn ∈ V2. Without loss of
generality, we can assume that n < m. By definition of m, strategy xL

2 chooses the clockwise
move (jk, jk+1) in every position jk such that k < m, in particular, in jn. Hence, we can
define x2 as follows: x2(jk) = xL

2 (jk) for k ≤ m and x2(jk) = xR
2 (jk) for k > m.



– 24 –

Case 3 : player 2 has a winning strategy xr
2 in XR distinct from xR

2 , while xL
2 is the

unique winning strategy in XL.
Since xr

2 6= xR
2 , there is an m ∈ {1, . . . , K − 1} such that jm ∈ V2 and xr

2 (as well as xL
2

chooses the clockwise move (jm, jm+1) in jm. Let us assume that we have fixed the maximum
such m. In this case we can define a uniformly winning strategy x2 by setting x2(jk) = xr

2(jk)
for k ≥ m and x2(jk) = xL

2 (jk) for k ≤ m; of course, jk ∈ V2 in both cases.

Case 3′ : player 2 has a winning strategy x`
2 in XL distinct from xL

2 , while xR
2 is the

unique winning strategy in XR.
Due to obvious symmetry, cases 3 and 3′ are equivalent.
Since, in each case we got either a uniformly optimal strategy x2 or a 1-cycle, Proposition

4 follows. �

4 Passing through a simple path

4.1 Main lemma for simple paths

Here we derive for simple paths a result similar to Lemma 8 for simple cycles.
Let G = PK = (V,E) be a simple path of length K in which V = {j0, j1, . . . , jK} (now

j0 6= jK) and E = {(jk−1, jk); k = 1, . . . , K}.
The corresponding digraph

−→
G = (V,

−→
E ) contains K short dicycles,

CK = {ck = ((jk−1, jk), (jk, jk−1)); k ∈ [K]}, that are in one-to-one correspondence with
E, and no other dicycles. Let us add to G one loop cL at jK (respectively, cR at j0) and
denote the obtained graph GL (respectively, GR). Given a partition P : V = V1 ∪ V2, let
us consider two bidirected zero-sum cyclic games (GL, P, j0, uL) and (GR, P, jK , uR) whose
utility functions are defined as follows: uL(cL) = uR(cR) = 0, while uL : CK → {−1,+1} and
uR : CK → {−1,+1} are arbitrary functions defined on CK = {c1, . . . , cK}.

Lemma 9 (i) Equations

uL(ck) = (−1)i whenever jk ∈ Vi, where i = 1, 2; and k = 1, . . . , K, (3)

define a unique payoff uL such that the obtained game (GL, P, j0, uL) is a draw, that is, it
results in cL.

(ii) Respectively, equations

uR(ck) = (−1)i whenever jk−1 ∈ Vi, where i = 1, 2; and k = 0, . . . , K − 1, (4)

define a unique payoff uR such that the obtained game (GR, P, jK , uR) is a draw, that is, it
results in cR.

(iii) Equations (3) and (4) hold simultaneously, or more precisely, there is a utility func-
tion u = uL = uR satisfying (3) and (4) if and only if
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(a) V1 = V, V2 = ∅ and u(ck) = −1 for all k = 1, . . . , K or

(b) V2 = V, V1 = ∅ and u(ck) = +1 for all k = 1, . . . , K.

In both cases graph (G,P ) is a 0-path.

Proof Let us consider first (i) and (ii). It is easy to see that (GL, P, j0, uL) (respectively,
(GR, P, jK , uR)) is a positional game with perfect information whose tree is a caterpillar.
Indeed, in each position jk the corresponding player i (such that jk ∈ Vi) has two options:
either to return to jk−1 (respectively, to jk+1) and by this finish the game in ck (respectively,
in ck+1) or to proceed with jk+1 (respectively, with jk−1). It is also easy to see that the first
options is winning whenever (3) (respectively, (4)) does not hold. Thus the play results in
cL (respectively, in cR), and the game is a draw, if and only if (3) (respectively, (4)) holds
for all k.

(iii) “If part”. It is easy to verify that in both cases (a) and (b) equations (3) and (4)
hold and, moreover, uL(ck) = uR(ck) for k = 1, . . . , K.

“Only if part”. Obviously, equations (1), (2) and uL(ck) = uR(ck) for k = 1, . . . , K imply
that uL(c1) = uR(c2) = uL(c2) = uR(c3) = . . . = uL(ck−1) = uR(ck) = . . . = uL(cK−1) =
uR(cK).

Hence, (3) and (4) imply that all positions j0, . . . , jK must belong to the same player
i ∈ I = {1, 2} and, moreover, that uL(ck) = uR(ck) = u(ck) = (−1)i for all k = 1, . . . , K. It
is easy to see that cases (a) and (b) appear for i = 1 and i = 2, respectively. �

In particular, Lemma 9 (iii) shows that path PK can be passed through both ways if and
only if it is a 0-path. However, in the next section we show that 1-paths have a similar, just
slightly weaker, property.

4.2 Special properties of 1-paths

Let us consider a 1-path (G,P ) in which V3−i = {k0}, Vi = V \{k0}, where k0 ∈ {1, . . . , K−1
and i ∈ I = {1, 2}. Furthermore, let u(ck) = (−1)i for all k ∈ [K] = {1, . . . , K}. Obviously,
in both games (G,P, j0, u) and (G,P, jK , u) player i has a winning strategy: (jk0 , jk0−1) and
(jk0 , jk0+1), respectively. However, if (G,P ) < (G′, P ′) then in a larger game (G′, P ′, j′, u′)
player i does not know whether the play enters path (G,P ) in j0 or in jK and, hence, he
does not know how to play in jk0 . One of the two available moves is winning, while the other
one might be losing.

Similar situation can appear for k0 = 0 or k0 = K. For example, let k0 = 0 and again
u(ck) = (−1)i for all k ∈ [K]. Obviously, move (j0, j1) is winning whenever the play enters
path (G,P ) in jK and then comes to j0. However, (j0, j1) can be a losing move if the play
enters j0 not from j1;

Example 4.1 Let us consider a game (G,P, j, u) in Figure 5
whose graph G consists of the middle path pK and two more paths p′ and p′′. All three

paths are between j0 and jK and have no other common vertices. Furthermore, let pK be a
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Figure 5:

1-path, where player 1 controls only one position jk0 , k0 ∈ {0, 1, . . . , K} and player 2 controls
all other positions. We will say that a 1-path pK is of type A if 0 < k0 < K and pK is of
type B if k0 = 0 or k0 = K.

The payoff u is chosen as follows. For the short dicycles of p′ and p′′ we define u in such
a (unique) way that p′ and p′′ will be passed clockwise and player 1 wins in the obtained long
dicycle c, that is, u(c) = +1. Furthermore, let u(ck) = +1 for all short dicycles ck, k ∈ [K],
of path pK. Then, as we already mentioned, pK could be passed both ways. Respectively, two
more clockwise long dicycles c′ and c′′ (formed by (p′, pK) and (p′′, pK)) can appear. Let us
set u(c′) = u(c′′) = −1, that is, player 2 wins in both cases.

Let us set K = 3 and consider the following two examples in Figure 5.

(A): k0 = 2. The play can come to position jk0 = j2 in two ways: from j1 or j3. In both
cases player 1 can win; it is enough to return to the same position, where the play came from,
since u(c2) = u(c3) = +1. Yet, to guarantee the victory player 1 must know the strategy of
the opponent, and, by our assumptions, he does not. Thus, player 2 should not surrender.
Instead, she can try to enter pK and approach j2 either from j0 or from j3. Although, in both
cases player 1 can win moving in j2 left or right, respectively. Yet, if his guess is wrong then
a long dicycle c′ or c′′ appears and player 2 wins, since u(c′) = u(c′′) = −1.

(B): k0 = 3. Again, the play can come to position jk0 = j3 in two ways: from j2 or by
p′. Respectively, player 1 should return to j2 or proceed with path p′′. In both cases he wins,
since u(c) = u(c3) = +1. However, again he cannot guarantee the victory, because he is not
aware of opponent’s strategy. Hence, player 2 should not surrender. Instead, in position j0
she can try either to enter (and then pass through) path pK or proceed with p′. In each case
player 2 can win. Respectively, in j3 he should return to j2 or proceed with p′′. Yet, if his
guess is wrong then a long cycle c′ or c′′ appears and player 2 wins, since u(c′) = u(c′′) = −1.

In both cases (A) and (B) pK is a 1-path, of type A and B, respectively.
It is not difficult to verify that both above games are not solvable. Moreover, they are

uniformly non-solvable with respect to the considered payoffs.

Remark 6 Every 1-path pK (as well as any other path) is standardly one-way oriented by
a payoff satisfying (3) or (4). A “problem” with the orientation appears when a 1-path is
obtained from a 0-path as follows. Given a 0-path p0

K controlled by a player i ∈ I = {1, 2}
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and constant payoff, u(ck) = (−1)i for all k ∈ {1, . . . , K}, let us fix a k0 ∈ {0, 1, . . . , K} and
switch position jk0 to player 3 − i. Then the obtained 1-path pK can be passed through both
ways.

However, nothing of that sort can happen when each player controls at least two positions
of a simple path.

Let (G,P ) be a pair in which G = PK = (V,E) is a simple path with vertices V =
{j0, . . . , jK} and P : V = V1∪V2 be a partition such that |V1| ≥ 2 and |V2| ≥ 2. Furthermore,
let u : Ck → {−1,+1} be a utility function.

Lemma 10 If a player, say, player 1, has winning strategies xL
1 and xR

1 in games (G,P, j0, u)
and (G,P, jK , u), respectively, then he has a strategy x1 that is winning in both games simul-
taneously.

Proof We proceed with a case analysis similar to one of Section 3.3.

Case 1 : Strategy xL
1 (respectively, xR

1 ) in each position jk ∈ V1 chooses the right move
(jk, jk+1) (respectively, left one (jk, jk−1)).

In this case we simply set x1 = xL
1 (respectively, x1 = xR

1 ).

Case 2 : There are positions jkL
and jkR

in which strategies xL
1 and xR

1 prescribe the left
and right move, respectively. Let us fix the minimum such kL and the maximum such kR

and consider the following subcases.

Case 2.1 : kL < kR. Let us define x1 as follows: x1(jk) = xL
1 (jk) for k ≤ kL, x1(jk) =

xR
1 (jk) for k ≥ kR, and x1(jk) is arbitrary when (kL < k < kR).

Case 2.2 : kL > kR. Then we define x1 as follows: x1(jk) = xL
1 (jk) for k ≤ kL and

x1(jk) = xR
1 (jk) for k ≥ kR.

Case 2.3 : kL = kR = m. We have to consider two subsubcases: V1 = {jm} and |V1| > 1.

Case 2.3.1 : V1 = {jm}. Again we obtain a 1-cycle, which is not solvable. There is
a unique payoff, u(ck) = −1 for k = 1, . . . , K and u(cL) = u(cR) = +1, such that in the
obtained game no player has a winning strategy.

Case 2.3.2 : |V1| > 1. Then, except jm, there is another position jn ∈ V1. Without loss
of generality, we can assume that n < m. By definition of m, strategy xL

1 chooses the right
move (jk, jk+1) in every position jk such that k < m, in particular, in jn. Hence, we can
define x1 as follows: x1(jk) = xL

1 (jk) for k ≤ m and x1(jk) = xR
1 (jk) for k > m.

Since, in each case we got either a uniformly optimal strategy x1 or a 1-cycle, Lemma 10
follows. �

4.3 List of options for simple paths

Given a cyclic game (G,P, j, u) and a simple path pK between two nodes j0 and jK of G
(recall that deg(j0) ≥ 3 and deg(jK) ≥ 3), the following options can take place.
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(a). Player i wins whenever i′ enters pK at j0 (respectively, at jK). All eight combinations
j0, jK and i, i′ ∈ I = {1, 2} are possible. By Lemma 10, if the same player wins in each case,
when pK is entered from j0 or from jK , then this player has a uniformly winning strategy,
which wins in both cases simultaneously, unless pk is a 1-cycle and u is the corresponding
constant.

(b). None of two players wins whenever a player i ∈ I = {1, 2} enters pK at j0 (respec-
tively, at jK). In this case the play can pass through pk from j0 to jK (respectively, from jK
to j0) and exit pK . By Lemma 9, this option takes place for both j0 and jK if and only if
pK is a 0-path and u is the corresponding constant.

5 Criteria of solvability of pair (G,P ) based on orien-

tations of its paths

5.1 Pairs (G,P ), (G,P), and (
−→
G ,P)

Given a pair (G,P ), the corresponding pair (G,P) was introduced in Section 1.4.1. Now
we introduce one more transformation. Let us substitute each 0-edge (j, j′) in G by two
oppositely oriented arcs (j, j′), (j′, j), then orient arbitrarily all other edges of G, and denote

the obtained digraph by
−→
G and pair by (

−→
G ,P).

Similarly to (G,P ), we will call pair (
−→
G ,P) solvable (respectively, uniformly non-solvable)

if the corresponding zero-sum game (
−→
G ,P , j,u) is solvable (respectively, not solvable) for

each initial position j of digraph
−→
G and for every (respectively, for some) payoff U : C(

−→
G )→

{−1,+1} satisfying the following two extra conditions:
First, we assume that U(c) = (−1)i for each dicycle c = ((j, j′), (j′, j)) corresponding to

a 0-edge (j, j′) in G controlled by player i ∈ I = {1, 2}. This restriction is natural, since
otherwise player i would immediately win on c.

Then, let us notice that digraph
−→
G may have dead-ends. We assume that a player wins

whenever the opponent cannot move.

Thus, we have defined three successive transformations. Given a bidirected pair (
−→
G,P ),

first, we introduce (G,P ), then (G,P), and finally, consider all orientations (
−→
G ,P) of the

latter.

Proposition 14 (i) If pair (G,P ) (respectively, cyclic game form (G,P, j)) is solvable

then for every orientation
−→
G of G the obtained pair (

−→
G ,P) (respectively, cyclic game form

(
−→
G ,P , j)) is also solvable.

(ii) A pair (G,P ) (respectively, cyclic game form (G,P, j)) is solvable whenever it con-

tains no 1-paths and the corresponding pair (
−→
G ,P) (respectively, cyclic game form (

−→
G ,P , j))

is solvable for every orientation
−→
G of G.
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(i’) If pair (G,P ) is uniformly non-solvable and it contains no 1-paths then there is an

orientation
−→
G of G such that the obtained pair (

−→
G ,P) is uniformly non-solvable too.

(ii’) A pair (G,P ) is uniformly non-solvable whenever there is an orientation
−→
G of G

such that the obtained pair (
−→
G ,P) is uniformly non-solvable.

Proof First, let us recall that:
(a) By Proposition 3, pair (G,P ) is solvable if and only if each its 2-connected component

is solvable. Hence, without loss of generality, we can assume that graph G is 2-connected;
in particular, it contains no vertex of degree 1 and all vertices of graph G are of degree at
least 3.

(b) By Proposition 13, pair (G,P ) is either solvable or uniformly non-solvable, whenever
graph G is connected.

(c) By definition, pairs (G,P ) and (
−→
G ,P) are solvable (respectively, uniformly non-

solvable) if and only if there are utility functions u and U such that for each initial positions

j the obtained games (G,P, j, u) and (
−→
G ,P , j,U) are solvable (respectively, uniformly non-

solvable).

It follows from (b) that parts (i) and (ii’), as well as (ii) and (i’) are equivalent.
Moreover, it is sufficient to prove parts (i) and (ii) only for cyclic game forms; then, the

corresponding statements for pairs will follow, by (c).

Part (i). Given a pair (G,P ) and initial position j in graph G of degree at least 3,

assume indirectly that there is an orientation
−→
G of G and a payoff U : C(

−→
G ) → {−1,+1}

such that the obtained game (
−→
G ,P , j,U) is not solvable. We have to construct a payoff

u : C(
−→
G)→ {−1,+1} such that game (G,P, j, u) is not solvable, either.

Since each dicycle c ∈ C(
−→
G ) is naturally assigned to a long dicycle of the original digraph

−→
G , let us set u(c) = U(c) for every such dicycle c.

As for the short dicycles of
−→
G , the corresponding payoffs are determined by the orienta-

tions of the simple paths of graph G induced by digraph
−→
G .

Let PK = (VK , EK) be a simple path in G between nodes j0, jK ∈ V (G). Standardly,
we assume that degG(j0) ≥ 3, degG(jK) ≥ 3 (that is, j0, jK ∈ V (G)), and VK = {jk; k =
0, 1, . . . , K}, EK = {ek = (jk − 1, jk); k = 1, . . . , K}. As before, to each edge ek ∈ EK we

assign a short dicycle ck = ((jk−1, jk), (jk, jk−1) in digraph
−→
G and denote by CK the set of

these k cycles, CK = {ck; k = 1, . . . , K}.
If pK is a 0-path of (G,P ), that is, Vi = VK , V3−i = ∅ for some i ∈ I = {1, 2}, then we

set u(ck) = (−1)i for all k = 1, . . . , K}. In this case player i can pass through pK in both
ways, yet, no short cycle ck ∈ CK is winning for i.

Furthermore, given a path pK between nodes j0 to jK in G. Without loss of generality,

we can assume that the corresponding edge (j0, jK) of graph G is oriented in digraph
−→
G

from j0 to jK . By Lemma 9, for a path PK oriented from j0 to jK , there is a (unique) utility
function uL : CK → {−1,+1} such that no player wins. (In other words, the players will
pass through pK from j0 to jK .) Let us set u(ck) = uL(ck) for all k = 1, . . . , K}.
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For any remaining dicycle c ∈ C(
−→
G) let us assign u(c) = −1 or u(c) = +1, arbitrarily. By

the above definition of u, games (
−→
G ,P , j,U) and (G,P, j, u) are equivalent for every initial

position j in G. �

Part (ii). Assume indirectly that cyclic game form (G,P, j) is not solvable. Then, by
Proposition 13, pair (G,P ) is uniformly non-solvable (whenever G is connected), i.e., there is

a payoff u : C(
−→
G)→ {−1,+1} such that for every initial position j in graph G the obtained

game (G,P, j, u) is not solvable. We have to prove that then pair (G,P) contains a 1-edge

or there is an orientation
−→
G of graph G such that pair (

−→
G ,P) is not solvable. In fact, we

will prove that it is uniformly non-solvable, i.e., there is a payoff U : C(
−→
G ) → {−1,+1}

such that for every initial position j ∈ V (G) the obtained game (
−→
G ,P , j,U) is not solvable.

Given (G,P ) and u, we define
−→
G and u as follows.

Let us recall all options listed in Section 4.3. Given a path pK in graph G, we will keep
our standard notation and also say that a player i ∈ I = {1, 2} wins (respectively, loses)
within pK if player i (respectively, the opponent 3− i) can guarantee that the play will result
in a dicycle ck ∈ Ck such that u(ck) = (−1)i+1. (Recall, that player 1 is the maximizer, while
2 is the minimizer.)

Case A. If at j0 or jK a player i can enter pK and win within it, then the corresponding
game, (G,P, j0, u) or (G,P, jK , u), is solvable and we get a contradiction.

This case takes place whenever pK is a 0-path controlled by a player i ∈ I = {1, 2},
unless u(ck) = (−1)i+1 for all k ∈ [K] = {1, . . . , K}. In the latter case we set U(c) = (−1)i+1

for the short dicycle c = ((j0, jK), (jK , j0)) of digraph
−→
G . Let us recall that, by definitions

of graph G and digraph
−→
G , we substitute a 0-path between j0 and jK in G by two parallel

edges (j0, jK) and (jK , j0) in G and then orient them oppositely in
−→
G .

Case B is considered in the following statement.

Lemma 11 If each player loses within pK whenever he enters it, from j0 or jK, then for
each interior position jk in pK (i.e., for k ∈ {1, . . . , K − 1}) the obtained game (G,P, jk, u)
is solvable, unless PK is a 1-path.

Proof At first, let us notice that the assumption of the lemma cannot hold for 0-paths.
Indeed, let pK be a 0-path controlled by a player i ∈ I = {1, 2}. Then i will not lose within
pK , since in any case i can pass through pK (in both ways) and leave it. (Let us recall that
degG(j0) ≥ 3 and degG(jK) ≥ 3.

At second, let us notice that the conclusion of the lemma may not hold for 1-paths; see
Example 4.1. However, by Lemma 10, there is no other exception.

Finally , it is obvious that K ≥ 3 whenever pK is not a 1-path. Hence, game (G,P, jk, u)
is solvable when k = 1 or k = 2. �

Case C. Neither of two players can win within pK , whenever a player i enters pK at j0
(respectively, at jK). By Lemma 9 (i,ii), this case takes place if and only if equation (3)
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(respectively, (4) holds for u. Then we orient the corresponding edge (j0, jK) of graph G
from j0 to jK (respectively, from jK to j0).

Furthermore, by Lemma 9 (iii), equations (3) and (4) hold simultaneously if and only if
pK is a 0-path controlled by a player i ∈ I = {1, 2} and u(ck) = (−1)i+1 for all k ∈ [K] =
{1, . . . , K}. This option was already considered; see Case A above.

Since, by our assumptions, pair (G,P ) is uniformly non-solvable and there is no 1-paths
in G, all edges of G will be oriented: every 0-edge in both directions and every other edge in
one direction, according to the above rule.

Thus, an orientation
−→
G of graph G is defined.

It is not difficult to see that a player i that makes a move opposite to this orientation
in a simple path pK in (G,P ) will lose within pK immediately after this move, since a short
cycle ck will appear such that u(ck) = (−1)i.

It is also clear that each dicycle c ∈ C(
−→
G ) is naturally assigned either to a 0-path in G or

to a long dicycle c′ of the original digraph
−→
G . In the former case the value U(c) was already

defined and in the latter case let us set U(c) = u(c′). For any remaining dicycle c in
−→
G let

us assign u(c) = −1 or u(c) = +1, arbitrarily.

Finally, it is not difficult to verify that the obtained game (
−→
G ,P , j,U) is equivalent to

the original game (G,P, j, u) and hence, they are both not solvable for every initial position
j ∈ V (G). �

5.2 Uniform non-solvability is a monotone property

Let us recall that, by Propositions 2, 13, and Theorem 4, if pair (G,P ) is solvable (respec-
tively, uniformly non-solvable) and (G′, P ′) ≤ (G,P ) (respectively, (G′, P ′) ≥ (G,P )), then
(G′, P ′) is solvable (respectively, uniformly non-solvable), too. In other words, solvability
(respectively, uniform non-solvability) is a monotone decreasing (respectively, increasing)
property. Proposition 14 implies a similar claim.

Proposition 15 If (G,P) ≤ (G ′,P ′) and there is an orientation
−→
G of G and payoff U :

C(
−→
G ) → {−1,+1} such that pair (

−→
G ,P) is uniformly non-solvable with respect to u, then

there is an extension
−→
G ′ of

−→
G and extension U ′ : C(

−→
G ′) → {−1,+1} of U such that pair

(
−→
G ′,P ′) is uniformly non-solvable with respect to U ′.

Proof This claim follows immediately from Proposition 14. Also it is similar to Theorem 4
and can be proved by the same arguments. �

In its turn, Proposition 15 implies the following criterion of uniform non-solvability. Let

us consider a (uniformly non-solvable) pair (
−→
G ,P) represented in Figure 6.

It consists of four vertices j1, j
′
1, j2, j

′
2 and six simple directed paths: p1 from j′1 to j2,

p2 from j′2 to j1, p
′
1 and p′′1 from j1 to j′1, p

′
2 and p′′2 from j2 to j′2. We assume that, except
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j1 j′1 j2 j′2p1

p2

p′1

p′′1

p′2

p′′2

Figure 6: Uniformly non-solvable pair

j1, j
′
1, j2, j

′
2, these paths have no vertices in common. We also assume that positions j1 and

j2 are controlled by players 1 and 2, respectively (as in the Figure), or vice versa. As for j′1
and j′2, they can be controlled by any players. Let us remark that, in fact, (

−→
G ,P) is not a

pair but a family of pairs. Let us also remark that path p1 (respectively, p2) can be reduced
to a single vertex; then j′1 = j2 (respectively, j′2 = j1). In particular, the first digraph in
Figure 2 belongs to the considered family.

It is easy to see that pair (
−→
G ,P) is uniformly non-solvable. Indeed, digraph

−→
G contains

four directed cycles and each player has two strategies. Hence, the corresponding 2 × 2
normal game form is not tight, since it contains four distinct outcomes; see Figure 2.1. This
simple claim can be strengthened as follows.

Proposition 16 Let (G,P) ≤ (G ′,P ′) and there is an orientation
−→
G of digraph G such that

the obtained pair (
−→
G ,P) belongs to the family presented in Figure 6. Then both pairs (G,P)

and (G ′,P ′) are uniformly non-solvable. Moreover, the corresponding orientation
−→
G ′ is an

extension of
−→
G and payoff U ′ : C(

−→
G ′)→ {−1,+1} is an extension of U : C(

−→
G )→ {−1,+1}.

Proof We already demonstrated that pair (G,P) is uniformly non-solvable. For pair (G ′,P ′)
it follows immediately from Proposition 15. �

This necessary conditions of solvability will be frequently used in Section 6.

5.3 Treating 1-paths

Let us notice that the absence of 1-edges in G is an essential condition of parts (ii) and
(i’); see Example 4.1. Another example is given by Proposition 7, where 1-edges of type 1
(respectively, of type 2) are (respectively, are not) in conflict with solvability of pairs (θk,P).
Thus, 1-paths must be treated separately. The following condition is sufficient for solvability.

Given a pair (G,P) and a 1-edge e = (j0, jK) in it, we shall say that e is of type A if
j0, jK ∈ Vi and e is of type B if j0 ∈ Vi, jK ∈ V3−i, where i ∈ I = {1, 2}. Let us consider the
simple 1-path p = p(j0, jK) in graph G corresponding to edge e. In other words we can say
that e and p are of type A (respectively, of type B) if one of two players controls all position
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of path p, except only one interior position; see Example 4.1 (A) (respectively, except only
one terminal position, j0 or jK ; see Example 4.1 (B)).

Given a pair (G,P) that has no 0-edges and 1-edges of type A, let us substitute by two
oppositely oriented arcs not only every 0-edge of G but also every 1-edge of type B. Then let

us orient arbitrarily all remaining edges of G and denote the obtained digraph by
−→
G B

1 and

pair by (
−→
G B

1 ,P).

Proposition 17 A pair (G,P ) is solvable whenever pair (
−→
G B

1 ,P) is solvable for each defined

above orientation
−→
G B

1 of graph G.

Proof We use the same arguments as in the proof of Proposition 15 (ii). Assume indirectly
that pair (G,P ) is not solvable. Then it is uniformly non-solvable, i.e., there is a payoff

u : C(
−→
G) → {−1,+1} such that for each j ∈ V (G) the obtained game (G,P, j, u) is not

solvable. Moreover, we can assume that (G,P ) is a minimal not solvable pair, that is, (G′, P ′)
is solvable whenever (G′, P ′) < (G,P ). We have to prove that then there is an orientation
−→
G B

1 of graph G and payoff U : C(
−→
G B

1 )→ {−1,+1} such that for each j ∈ V (G) the obtained

game (
−→
G B

1 ,P , j,U) is not solvable. We define this orientation and payoff as in Proposition
15 (ii); only for 1-paths we need a modification.

Let p = p(j0, jK) be a 1-path of type B in (G,P ); say, j0 ∈ V1 and j1, . . . , jK ∈ V2. Then
we can assume that (a) u(ck) = +1 for all k = 1, . . . , K or (b) u(c1) = +1 and u(ck) = −1
for k = 2, . . . , K, since otherwise game (G,P, jk, u) would be solvable for some k. In case
(b) equation 3 holds and hence, players can pass through p from j0 to jK only. In case (a)
players can pass through p both ways, since none of them knows opponent’s strategy.

Respectively, in
−→
G B

1 we substitute two oppositely oriented arcs (j0, jK) and (jK , j0) for
1-path p(j0, jK). These two arcs form a short dicycle c(j0, jK). Obviously, player 1 must win
on this cycle, that is, we set U ′(c(j0, jK)) = +1.

For all other dicycles of
−→
G B

1 define u′ as in the proof of proposition 15 (ii). It is not

difficult to see that for each j ∈ V (G) the obtained game (
−→
G B

1 ,P , j,U) is equivalent to the

original game (
−→
G,P, j, u). Since the second one is not solvable, the first one is not solvable

either. �

Remark 7 By Theorem 2, the inverse claim holds, too. Moreover, both claims hold even if
pair (G,P ) can contain 0-paths. However, we need Proposition 17 to prove Theorem 2 and
for this the present version is sufficient.

Yet, let us notice that for 1-edges of type A the similar claim fails. Indeed, Example
4.1 (A) shows that pair (G,P ) can be not solvable when the corresponding pair (G,P) is

monochromatic but contains a 1-edge of type A. Since (G,P) is monochromatic, pair (
−→
G A

1 ,P)
is monochromatic too. Hence, it is solvable, because one of two players is a dummy.
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6 List L of solvable pairs; proof of Propositions 6 - 9

The analysis goes the same line for every pair (G,P) considered below. First, we assume

that there are no 0- and 1-edges and verify that every orientation (
−→
G ,P) of pair (G,P) is

solvable. By Propositions 14 and 15, it is sufficient to check that it cannot be uniformly
non-solvable. In particular, we can ignore an orientation if it has a dead-end or one of two
players is a dummy.

Then we assume that there is a 0- or 1-edge and produce a uniformly non-solvable ori-

entation (
−→
G ,P) of pair (G,P). To prove non-solvability of (

−→
G ,P) we find out a uniformly

non-solvable subpair (
−→
G ′,P ′) < (

−→
G ,P). In many cases we use three such standard subpairs:

one from Proposition 17, see Figure 6, and two from Example 4.1 (A) and (B), see Figures
6 (a) and (b).

6.1 Pairs (θK ,PK); proof of Proposition 6

Let us recall bipartite pairs (θK ,PK) for K = 1, 2, . . . , in Figure 3 and 7.

j2
1 j1

2 j2
2

... j1
k j2

k j1
1

e′1

e′′1

e2 ek

e′k

e′′k

e1

Figure 7: Pair(θK ,PK)

Graph θK = (VK , EK) contains 2K vertices (positions) and 3K edges (moves).
Positions VK = {j1

k , j
2
k | k ∈ [K] = {1, . . . K}} are partitioned in two subsets, PK : VK =

V K
1 ∪ V K

2 , where V K
i = {ji

k | k ∈ [K]} are K positions of player i ∈ I = {1, 2}. In Figure 3
these positions are colored in white and black, respectively.

Furthermore, set EK = {ek, e
′
k, e
′′
k; k ∈ [K]} consists of 3K edges: K of type 1, ek =

(j1
k , j

2
k), and 2K of type 2, e′k = (j2

k , j
1
k+1)

′, e′′k = (j2
k , j

2
k+1)

′′, where k ∈ [K] and K + 1 = 1,
by convention. Let us notice that case K = 1 is “slightly degenerated”, since θ1 consists of
three parallel edges.

Let us also recall that θK is a proper subgraph of θK+1; moreover, it is easy to see that
(θK+1,PK+1) > (θK ,PK) for all K and, hence, pairs (θK ,PK) form an infinite chain of
solvable 2-connected pairs that has no maximal element.

Finally, since pairs (θK ,PK) are bipartite, they cannot contain 0-edges, yet, can contain
1-edges.

By Proposition 6, pair (θK ,PK) is solvable, unless it contains a 1-edge of type 2. We
will prove it by induction on K. Let us begin with K = 1. Clearly, if pair (θ1,P1) contains
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no 1-edges then it is solvable, since for each orientation of graph θ1 one of two players is a
dummy.

Yet, pair (θ1,P1) is not solvable if it contains a 1-edge. Moreover, for each K ≥ 1 pair
(θK ,PK) is uniformly non-solvable whenever it contains a 1-edge. To see this we can just
refer to Example 4.1 (B) and Proposition 15.

Now let us fix an arbitrary integral K ≥ 1 and consider pair (θK ,PK). First, we will
suppose that it contains no 1-edges. Let us assume indirectly that pair (θK ,PK) is uniformly

non-solvable, i.e., there is an orientation
−→
θ K of θK and payoff U : C(

−→
θ K)→ {−1,+1} such

that for each initial position j ∈ VK the obtained game (θK ,PK , j,U) is not solvable. The
following case analysis results in contradiction.

Case A: there is a k ∈ [K] such that edges ek and ek+1 are oriented oppositely, one towards
the other, that is, −→ek = (j1

k , j
2
k), while −→e k+1 = (j2

k+1, j
1
k+1). Clearly, in this case game

(θK ,PK , j,U) is solvable when j = j2
k or j = j1

k+1 and we get a contradiction.

Case B: there is a k ∈ [K]} such that edges ek and ek+1 are oriented oppositely, one from the
other, that is, −→e k = (j2

k , j
1
k), while −→e k+1 = (j1

k+1, j
2
k+1). It is easy to see that this case can

be reduced to Case A. Indeed, if conditions of Case B hold for some k ∈ [K] then conditions
of Case A hold for some other k′ ∈ [K].

Thus, we can conclude that all edges of type 1 are oriented in the same way. Let us
assume, without loss of generality, that they all are oriented clockwise, that is, −→e k = (j1

k , j
2
k)

for all k ∈ [K]. Now let us consider the edges of type 2.

Case C: there is a k ∈ K such that both edges e′k and e′′k are oriented counter-clockwise, that
is, from j1

k+1 to j2
k . In this case, game (θK ,PK , j

2
k ,U) is obviously solvable, since position j2

k

is the dead-end.

Case D: there is a k ∈ K such that edges e′k and e′′k are oppositely oriented, say, −→e ′k =
(j2

k , j
1
k+1), while −→e ′′k = (j1

k+1, j
2
k). Then these two arcs form a short dicycle c. Let us also

note that −→e ′k is the forced move in position j2
k and consider two subcases.

Subcase D1: U ′(c) = +1. Then, obviously, player 1 wins in game (θK ,PK , j,U) when
j = j2

k or j = j1
k+1.

Subcase D2: U ′(c) = −1. In this case −→e ′′k = (j1
k+1, j

2
k) is definitely a losing move for player

1. Hence, we can delete this arc from digraph
−→
θK . Then, obviously, the obtained pair is

equivalent to (
−→
θ K−1,PK−1) and this pair is solvable by the induction hypothesis.

Thus, we can conclude that all edges are oriented clockwise. Yet, in this case game
(θK ,PK , j,U) is obviously solvable for all j, since player 1 is a dummy. �

Now let us consider pairs (θK ,PK) that have 1-edges of type 1 but none of type 2. Let
us notice that there are no such pairs when K = 1, since in this (degenerate) case each of
three edges of θ1 is of type 1 and 2 simultaneously. From Proposition 17 we will derive that
all these pairs are solvable when K ≥ 2.

Let us substitute each 1-edge of type 1 by two oppositely directed arcs and then orient
arbitrarily all remaining edges of type 1 and all edges of type 2. Each pair e′k, e

′′
k, k ∈ [K],
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of parallel edges of type 2 can be oriented either oppositely or one way. Thus, the whole
long cycle is partitioned in oppositely oriented parallel arcs (1-edges of type 1 and oppositely
oriented pairs of type 2) and one way oriented arcs, single (regular edges of type 1) and
parallel (one way oriented pairs of edges of type 2).

Case A : there are no one way oriented arcs at all. Then we obtain a cycle of oppositely
oriented arcs. This case was considered in Section 3.

Hence, we can assume that there are one way oriented arcs. Let us show that all these
arcs must be oriented in the same way, say, clockwise.

Case B : there are two of these arcs oriented oppositely, say, e1 = (j1, j2) and e2 = (j3, j4).
Then it is easy to see that the considered game is solvable when the initial position is between
j2 and j4.

Now, let us consider oppositely oriented parallel pairs of arcs. Several such successive
pairs form an interval. We can repeat the arguments of case D and substitute every such
maximal interval by one directed arc. Moreover, all these arcs must be oriented clockwise
too, since otherwise the obtained game would be solvable for some initial positions. Thus,
we come to the following assumptions.

Case C : all arcs are oriented clockwise; there are parallel arcs, which correspond to 1-edges
of type 1 and intervals of clockwise oriented single arcs between them. In this case the game
is solvable too, since player 1 is a dummy.

This completes the proof of Proposition 6. �

6.2 Pairs (K4,P ′) and (K4,P ′′); proof of Proposition 7

We will prove that each of these two pairs is solvable, unless it contains a 0- or 1-edge. For
brevity we can represent both pairs by one (K4,P) in which j1 is an uncertain position; see
Figure 8.

First, let us suppose that there are no 0- and 1-edges and show that all orientations

(
−→
K 4,P) of (K4,P) are solvable.

Let us assume indirectly that there is a not solvable orientation (
−→
K 4,P). Then it is

uniformly non-solvable. In particular, there are no-dead-ends and no player is a dummy.
The following simple case analysis shows that there are only three such orientations; see
Figure 8.

First let us show that out-degree of each vertex jk is 1 or 2. Indeed, if it is 0 then jk is a
dead-end and if it is 3 then there are two options: (a) one of the remaining three vertices is
a dead-end, or (b) the orientation forms a simple cycle on these three vertices. Yet, in case
(b) the player that controls jk has three strategies and his opponent is a dummy.

Since in K4 each vertex is of degree 3, simple counting arguments show that there are
two vertices, say, j0 and j2, of out-degree 2 and in-degree 1 and the remaining two, j1 and j3,
of out-degree 1 and in-degree 2. It is clear that j0 and j2 cannot belong to the same player,
since then the opponent is a dummy.
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j0

j3 j2

= or

j1

j0

j3 j2

j1

c1 c2

(j0, j3) (j0, j2)

c1 c3 (j2, j3)

c1 c2 (j2, j1)

Figure 8: F1 = c1c2 ∨ c1c3, F2 = c1 ∨ c2c3, F1 = F d
2 .

c1 = ((j0, j3), (j3, j1), (j1, j0)),
c2 = ((j0, j2), (j2, j1), (j1, j0)),
c3 = ((j0, j2), (j2, j3), (j3, j1), (j1, j0)).

Thus we obtain the pair (
−→
K 4,P) in which each player has two strategies and the corre-

sponding normal game form is tight; see Figure 8.
Let us remark that we can “recolor” vertices j1 and j3 and get j1 ∈ V1, while j3 becomes

uncertain. However, this transformation does not change the normal game form, since both
vertices j1 and j3 are of out-degree 1, i.e., there is only one (forced) move in each of these
two positions.

Assigning a player to each uncertain position we obtain three slightly different pairs; yet,
all three have the same normal game form; see Figure 8.

Now, let us assume that pair (K4,P) contains a 1-edge e. It may be of type A or B.
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Without loss of generality, assume that (a) (j0, j2) is a 1-edge of type A or (b) (j2, j3) is a
1-edge of type B. In each case it is easy to show that the considered pair is uniformly non-
solvable. Indeed, in case (a) (respectively (b)) it is enough to delete edge (j0, j1) (respectively,
(j1, j3)) and recall that the obtained subpair was already considered in Example 4.1 (A)
(respectively, (B)).

Finally, let us assume that pair (K4,P) contains a 0-edge e. Without loss of generality,
we can assume that e = (j2, j3). Let us substitute edge e by two oppositely oriented arcs
and orient all other edges as in Figure 9.

j0

j3 j2

c1 c2

c0

j1

c0 c3 c1 c1 (j0, j3)

c0 c2 c4 c2 (j0, j2)

(j2, j3) (j2, j1) (j2, j3) (j2, j1)
(j3, j2) (j3, j2) (j3, j1) (j3, j1)

Figure 9: F1 = c0c1c3 ∨ c0c2c4, F2 = c0 ∨ c1c2 ∨ c1c4 ∨ c2c3, F1 6= F d
2 .

c0 = ((j2, j3), (j3, j2)),
c1 = ((j0, j3), (j3, j1), (j1, j0)),
c2 = ((j0, j2), (j2, j1), (j1, j0)),
c3 = ((j0, j3), (j3, j2), (j2, j1), (j1, j0)),
c4 = ((j0, j2), (j2, j3), (j3, j1), (j1, j0)).

It is easy to see that the corresponding normal game form does not depend on the initial
position and it is not tight. This completes the proof of Proposition 7. �

6.3 Pair (K3,3,P); proof of Proposition 8

We will prove that this pair is solvable unless it contains a 1-edge. (Clearly, it cannot contain
0-edges, since it is bipartite.) First, let us suppose that there is no 1-edge and show that all

orientations (
−→
K 3,3,P) of (K3,3,P) are solvable.

Let us assume indirectly that there is a not solvable orientation (
−→
K 3,3,P). Then it is

uniformly non-solvable. In particular, there is no-dead-end and no player is a dummy. The
following simple case analysis shows that there are only two such orientations; see Figure 10.

First let us show that out-degree of each vertex jk is 1 or 2. Indeed, if it is 0 then jk is a
dead-end and we get a contradiction. If it is 3 then jk is transient position. In this case we
can reduce K3,3 to K2,3 by deleting jk. Furthermore, it is easy to see that the bipartite pair
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j4

j3 j5

j2 j6

j1

(a)

j4

j3 j5

j2 j6

j1

(b)

(j1, j2)

(j1, j6)

(j2, j3)
(j6, j3)

c1

c3

(j2, j3)
(j6, j5)

c1

c4

(j2, j5)
(j6, j3)

c2

c3

(j2, j5)
(j6, j5)

c2

c4

(j1, j2)

(j1, j4)

(j2, j3)
(j6, j3)

c1

c1

(j2, j5)
(j6, j3)

c1

c1

(j2, j3)
(j6, j1)

c2

c4

(j2, j5)
(j6, j1)

c3

c4

Figure 10:
(a)F1 = c1c2 ∨ c3c4, F2 = c1c3 ∨ c1c4 ∨ c2c3 ∨ c2c4, F1 = F d

2 ;
c1 = ((j1, j2), (j2, j3), (j3, j4), (j4, j1)),
c2 = ((j1, j2), (j2, j5), (j5, j4), (j4, j1)),
c3 = ((j1, j6), (j6, j3), (j3, j4), (j4, j1)),
c4 = ((j1, j6), (j6, j5), (j5, j4), (j4, j1)).

(b)F1 = c1(c2c3 ∨ c4), F2 = c1 ∨ c2c4 ∨ c3c4, F1 = F d
2 ;

c1 = ((j3, j4), (j4, j5), (j5, j6), (j6, j1)),
c2 = ((j1, j2), (j2, j3), (j3, j4), (j4, j5), (j5, j6), (j6, j1)),
c3 = ((j1, j2), (j2, j5), (j5, j6), (j6, j1)),
c4 = ((j1, j4), (j4, j5), (j5, j6), (j6, j1)).

(K2,3,P) is, in fact, equivalent to the monochromatic pair θ1,P ′. By Proposition 9, this pair
is solvable, unless it contains a 1-edge.

By simple counting arguments, we prove that there are three positions of out-degree 2
and three of out-degree 1. If the first three belong to one player and the last three to the
other one then the latter player is a dummy. Hence, without loss of generality we can assume
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that j1, j3, j5 ∈ V1 and j2, j4, j6 ∈ V2, j1, j2, j6 has out-degree 2, while j3, j4, j5 has out-degree
1. It is easy to verify that, up to an isomorphism, there are only two such orientations of
K3,3. They are given in Figure 10. The corresponding two normal game forms are tight.

Now let us show that pair (K3,3,P) is not solvable whenever it contains a 1-edge. Due
to symmetry, we can assume without loss of generality that (j1, j2) is such an edge. In this
case we can delete edges (j4, j5) and (j3, j6) and obtain a pair from Example 4.1 (B), which,
as we already know, is not solvable.

This completes the proof of Proposition 8. �

6.4 Monochromatic pairs; proof of Proposition 9

Let (G,P) be a monochromatic pair, that is, all nodes of graph G are controlled by the same
player, say, player 2. Then, obviously, (G,P) cannot contain 1-edges of type B. For every its
0-edge we substitute two parallel edges and denote the obtained pair by (G ′,P). Proposition
9 states that (G,P) is not solvable if and only if (G ′,P) contains a 1-edge (of type A) and
two more edge-disjoint simple paths between its ends.

Without loss of generality we can assume that graph G is 2-connected.

“If part”. We will keep notation of Example 4.1 part A and repeat similar arguments.
Let us consider a pair (G,P ) corresponding to (G ′,P). By our assumption, (G,P ) contains
a 1-path PK between vertices j0 and jK and two more paths p′ and p′′ between the same
vertices. Furthermore, let PK and p′, as well as PK and p′′, have no vertices in common,
except j0 and jK , while p′ and p′′ are edge-disjoint but, in addition to j0 and jK , they
might have more common vertices. (Let us remark that in Example 4.1 it was assumed that
three paths p′, p′′ and p are pairwise vertex-disjoint; more precisely, they have no common
vertices, except j0 and jK .) Obviously, the 1-path PK is of type A (since pair (G,P) is
monochromatic), i.e., there is a unique k0 ∈ {1, . . . , K − 1} such that jk0 ∈ V1, while jk ∈ V2

for each k ∈ {0, . . . , K} \ {k0}.
Similarly to example 4.1 A, we will define a payoff u : C(

−→
G) → {−1,+1} such that

for every initial position j ∈ V (G) the obtained game G,P, j, u) is not solvable. Let us set
u(ck) = +1 for every short dicycle ck formed by path PK for k = 1, . . . , k. Then, as we know,
path PK can be passed through in both ways.

Now, let us consider paths p′ and p′′ in graph G and the corresponding paths P ′ and P ′′

in graph G. The last two paths may have common vertices and edges. Yet, obviously, their
intersection can be partitioned in 0-paths and isolated vertices. It is also clear that all their
common vertices are controlled by player 2.

For every short cycle C of a 0-path let us set u(C) = +1. Then, as we know, each 0-path
can be passed through in both ways. Furthermore, for all remaining short cycles of P ′ and
P ′′, let us define payoff u such that P ′ becomes oriented from j0 to jK , while P ′′ from jK to
j0. By Lemma 9, such payoffs are uniquely defined.
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Now, let us define function u for long dicycles of graph
−→
G . Some of these cycles are

formed by paths P ′ and P ′′ with orientations defined above. Let us set u(c) = +1 for each
such dicycle C. Let us notice that in Example 4.1 there is only one such cycle.

Finally, there are only two more long dicycles, c′ and c′′, in digraph
−→
G . The first one we

get passing through P ′ from j0 to jK and then through PK from jK to j0. Respectively, to
get the second one we pass through P ′′ from jK to j0 and then through PK from j0 to jK .
Let us set u(c′) = u(c′′) = −1.

Now we can repeat the arguments of Example 4.1 A and show that game G,P, j, u) is
not solvable for any j, in other words, pair (G,P ) is uniformly non-solvable.

“Only if part”. Given a pair (G,P), let E = E0 ∪ E1 ∪ E2 be a partition of its edge-set
in 0-edges, 1-edges, and all other edges. Obviously, a monochromatic pair (G,P) without
1-edges is solvable. In other words, if (G,P) is a not solvable monochromatic pair then
E1 6= ∅.

Furthermore, let C = C(G) denote the set of all simple cycles of graph G. Each of these
cycles can be oriented in two ways. Let us denote by C × 2 the obtained set of dicycles.
Now we can introduce a utility function as a mapping u : C × 2→ {−1,+1} and denote by
C × 2 = C+ ∪ C− the corresponding partition.

We assume that pair (G,P) is not solvable. Then there is a utility function u and an

orientation (
−→
G ) with the following two properties.

(i) Every dicycle c ∈ C− contains a 1-edge.

Let us change orientations of some 1-edges E ′1 ⊆ E1 in
−→
G and denote the obtained digraph

by
−→
G 1.

(ii) For every E ′1 ⊆ E1 there is a dicycle from C− in digraph
−→
G ′.

Statement (i) (respectively, (ii)) means that player 2 (respectively, 1) cannot win.

Lemma 12 Statements (i) and (ii) imply that there exist two dicycles c′, c′′ ∈ C− and 1-edge
e ∈ E1 such that for both orientations of e the corresponding arcs e′ and e′′ belong to c′ and
c′′, respectively.

Proof Let us introduce a partition E1 = E0
1 ∪ E1

1 ∪ E2
1 such that e ∈ Ek

1 when exactly k
orientations of e belong to a simple directed cycle from C−; where k = 0, 1, or 2. As we
already mentioned, E1 6= ∅. If e ∈ E0

1 , we can orient e arbitrarily. If e ∈ E1
1 , let us choose

the orientation of e such that the obtained arc belongs to no C ∈ C−. Let us assume that

E2
1 = ∅ and denote the obtained orientation of G by

−→
G 2. By (i),

−→
G 2 contains no cycle from

C−; in contrast, by (ii), it must contain such a cycle. Thus, (i) and (ii) imply that E2
1 6= ∅.

�

Let us consider the obtained cycles C ′, C ′′ and edge e in graph G. (Since this graph is
not directed, we ignore the orientations.) Furthermore, let us delete from C ′ and C ′′ all their
common edges, except e. It is easy to demonstrate that we obtain two simple edge disjoint
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paths between two ends of e. (Yet, to show this, we have to recall that cycles C ′ and C ′′

were directed so that edge e had opposite orientations in them.) This completes the proof
of Proposition 9. �

Remark 8 Let us also recall that in digraph (
−→
G ) we substitute two oppositely directed arcs

for each 0-edge of graph G and define u(C) = +1 for the obtained directed cycle of length

2. Furthermore, we add a loop ` to every dead-end of digraph
−→
G ′ and define u(`) = +1.

Without these two conventions player 2, who controls all positions of G, would win trivially,
while we assume that pair (G,P) is not solvable.

7 Proof of Theorem 2

We have to prove that a 2-connected pair (G,P ) is solvable only if it belongs to the list L
of solvable pairs given by Propositions 4-9.

7.1 Generating all 2-connected pairs by ear extensions

By Lovasz’ “Ear-Decomposition” [30], each 2-connected graph (G,P) can be obtained from
a loop by successive addition of new vertices and edges. By each step k = 1, 2, . . ., we add
to a current graph Gk−1 at most two new vertices and one new edge ek = (j′k, j

′′
k). There are

the following three options:

(a) j′k and j′′k are two “old” vertices of graph Gk.

(b) j′k is an old, while j′′k is a new vertex subdividing an edge of Gk.

(c) both j′k and j′′k are new vertices that subdivide an edge or two distinct edges of Gk.

In all cases ek is not a loop, that is, j′ 6= j′′. This inequality automatically holds for (b)
and we assume that it holds for (a) and (c). Then, after each step, we obtain a 2-connected
graph. To generate all 2-connected pairs (G,P) we should assign a player, 1 or 2, to every
new vertex, in cases (b) and (c).

We start with a loop G0. Strictly speaking, a loop has one edge and one vertex of degree
2, while, by definition of graph G, all its vertices are of degree at least 3. For example, let
G0 be a simple cycle, which is the simplest 2-connected graph. In this case, by Proposition
5, a pair (G0, P ) is solvable, unless it is a 1-cycle. Yet, the corresponding pair (G0,P) has no
vertices. Let us say that G0 is a vertex-less loop. It admits a unique ear extension. Indeed,
options (a) and (b) are not applicable but (c) works and we obtain graph θ1 that consists of
two vertices and three parallel edges between them.

There are two pairs corresponding to this graph: (θ1,P1), whose two vertices belong to
two distinct players, and the monochromatic pair (θ1,P0), whose two vertices belong to the
same player, 1 or 2; see Figure 11.

By Propositions 7 and 9, each of these two pairs is solvable unless it contains a 1-edge.
Thus, by the first step, we got two solvable pairs.
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(θ1,P0) (θ1,P1)

(θ2,P ′2) (K4,P ′′)

Figure 11: Minimal ear extensions of monochromatic pairs

General step is similar to the first one. Given a list of solvable pairs, we apply all ear
extensions to them all and get a list of new pairs. Some of them are not solvable. There is
no need to consider their extensions, since, by Proposition 2, solvability is anti-monotone.

Furthermore, by Proposition 9, every monochromatic pair is solvable (unless it contains
no 1-edge). We will consider extensions of all monochromatic pairs separately, in Section
7.3; before that we treat them as terminal pairs, as well as we do with non-solvable pairs.
We use Proposition 16 as a certificate of non-solvability; see Figure 6.

7.2 Ear extensions of graphs K4, K3,3, and θK

As the second step, let us consider all ear extensions of graph θ1. There are four of them:
G1,G2,G3 = K4 , and G4 = θ2; see Figure 12. Clearly, by Proposition 16, pairs (G1,P1) and
(G2,P2) are not solvable, unless they are monochromatic. However, this is not the case with
pairs (G3,P3) and (G4,P4).

We already know that for every partition P pair (K4,P) is solvable unless it contains a 0-
or 1-edge. Clearly, we can restrict ourselves by two partitions P ′ and P ′′; the corresponding
pairs (K4,P ′) and (K4,P ′′) are given in Figure 8; see also Figure 3.

Now let us consider graph G4 = θ2 and orient its edges as shown in Figure 12.4. By
Proposition 16, a pair (θ2,P) is not solvable whenever vertices x and y belong to two distinct
players. Hence, pair (θ2,P) can be solvable only if it is monochromatic or bipartite. Indeed,



– 44 –

(1)

(2)
≈ x

y

(3)
≈ → or

(4)

≈

x

y

→

Figure 12: All ear-extensions of θ1

by Proposition 6, the bipartite pair (θ2,P2) is solvable unless it has a 1-edge of type 2. In
contrast, pair (θ2,P ′2) in Figure 11 is not solvable, by Proposition 16.

All ear extensions of K4 are given in Figure 13. There are six of them, Gk; k = 1, . . . , 6,
from which the first five are non-solvable. More precisely, for k = 1, . . . , 5, no pair (Gk,P)
is solvable unless it is monochromatic. Indeed, let us consider orientations given in Figures
13.1-5. Again, by Proposition 16, a pair from this set is not solvable unless vertices x and y
belong to the same player. In this case, by symmetry and transitivity, we can conclude that
all vertices must belong to one player.

However, this is not the case with k = 6. It is easy to see that G6 = K3,3 and that
Proposition 16 is not applicable to this graph. Instead, let us consider its orientation given

in Figure 13. It results in a bidirected digraph
−→
G such that the corresponding graph G = c3

is a simple cycle with three vertices x, y, z. Hence, each pair (G,P ) is either 0- or 1-cycle.
The latter is not solvable, by Proposition 5. Hence, pair (K3,3,P) can be solvable only if it
is either monochromatic or bipartite, since positions x, y, z must belong to the same player.
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(1)
x y x

y

(2) ≈
x

y

x y x

y

(3) ≈
x

y

(4) ≈
x

y y

x

(5) ≈
x

y

(6) ≈ x

y

z
→ x

y

z

Figure 13: All ear-extensions of K4

By Proposition 8, the bipartite pair (K3,3,P) is solvable unless it has a 0- or 1-edge.

All ear extensions of the bipartite pair (θ2,P2) are given in Figure 14.
Cases 10, 11, 12, and 13 are equivalent to cases 4, 5, 4 of K4 and to case 9, respectively.
There are 13 of them, Gk; k = 1, . . . , 13; see Figure 14. In case k = 8 we obtain the solvable
bipartite pair (θ3,P3). Any other pair (Gk,Pk); k = 1, . . . , 7, 9, . . . , 13 can be solvable only
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y
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(10) (11) (12) (13)

Figure 14: All ear - extensions of θ2

.

if it is monochromatic. This follows standardly from Proposition 16. Let us notice that we
skip the analysis of four cases, 10 ≤ k ≤ 13, since they are not new. Indeed, graphs G13 and
G9 are isomorphic; furthermore, G10 and G12 are isomorphic to G4 in Figure 13 and G11 to G5

in Figure 13.

Similarly, we can consider all ear extensions of pair (θK ,PK) for arbitrary K ≥ 3. One of
them results in the next bipartite pair (θK+1,PK+1), while any other can be solvable only if
it is monochromatic. The proof immediately follows, since (θ2,P2) ≤ (θK ,PK) for all K ≥ 2
and case K = 2 was already considered.

Now let us consider all ear extensions of graph K3,3. There are seven of them, Gk; k =
1, . . . , 7; see Figure 15.

For each k = 1, . . . , 7 the corresponding pair (Gk,Pk) can be solvable only if it is
monochromatic. This follows standardly, from Proposition 16.

7.3 Ear extensions of monochromatic pairs

It is easy to see that all solvable pairs obtained by the above ear extensions form the list L
defined by Propositions 5-9. Yet, we did not consider ear extensions of the monochromatic
pairs. To finish the proof of Theorem 2 we have to show that these extensions cannot produce
any new solvable pair. This is implied by the following claim.

Lemma 13 If a solvable pair (G,P) is obtained by an ear extensions of a monochromatic
pair (G0,P0) then either pair (G,P) is monochromatic itself, or it can be alternatively obtained
by some ear extensions of the pair (θ1,P1) or (K4,P ′′) given in Figure 3; in other words,
(G,P) ≥ (K4,P ′′) or (G,P) ≥ (θ1,P1).

Proof Let (G0,P0) be a monochromatic pair all whose positions belong to the same player,
say, to player 1, and let (G,P) be its ear extension by one new edge e = (j′, j′′). Let us recall
three options (a), (b), and (c) from Section 7.1. For (b) or (c) we will assume that all new
positions (one and two, respectively) belong to player 2.

Obviously, in case (a) pair (G,P) still remains monochromatic. Let us notice that pair
(G,P) can remain monochromatic even in case (c). This happens if and only if graph G0

is a vertex-less loop; see Section 7.1. Then (G,P) is a monochromatic pair, since both its
vertices belong to player 2, and pair (G0,P0) can be viewed as monochromatic, too.
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Yet, we will prove that for every other 2-connected monochromatic pair (G0,P0) each its
ear extension by an edge e = (j′, j′′) of type (b) or (c) results in a pair (G,P) such that
(G,P) ≥ (K4,P ′′), or (G,P) ≥ (θ1,P1), or (G,P) ≥ (θ2,P ′2); see Figure 11. Let us notice
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(6) y

x

(7)

Figure 15: All ear - extensions of K3,3

that in the last case pair (G,P) is not solvable, since (θ2,P ′2) is not solvable, by Proposition
16.

First, let us assume that e = (j′, j′′) is of type (b), that is, positions j′ and j′′ belong to
players 1 and 2, respectively. Since graph G0 is 2-connected, there is a simple cycle c in G
that contains both vertices j′ and j′′ but does not contain edge e = (j′, j′′). Obviously, in
this case (G,P) ≥ (θ1,P1).

Now, let us assume that e = (j′, j′′) is of type (c), that is, both positions j′ and j′′ belong
to player 2. Again, since graph G is 2-connected, there is a simple cycle c in it that contains
j′ and j′′. Obviously, c contains at least one more position j1. It is also clear that j1 belongs
to player 1 and degG(j1) ≥ 3. Then , since graph G0 is 2-connected, there is a simple path
between j1 and another vertex j2 6= j1 in C. If j2 = j′ or j2 = j′ then (G,P) ≥ (θ1,P1). If
j2 6= j′ and j2 6= j′′ then j2 belongs to player 1 and (G,P) ≥ (K4,P ′′) or (G,P) ≥ (θ2,P ′2).
�

This completes the proof of Theorem 2. �
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8 Appendix 1. Proof of Theorem 1 and its limits

8.1 Tight two-person game forms

Let g : X1 ×X2 → A be a two-person game form. By definitions of Section ??, g is tight if
F d

1 = F2, or in other words, if two hypergraphs H1 and H2 on the ground set A defined by
the rows and columns of g are transversal (dual); see 8 examples in Figures 1 and 2.

More reformulations of tightness are possible. Let us consider an arbitrary reply mapping
φ1 : X2 → X1 that assigns a strategy of player 1 (a row) to each strategy of player 2 (a
column). In the special case, when this functions takes a unique value x1 ∈ X1, we will use
the notation φ0

1 : X2 → {x1}. Let gr(φ1) ⊆ X = X1 × X2 be the graph of φ1 in X and
[φ1] = g(gr(φ1)) ⊆ A be the corresponding set of outcomes. Similarly we define [φ0

1], [φ2],
and [φ0

2].

Proposition 18 The following properties of a game form are equivalent:

(j) For each φ1 there exists a φ0
1 such that [φ0

1] ⊆ [φ1];

(jj) For each φ2 there exists a φ0
2 such that [φ0

2] ⊆ [φ2];

(jjj) For each φ1 and φ2 we have [φ1] ∩ [φ2] 6= ∅.

Proof (j)⇒ (jjj). Assume indirectly that (j) holds and (jjj) does not. The latter means that
there exist φ1 and φ2 such that [φ1]∩ [φ2] = ∅, while by (j), there exists a φ0

1 such that [φ0
1] ⊆

[φ1]. Hence, [φ0
1] ∩ [φ2] = ∅. However, this is impossible, since clearly, gr(φ0

1) ∩ gr(φ2) 6= ∅
for every φ0

1 and φ2.

(jjj) ⇒ (j). Suppose that (j) does not hold, that is, there is a φ1 such that [φ0
1] ⊆ [φ1]

for no φ0
1. Choosing an outcome from [φ0

1] \ [φ1] for each φ0
1 we get a mapping φ2 such that

[φ1] ∩ [φ2] 6= ∅. Hence, (jjj) does not hold either.

Thus, (j) and (jjj) are equivalent. Similarly, (jj) and (jjj) are equivalent. To come to this
conclusion it is enough to rename the players 1 and 2. �

It is also clear that these three claims are equivalent to tightness of g. Indeed, (j) and
(jj) mean that Hd

1 = H2 and H1 = Hd
2 , respectively. We will need one more reformulation of

tightness in terms of effectivity functions (EFF).
Given a two-person game form g : X1×X2 → A and a subset of outcomes B ⊆ A, for each

player i ∈ {1, 2} define Eg(i, B) = 1 if there is a strategy xi ∈ Xi such that g(xi, x3−i) ∈ B
for each strategy x3−i ∈ X3−i of the opponent; otherwise Eg(i, B) = 0. Respectively, we
say that player i is effective or not effective for B ⊆ A. Let us note that Eg(1, ∗) and
Eg(2, ∗) : 2A → {0, 1} are two Boolean functions whose variables are the outcomes a ∈ A.

Proposition 19 Implication Eg(i, B) = 1⇒ Eg(3− i, A \B) = 0 holds for every game form
g, while the inverse implication Eg(i, B) = 1⇐ Eg(3− i, A \B) = 0 holds if and only if g is
tight.
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Proof . Let us assume indirectly that Eg(1, B) = Eg(2, A \ B) = 1; Then there exist two
strategies x1 ∈ X1 and x2 ∈ X2 such that g(x1, x2) ∈ B ∩ (A \ B) = ∅ and we get a a
contradiction.

Now let us consider the inverse implication Eg(2, B) = 1⇐ Eg(1, A \ B) = 0. Let player
1 be not effective for A \ B, that is, for each strategy x1 ∈ X1 there is x2 ∈ X2 such that
g(x1, x2) ∈ B; in other words, there exists a function φ2 such that [φ2] ⊆ B. Furthermore,
by (jj), g is tight if and only if there is a function φ0

2 such that [φ0
2] ⊆ φ0

2. Hence, player 2 is
effective for B, that is, Eg(2, B) = 1 and the implication holds, if and only if g is tight. �

8.2 Tightness and zero-sum-solvability

Let us recall that by definition, a game form g is zero-sum-solvable if for each utility function
u : A→ R the obtained normal form game (g, u) is solvable, that is, has a saddle points (in
pure strategies). It is well-known that the latter property holds if and only if maxmin and
minmax are equal, that is, if

v1 = maxx1∈X1minx2∈X2u(g(x1, x2)) = minx2∈X2maxx1∈X1u(g(x1, x2)) = v2.

Proposition 20 ([10, 17]). (i) If game form g is tight then it is zero-sum-solvable; (ii) if g
is not tight then it is not ±1-solvable.

Proof . Suppose that g is not tight. Then, by (jjj), there exist φ1 and φ2 such that
[φ1] ∩ [φ2] = ∅. Let us set u(a) = 1 for a ∈ [φ1], u(a) = −1 for a ∈ [φ2], and u(a) = 1
or u(a) = −1, arbitrarily, for all remaining a ∈ A. Obviously, for this u we obtain −1 =
v1 < v2 = 1 and hence, there is no saddle point in game (g, u). Thus, game form g is not
±1-solvable.

Suppose that g is not zero-sum-solvable; i.e., there is a payoff u : A → R such that
the normal form game (g, u) is not solvable, i.e., v1 < v2. Furthermore, for every x1 ∈ X1

there is an x2 ∈ X2 such that u(g(x1, x2)) = v1 and for every x2 ∈ X2 there is an x1 ∈ X1

such that u(g(x1, x2)) = v2. In particular, this implies that there exist φ1 and φ2 such that
[φ1] ∩ [φ2] = ∅. Hence, g is not tight, by (jjj). �

8.3 Tightness implies Nash-solvability

Still we have to prove that g is Nash-solvable (not only zero-sum-solvable) whenever it is tight.
We will partition the set of outcomes A in three pairwise disjoint subsets A = B ∪ B1 ∪ B2

such that

(p1) u(1, b) ≥ u(1, b1) for every b ∈ B, b1 ∈ B1 and

(p2) u(2, b) ≥ u(2, b2) for every b ∈ B, b2 ∈ B2.

Condition p1 (respectively, p2) means that any outcome of B1 for player 1 (respectively,
of B2 for player 2) is not better than any outcome of B. We also assume that that the
following two conditions hold for A = B ∪B1 ∪B2 too:
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(q1) E(1, B2) = 0 and (q2) E(2, B1) = 0.

In other words, player 1 (respectively, 2) cannot “punish” the opponent by forcing B2

(respectively, B1). Assuming that g is tight we can rewrite these two conditions as follows:

(q1′) E(1, B ∪B1) = 1 and (q2′) E(2, B ∪B2) = 1.

Our proof is “dynamic”. We will reduce the set B by sending its outcomes to B1 and B2

in such a way that all four above conditions hold. Let us note that we cannot get B = ∅,
since in this case conditions q1′ and q2′ imply that E(1, B1) = E(2, B2) = 1 in contradiction
to B1 ∩B2 = ∅. (This is the only place where we make use of the tightness of g.)

Thus, there is a partition A = B ∪ B1 ∪ B2 such that B cannot be reduced any longer.
Let us fix such a partition and let a be the worst outcome for player 1 in B1, that is,
u(1, a) ≤ u(1, b) for every b ∈ B1. We know that we cannot send a from B to B1, although
this operation would be OK with (p1). Clearly, it can contradict only (q2) and this happens
indeed if E(2, (B1 ∪ {a})) = 1.

Furthermore, let Ba
2 denote the set of all outcomes of B2 that are not better than a for

player 2, that is, u(2, b) ≤ u(2, a) for every b ∈ Ba
2 ; in particular, a ∈ Ba

2 . We know that we
cannot send Ba

2 from B to B2, although this operation would be OK with (p2). Clearly, it
can contradict only (q1) and this happens indeed if E(1, (B2 ∪Ba

2)) = 1.
Thus, we obtain E(2, (B1 ∪ {a})) = E(1, (B2 ∪ Ba

2)) = 1. By the definition of Eg, there
are strategies x0

1 ∈ X1 and x0
2 ∈ X2 such that g(x0

1, x2) ∈ (B2 ∪ Ba
2) for each x2 ∈ X2 and

g(x1, x
0
2) ∈ (B1 ∪ {a}) for each x1 ∈ X1. Let us note that (B1 ∪ {a}) ∩ (B2 ∪ Ba

2) = {a}.
Hence, g(x0

1, x
0
2) = a and the situation (x0

1, x
0
2) ∈ X is a Nash equilibrium in the game (g, u),

by the definitions of a and Ba
2 . �

Now we will show that Theorem 1 does not generalize the case n = 3. The concept
of tightness is naturally extended to this case. Yet, for 3-person game forms tightness
is no longer necessary [19] nor sufficient [18, 19] for Nash-solvability. We reproduce the
corresponding two examples here.

8.4 n-person game forms and their effectivity functions

Let I = {1, . . . , n} be a set of players and A = {a1, . . . , ap} be a set of outcomes. Subsets
K ⊆ I and B ⊆ A are called coalitions and blocks, respectively. Furthermore, let Xi be a
(finite) set of strategies of a player i ∈ I. The n-tuples of strategies x = (xi ∈ Xi, i ∈ I) ∈
X =

∏
i∈I Xi are called situations. A game form is a mapping g : X → A. If each player

i ∈ I chooses a strategy xi ∈ Xi then a situation x and the corresponding outcome g(x)
appear. A game form g is realized by an n-dimensional table (by a matrix for n = 2) whose
entries are the outcomes a ∈ A. Typically, the mapping g is not injective, that is, the same
outcome can appear in several distinct situations.

Given I and A, an effectivity function (EFF) is defined as a mapping E : 2I×2A → {0, 1}.
Its values E(K,B) are interpreted as follows. If E(K,B) = 1 (respectively, E(K,B) = 0)
then we say that the coalition K ⊆ I is effective (respectively, not effective) for the block
B ⊆ B, meaning that K can (respectively, cannot) guarantee that an outcome from B will
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appear. Since 2I×2A = 2I∪A, we can say that E is a Boolean function whose set of arguments
I ∪ A is a mixture of the players and outcomes.

Let us recall that, given an arbitrary Boolean function F , its dual F d is defined by the
formula F d(x) = F (x). In other words, to get F d we negate F itself and every its variable.
Furthermore, F is called self-dual if F d = F .

Let us reformulate the above two definitions for EFFs. Given an EFF E , its dual Ed is
defined by formula E(K,B)+Ed(I \K,A\B) = 1. Respectively, E is self-dual if E = Ed, that
is, if E(K,B) + E(I \K,A \B) = 1 for each K ⊆ I and B ⊆ A. We can rewrite this formula
as E(K,B) = 0 iff E(I \K,A \ B) = 1. In the literature the self-dual EFFs sometimes are
called maximal [34, 33, 35].

To each game form g : X → A we assign an EFF Eg : 2I × 2A → {0, 1} as follows. Given
a coalition K ⊆ I and block B ⊆ A, the EFF Eg(K,B) takes value 1 if and only if K has a
strategy that guarantees that an outcome of B will appear independently on the strategy of
the complementary coalition I \K; in other words, Eg(K,B) = 1 if and only if there exists
an xK = (xi, i ∈ K) such that g(xK , xI\K) ∈ B for each xI\K = (xi, i 6∈ K). Let us note that
E(K,B) = 1 if K = I and B 6= ∅ but E(I, ∅) = 0; furthermore, E(K,B) = 0 if K = ∅ and
B 6= A, yet, by convention E(∅, A) = 1.

An EFF is assigned to a game form (that is, E = Eg for some g) if and only if E is mono-
tone, superadditive, and satisfies the above boundary conditions. This nice characterization
was obtained in [34]; see also [33] and [35] for the proof and necessary definitions.

It is easy to see that the equations Eg(K,B) = E(I \ K,A \ B) = 1 for no g can hold
simultaneously, since otherwise Eg(I, ∅) = 1. In other words, the implication Eg(K,B) =
1⇒ Eg(I \K,A \ B) = 0 holds for each game form, unlike the inverse one Eg(K,B) = 0⇒
Eg(I \K,A \B) = 1. If it holds too then the game form g is called tight. Let us remark that
g is tight if and only if its EFF Eg is self-dual.

We can reformulate this definition in Boolean terms as follows. Let us assign a Boolean
variable a to every outcome a ∈ A. (For simplicity the denote the outcome and the corre-
sponding variable by the same symbol.) For each coalition K ⊆ I we introduce a positive
(without negations) DNF

FK = FK(g) =
∨

xK=(xi,i∈K)

∧
xI\K=(xi,i 6∈K)

g(xK , xI\K).

Then g is tight if and only if for each K ⊆ I DNFs FK(g) and FI\K(g) define dual
monotone Boolean functions, F d

K = FI\K . Let us remark that duality always holds for K = ∅
and K = I. Indeed, by the above boundary condition, F∅(g) = ∧a∈Aa and FI(g) = ∨a∈Aa.
Let us also remark that a two-person game form g is tight if and only if two DNFs F1 = F1(g)
and F2 = F2(g) define dual Boolean functions. For example, in Figure 1 only the third game
form is tight and in Figure 2 the last two game forms are tight, while the first two are not.
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8.5 Nash-solvable but not tight 3-person game form

Given three players (|I| = 3, I = {1, 2, 3}) each of which has two strategies, Xi = {0, 1} for
each i ∈ I, and two outcomes (|A| = 2, A = {a1, a2}), let us define a 2 × 2 × 2 game form
g :

∏
i∈I Xi → A by formula

g(x1, x2, x3) = a1 if x1 = x2 = x3 and g(x1, x2, x3) = a2 otherwise.

It is easy to see that every two players, say, 1, 2, are effective for the outcome a2. To
enforce it they can just choose x1 = 0 and x2 = 1. Yet, they are not effective for a1. It is also
clear that a single player is effective only for the whole set A = {a1, a2}. Thus, we obtain

F 1 = F1(g) = F2(g) = F3(g) = a1a2,

F 2 = F{2,3}(g) = F{3,1}(g) = F{1,2}(g) = a2.

Since (F 1)d 6= F 2, we conclude that this game form g is not tight.

Let us show that g is Nash-solvable. Indeed, if all three players prefer a1 to a2 then, clearly,
two situations (x ∈ X|x1 = x2 = x3 = 0) and (x ∈ X|x1 = x2 = x3 = 1) are both Nash
equilibria. If a player, say 1, prefers a2 to a1 then the situation (x ∈ X|x1 = 1, x2 = x3 = 0)
is a Nash equilibrium. Indeed, in this case g(x) = a2 and no player, neither 2 nor 3, can
switch it to a1. Although player 1 could do this (just substituting x1 = 0 for x1 = 1), yet,
he is not interested, since he prefers a2 to a1.

8.6 Tight but not Nash-solvable 3-person game form

Given three players (|I| = 3, I = {1, 2, 3}) each of which has six strategies,

Xi = {xi = (x′i, x
′′
i ) | x′i ∈ {0, 1}, x′′i ∈ {0, 1, 2}}; i ∈ I,

and three outcomes (|A| = 3, A = {a1, a2, a3}), let us define a 6 × 6 × 6 game form g :∏
i∈I Xi → A as follows:

g(x) = g(x1, x2, x3) = g(x′1, x
′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3) = aj, where

j − 1 =


(x′′1 + x′′2 + x′′3) mod 3 if x′1 = x′2 = x′3,
(x′′1 + x′′2) mod 3 if 1 = x′1 > x′2 = 0,
(x′′2 + x′′3) mod 3 if 1 = x′2 > x′3 = 0,
(x′′3 + x′′1) mod 3 if 1 = x′3 > x′3 = 0.

First let us notice that g is well defined, since the above four conditions, x′1 > x′2,
x′2 > x′3, x

′
3 > x′3, and x′1 = x′2 = x′3, do form a partition of X. Indeed, no two of the first

three inequalities can hold simultaneously, since x′i ∈ {0, 1} takes only two values for each
i ∈ {1, 2, 3}. In fact, these four conditions partition the 6× 6× 6 cube X in three 3× 3× 6
cuboids corresponding to the three inequalities and two 2×2×2 cubes corresponding to the
equalities.
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Now, let us show that g is tight. Indeed, any two players, say, 1, 2 ∈ I, are effective for
every outcome aj ∈ A. To guarantee it, they just choose 1 = x′1 > x′2 = 0 to take the control
and then force aj choosing (x′′1 and x′′2) such that x′′1 + x′′2 = j − 1( mod 3). On the other
hand, single player is effective only for the whole set A. Thus we obtain

F 1 = F1(g) = F2(g) = F3(g) = a1a2a3,

F 2 = F2,3(g) = F3,1(g) = F1,2(g) = a1 ∨ a2 ∨ a3.

Since (F 1)d = F 2, we conclude that the considered game form g is tight.

Moreover, for each player i ∈ I and for each strategy xi ∈ Xi the obtained restricted
game form g[xi] of the remaining two players is tight too. Indeed, due to symmetry, without
loss of generality, we can choose any strategy. For example, let us fix x1 = (x′1, x

′′
1) = (1, 2).

Then in the obtained game form g[x1] player 2 can enforce any outcome aj ∈ A. To do so
he should just choose x′2 = 0 to get 1 = x′1 > x′2 = 0 and take the control. Then he should
choose x′′2 = j mod 3, since in this case (x′′1 + x′′2) mod 3 = 2 + x′′2) mod 3 = j − 1 which
results in aj.

Respectively, player 3 is effective only for the whole set A and we obtain:
F2 = F2(g) = a1 ∨ a2 ∨ a3, F3 = F3(g) = a1a2a3 and F d

2 = F3.

Yet, g is not Nash-solvable. To show this let us choose a utility function u that realizes
so-called “Condorcet” preference profile

u(1, a1) > u(1, a2) > u(1, a3),
u(2, a2) > u(2, a3) > u(2, a1),
u(3, a3) > u(3, a1) > u(3, a2).

and show that the obtained normal form game (g, u) has no Nash equilibrium.
Let x = (x1, x2, x3) = (x′1, x

′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3) be an arbitrary situation.

Case 1: x′1 = x′2 = x′3. In this case, by definition, g(x) = aj, where j = 1+((x′′1 +x′′2 +x′′3)
mod 3), and it is clear that each player, by changing the strategy, can get each outcome of
A. Hence, x is not a Nash equilibrium.

Case 2: equalities x′1 = x′2 = x′3 do not hold. In this case, without loss of generality, we
can assume that 1 = x′1 > x′2 = 0. Then, by definition, g(x) = aj, where j = 1 + ((x′′1 + x′′2)
mod 3). In this situation the strategy of player 3 is irrelevant and (s)he cannot change the
outcome by choosing another strategy. However, each player 2 or 3 can obtain any given
outcome of A. Let us note that the present outcome aj = g(x) may be the best for one
of these two players but not for both. Hence, x is not a Nash equilibrium, since this latter
player can change the strategy and get a better outcome.

8.7 Nash-solvability of a 3-person game form is not uniquely de-
fined by its effectivity function

By Theorem 1, a 2-person game form g is Nash-solvable if and only if it is tight, that is, the
corresponding EFF Eg is self-dual. In Sections 8.5 and 8.6 we demonstrated that Theorem 1
does not extend the case of 3-person game forms, for which tightness is no longer necessary
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(Section 8.5) nor sufficient (Section 8.6) for Nash-solvability. Of course, this is also true for
n-person game forms with n ≥ 3, since one can get each such game form from a 3-person
one by simply introducing n− 3 dummy-players.

Here we extend these negative results and show that, in principle, Nash-solvability of
a 3-person game form g is not uniquely defined by its EFF Eg. Namely, we construct two
3-person game forms g and g′ such that g is Nash-solvable, while g′ is not, although Eg = Eg′ .
We take g′ from Section 8.5 and define g by the following 3-dimensional table.

a2a1a2 a2a2a1 a2a1a2

a1a2a1 a2a1a2 a1a2a2

a2a2a2 a1a2a1 a2a1a2

Thus, g and g′ have the same 3 players and 2 outcomes. Yet, in g each player i ∈ I
has 3 (instead of 2) strategies, Xi = {0, 1, 2}; furthermore, g(x) = g(x1, x2, x3) = a2 when
x1 + x2 + x3 is even and also in three “odd” situations x ∈ {(1, 2, 0), (0, 0, 1), (2, 1, 2)};
otherwise g(x) = a1. It is easy to verify that g and g′ have the same EFF given in Section
[?]. Indeed, each two players are effective for a2, while one player can only trivially guarantee
A = {a1, a2}.

It is also easy to verify that if g(x) = a1 then each player can switch to a2 by choosing
another strategy and if g(x) = a2 then at least two of three players can switch to a1. This
observation implies that, unlike g′, game form g is not Nash-solvable. Indeed, let us consider
a utility function u such that two players prefer a1 to a2 and one has the opposite preference.
It is clear that situation x cannot be a Nash equilibrium in both cases, g(x) = a1 or g(x) = a2.

Now, let us take g′ from Section 8.6 and define g by the following 3-dimensional table

a1a1a1 a1a2a3 a1axax

a2a2a2 a1a2a3 axa2ax

a3a3a3 a1a2a3 axaxa3

Thus, g and g′ have the same 3 players and 3 outcomes. We assume that the outcomes
labeled by ax can take arbitrary (perhaps, different) values in A = {a1, a2, a3}. Yet, in g
each player i ∈ I has 3 (instead of 6) strategies.

It is easy to verify that g and g′ have the same EFF given in Section 8.6. Indeed, each of
two players is effective for every outcome, while one player can only trivially guarantee the
whole set A = {a1, a2, a3}.

It is also easy to verify that g is Nash-solvable. Indeed, without loss of generality we
can assume that u(1, a1) ≥ u(1, a2) ≥ u(1, a3). Then “the upper left” situation x is a Nash
equilibrium. Indeed, g(x) = a1 and it is easy to see that a1 remains whenever player 2 or 3
chooses any other strategy. Unlike them, player 1 by changing the strategy can get both a2

or a3. Yet, (s)he is not interested, since a1 is the best outcome for 1.
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The above two examples show that among two game forms with the same EFF one may
be Nash-solvable, while the other one not. Let us also note that the EFF is self-dual in the
second example, while in the first one it is not.

Remark 9 It is an interesting general question which properties of game forms (and other
structures) are uniquely defined by the corresponding EFFs. For example, the core of a
cooperative game C(E , u) by the definition depends only on the EFF E and utility function
u; see e.g. [34, 33, 35]. By Theorem 1, a 2-person game form g is Nash-solvable if and only
if its EFF Eg is self-dual. However, this result does not generalize the case of 3-person game
forms. In [23], the class of veto voting schemes is considered for which the result of elections
is uniquely defined by the corresponding effectivity (equivalently, veto) function. Somewhat
surprisingly, not only game structures but also quite different objects may have properties
uniquely defined by some EFFs. For example, in [6, 8], an EFF EG is assigned to each graph
G and it is shown that such properties of G as perfectness or kernel-solvability depend only
on EG.

9 Appendix 2. Proof of Proposition 12

First, let us notice that all six decision problems, (b11), (b12), (b21), (b22), (b) and (a), of

Proposition 12 are in co-NP. Indeed, given a digraph
−→
G = (V,

−→
E ), positions j′, j′′ ∈ V , and

partitions P : V = V1 ∪ V2 and Q : V = V 1 ∪ V 2, all conditions, (i),(ii),(iii), (b11), (b12),
(b21), (b22), and hence, (a) and (b), of Section 1.6 can be easily verified in linear time.

Now we have to prove that each of the six decision problems, (b11), (b12), (b21), (b22),
(b), and (a), is NP-hard. First, we consider (b21) and (b), then, by a trivial modification,
extend the result to (b11), (b22), and (b12), and finally, show that NP-hardness of (b12)
implies NP-hardness of (a). Let us polynomially reduce (b21) from the following NP-hard
problem on verifying Boolean inequalities.

Proposition 21 Given a monotone DNF D = D1 ∨ . . . ∨ DN =
∨N

n=1Dn and CNF C =

C1 ∧ . . . ∧ CM =
∧M

m=1Cm of common variables {x1, . . . , xK} = {xk | k ∈ [K] = {1, . . . K}},
it is co-NP-complete to verify the inequality C ≤ D. In contrast, D ≤ C can be always
checked in linear time.

Proof First, let us show that inequality C ≥ D can be verified in linear time. Indeed, let
us choose an n ∈ [N ] = {1, . . . , N}, set all variables of Dn to 1, and all other to 0. Then,
obviously, D = 1. It is also clear that C ≥ D does not hold whenever Cm = 0 for some
m ∈ [m] = {1, . . . ,M} and n ∈ [n]. Otherwise, C = 1 whenever D = 1, that is, C ≥ D.

Now let show that verifying inequality C ≤ D is co-NP-complete. Obviously, C 6≤ D if
and only if 1 = C(x) > D(x) = 0 for some assignment x. Given x, this inequality can be
checked trivially. Hence, verifying C ≤ D is in co-NP.

We will show that verifying C ≤ D is NP-hard already in the special case when D = D0 =
x1y1∨. . .∨xNyN . Indeed, given an arbitrary (non-monotone) CNF C ′ of variables x1, . . . , xN ,
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let us substitute yn for xn in C ′ for all n = 1, . . . , N and denote the obtained monotone CNF
by C. Obviously, C 6≤ D0 if and only if C ′ is satisfiable, which is NP-complete to verify. �

To derive Proposition 12 from Proposition 21 we assign a Boolean variable xj to each
position j ∈ V and consider the following system of Boolean equations:

xj =
∨

j′∈N(j)

xj′ for j ∈ V1 and xj =
∧

j′′∈N(j)

xj′′ for j ∈ V2, (5)

where N(j) ⊆ V is the set of all successors of a position j ∈ V .
This system has two trivial solutions: xj ≡ 0 and xj ≡ 1 for all j ∈ V .

Lemma 14 (a) A pair (
−→
G,P ) is ergodic if and only if system (5) has only trivial solutions.

(b) Moreover, j′ ≤ j′′ for positions j′, j′′ ∈ V if and only if there is no solution of (5)
such that xj′ = 1 and xj′′ = 0.

Proof (a) Indeed, all non-trivial solutions of (5) and all contra-ergodic partitions Q : V =

V 1 ∪ V 2 of (
−→
G,P ) are in one-to-one correspondence defined by the following simple rule:

j ∈ V 1 if and only if xj = 1 (and, respectively, j ∈ V 2 if and only if xj = 0).
(b) Furthermore, j′ ≤ j′′ if and only if both inclusions, j′ ∈ V 1 and j′′ ∈ V 2, hold for no

contra-ergodic partition Q : V = V 1 ∪ V 2. �

Now, we can derive Proposition 12 from Proposition 21 and Lemma 14.
Given a monotone DNF D = D1 ∨ . . . ∨DN =

∨N
n=1Dn and CNF C = C1 ∧ . . . ∧ CM =∧M

m=1Cm of common variables {x1, . . . , xK} = {xk | k = 1, . . . K}, we will construct a

bipartite pair (
−→
G,P ) as follows. For each k = 1, . . . , K, let us assign to the variable xk two

positions wk ∈ V1, bk ∈ V2 and two arcs (wk, bk), (bk, wk) between them. Furthermore, let us
assign a position cm ∈ V1 to each implicate Cm, i = 1, . . . ,M, of CNF C and, respectively,
position dn ∈ V2 to each implicant Dn, n = 1, . . . , N, of DNF D. Then let us introduce an
arc (cm, bk) (respectively, (dn, wk)) if and only if implicate Cm of C (respectively, implicant
Dn of D) contains variable xk. Finally, let us introduce two more positions c0 ∈ V2, d0 ∈ V1

and arcs (c0, cm) for all m = 1, . . . ,M and (d0, dn) for all n = 1, . . . , N .
By construction, the obtained directed graph is bipartite. Furthermore, by (5), xd0 = D

and xc0 = C. Hence, by Lemma 14 (b), we have c0 ≤ d0 if and only if C ≤ D. By Proposition
21, the last condition is co-NP-hard to verify. Thus, setting j′ = c0 and j′′ = d0, we conclude
that problems (b21) and (b) of Proposition 12 are co-NP-complete.

Although, by the above construction, position d0 is placed in V1 and c0 in V2, it is easy
to “replace” one of them or both. To do so, let us just introduce two new positions c′0 ∈
V1, d

′
0 ∈ V1 and arcs (c′0, c0), (d′0, d0). Then, obviously, xd′0

= xd0 = D and xc′0
= xc0 = C,

by (5). Thus, Proposition 21 implies parts (b11), (b12), (b21), (b22), and (b) of Proposition
12.
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We have to derive part (a), yet. Given an arbitrary bipartite pair (
−→
G,P ) and two

positions j′ ∈ V1, j
′′ ∈ V2, let us introduce the following new arcs: (j, j′) for each j ∈ V2 and

(j, j′′) for each j ∈ V1. Obviously, the obtained pair (
−→
G+, P ) is bipartite, too. The following

statement was given without proof in [25].

Lemma 15 A partition Q : V = V 1 ∪ V 2 is contra-ergodic in (
−→
G+, P ) if and only if it is a

contra-ergodic partition in (
−→
G,P ) such that j′ ∈ V 1 and j′′ ∈ V 2.

Proof “If part”. Let Q : V = V 1 ∪ V 2 be a contra-ergodic partition of (
−→
G,P ) such that

j′ ∈ V 1 and j′′ ∈ V 2. Then Q is contra-ergodic in (
−→
G+, P ), too. Indeed, extending (

−→
G,P ) to

(
−→
G+, P ) we obviously respect (i) and (iii). Moreover, (ii) also holds, since the new moves do

not enable player 1 to leave V 2 for V 1 (although, she can now move from each j ∈ V1 ∩ V 1

to j′′ ∈ V 2); respectively, player 2 still cannot leave V 1 for V 2 (although, he can now move
from each j ∈ V2 ∩ V 2 to j′ ∈ V 1).

“Only if part”. Let partition Q : V = V 1 ∪ V 2 be contra-ergodic in (
−→
G+, P ). Then,

it is easy to see that j′ ∈ V 1 and j′′ ∈ V 2, since otherwise (ii) could not hold for Q. Let

us show that Q is a contra-ergodic partition of (
−→
G,P ), too. Indeed, (i) and (ii) obviously

hold. Suppose that (iii) does not. This could happen only if in (
−→
G,P ) there is a forced

move from j ∈ V 1 ∩ V1 to V2 or from j ∈ V 2 ∩ V2 to V1, while in (
−→
G+, P ) this move is not

forced, due to extra arcs. Yet, all these extra arcs are either between V 1 and V 2, or from
j ∈ (V 1 ∩ V1) ∪ (V 2 ∩ V2). Thus, (iii) holds for Q, too, and hence, Q is a contra-ergodic
partition. �

Obviously, Proposition 12 follows from Proposition 21 and Lemma 15. �

Acknowledgements. Finally, we would like to recall the fundamental contribution of
Andrey I. Gol’berg (1956 - 1985) to characterizing Nash-solvability of bidirected bipartite
cyclic game forms.
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