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ABSTRACT

We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in doubling metrics.
The goal is to find a shortest tour that visits each of a collection of n subsets (regions or neigh-
borhoods) in the underlying metric space. We give a QPTAS when the regions are what we call
α-fat weakly disjoint. This notion combines the existing notions of diameter variation, fatness
and disjointness for geometric objects and generalizes these notions to any arbitrary metric space.
Intuitively, the regions can be grouped into a bounded number of types, where in each type, the
regions have diameters within α factor of one another, and each such region can designate a point
such that these points are far away from one another.

Our result generalizes the PTAS for TSPN on the Euclidean plane by Mitchell [Mit07] and the
QPTAS for TSP on doubling metrics by Talwar [Tal04]. We also observe that our techniques
directly extend to a QPTAS for the Group Steiner Tree Problem on doubling metrics, with the
same assumption on the groups.



1 Introduction

We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in a metric space (V, d).
An instance of the problem is given by a collection W of n subsets {P1, P2, . . . , Pn} in V . Each
subset Pj ⊂ V is known as a neighborhood or region. The objective is to find a minimum length
tour that visits at least one point from each region.

This problem generalizes the well-known Traveling Salesman Problem (TSP), for which there are
PTAS’s for low-dimensional Euclidean metrics [Mit99, Aro02, RS99], and a QPTAS for doubling
metrics [Tal04]. The neighborhood version of the problem was first introduced by Arkin and
Hassin [AH94], who gave constant approximation for the case when the regions are in the plane
and “well-behaved” (e.g., disks, parallel and similar length segments, bounded ratio between
the largest and smallest diameters). The general version of the problem was shown to have an
inapproximability threshold of Ω(log2−ǫ n) for any ǫ > 0 by Halperin and Krauthgamer [HK03].
There is an almost matching upper bound of O(log N log k log n)-approximation, using the results
of Garg et al. [GKR00] and Fakcharoenphol et al. [FRT04], where N is the total number of points
in V and k is the maximum number of points in each region.

Special cases are considered where (V, d) is taken to be the Euclidean plane. However, if the regions
are allowed to be intersecting connected subsets, the problem remains APX-hard [dBGK+05,
SS03]. Further restrictions are placed on the regions. For connected polygonal regions, Mata and
Mitchell [MM95] gave an O(log n)-approximation, and Gudmundsson and Levcopoulos [GL99]
reduced the running time to O(N2 log N), where N is the total number of vertices of the polygons.

Regions are often assumed to be “fat”1 and disjoint. In fact, no constant factor approximation
algorithm is known for the case of intersecting non-fat regions. Dumitrescu and Mitchell [DM03]
considered connected regions that are all about the same size, fat and disjoint, and gave a PTAS
in this case, using the “guillotine” method.

Berg et al. [dBGK+05] gave constant approximation for slightly more general regions of varying
size, but are still disjoint, fat and convex. Elbassioni et al. [EFMS05] generalized to the discrete
case where each neighborhood consists of discrete set of points in a fat though not necessarily
convex region, and gave a constant approximation. This constant approximation was further
generalized in [EFS06], where the neighborhoods are intersecting, connected and have comparable
diameters.

The best previously known result for getting a (1 + ε)-approximation is by Mitchell [Mit07], who
obtained a PTAS for the Euclidean plane, where the regions are fat and almost disjoint. This
result is obtained by the “guillotine subdivision” technique, which unfortunately only works for 2
dimensions. On the other hand, the hierarchical decomposition technique by Arora [Aro02] and
Talwar [Tal04] is applicable to more general metrics. However, as pointed out by Mitchell [Mit07],
previous attempts in applying this technique have led to only limited success.

Feremans and Grigoriev [FG05] suggested a PTAS by using Arora’s framework [Aro02] in the
case where regions are of similar size and bounded perimeter. They proposed that the regions
are never divided in the decomposition. However, some technical issues would arise,2 but unfor-
tunately they were not addressed in the short paper. We instead allow regions to be divided, but

1Intuitively, the fatness of a region measures the ratio between the smallest circumscribing radius and the largest
inscribing radius. A disk is fat, while a line segment is not.

2In particular, keeping regions intact would destroy the so-called “padding property” of the decomposition, which
is essential in Arora’s argument [Aro02] for the existence of a good portal respecting tour.
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have to overcome a major technical hurdle and successfully use Arora’s framework to design an
approximation scheme for TSPN.

Our Contribution. We give a (1 + ε)-approximation for instances on metrics with bounded
doubling dimension [Ass83, Cla99, GKL03].3 This includes low-dimensional Euclidean metrics,
and hence is a generalization of Mitchell’s result [Mit07] for 3 or more dimensions. Moreover,
since the doubling dimension is well defined for any metric, our framework covers metrics that do
not have any geometric structure, and the regions need not be convex or even connected, where
such notions might not even be applicable in the first place. For more applications of doubling
metrics, the reader is referred to [CGMZ05, KL04, KL05, HPM05].

Nevertheless, we still need to place some restrictions on the regions, because the problem is APX-
hard in general on the plane [DO08], which has bounded doubling dimension. We combine the
notions of diameter variation, fatness and disjointness for geometric spaces, and define for regions
in general metrics the notion of α-fat weak disjointness. We assume that the regions have ∆ types
of radii. For the regions within the same type, there is some ρ > 0 such that there is a ρ-packing4

consisting of one point from each region, and all the regions have diameters at least ρ and at most
O(αρ).

Our definition allows very general regions. Intuitively, all we require is that regions of similar
diameters should each designate a point within, such that these points are far away from one
another; the regions can otherwise intersect arbitrarily. The assumption that there are only a
bounded number ∆ of types of region diameters is also necessary, as we show in Appendix B
that otherwise the problem remains APX-hard 5. Of course, the catch with working on such
weak assumptions is that the running time of our algorithm is only quasi-polynomial, which is
not surprising, because there is only a QPTAS known even for TSP on doubling metrics by
Talwar [Tal04].

Main Result. We augment the hierarchical decomposition method [Aro02, Tal04] for TSP to
give a randomized algorithm that approximates TSPN.

Theorem 1.1 Suppose that we are given an instance of TSPN, where the underlying metric space
has doubling dimension at most k, and the regions are α-fat weakly disjoint with at most ∆ types
of radii. Then, there is a QPTAS that, with constant probability, gives a TSP tour of length at
most (1 + ε)OPT in time exp{O(∆

ε
)kO(α)k2

logk n}.

For the case of Euclidean metrics, we can remove the dependence on ∆ if we use a stronger notion
of fatness as in [dBGK+05, vdS].

Theorem 1.2 Suppose that we are given an instance of TSPN, where the underlying metric is
the k-dimensional Euclidean space, and the regions are disjoint and α-fat in the sense defined
in [dBGK+05]. Then, there is a QPTAS that, with constant probability, gives a TSPN tour of

length at most (1 + ε)OPT in time exp{O(1
ε
)O(k)O(α)O(k2) logO(k) n}.

Our Techniques. Our approximation scheme is built on top of the hierarchical decomposition
method used for TSP by Arora [Aro02] and Talwar [Tal04]. The main technical hurdle is that a
cluster can partially intersect many regions, causing an exponential number of dynamic program
entries for that cluster. We resolve this issue via the following approaches.

3Intuitively, a set has bounded doubling dimension if any set can be covered by a bounded number of sets with half
its diameter.

4A ρ-packing is a set of points with inter-point distance larger than ρ.
5However, as we shall see, this assumption is not necessary in the case of Euclidean metric
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1. When a region is separated by clusters, we charge the extra cost incurred to the radius of
the cluster. The sum of the radii of the clusters can be charged to the length of the optimal
tour. This is done by extending a lemma appearing in [EFMS05, Mit07] to doubling metrics,
which gives a lower bound on the length of any tour that hits all weakly disjoint regions
with similar diameters.

2. By considering the probability that a region is separated by the clusters, we carefully prune
the search in lower levels of the dynamic program. The number of partially intersecting
regions that a cluster needs to explicitly consider is greatly reduced to poly-logarithmic, and
hence this allows the running time of the approximation scheme to be quasi-polynomial.

Extension to Group Steiner Tree Problem (GSTP). Observing that the optimal length for
GSTP is at least half of that for TSPN, we have the corresponding version of Corollary 3.2 for
GSTP, which leads to a QPTAS using the same techniques.

2 Notation and Preliminaries

We denote a metric space by M = (V, d).6 (For basic properties of metric spaces, please refer to
standard texts [DL97, Mat02].) A ball B(x, ρ) is the set {y ∈ V | d(x, y) ≤ ρ}. The diameter
Diam(Z) of a set Z is the maximum distance between points in Z. A set Z of points is a ρ-packing,
if any two distinct points in Z are at a distance more than ρ away from each other.

Problem Definition. An instance of the metric TSP with neighborhoods (TSPN) is given by
a metric space M = (V, d) and a collection of n neighborhoods or regions W := {Pj | j ∈ [n]},
where each Pj is a subset of V . The objective is to find a minimum TSP tour that visits at least
one point from each region. We require that the regions satisfy a weak disjointness condition.

Definition 2.1 (α-Fat Weakly Disjoint Regions) The regions {Pj}j are α-fat weakly dis-
joint with ∆ types of radii if the regions can be partitioned into ∆ sets {Wl}l∈[∆] such that for
each set Wl, the following conditions hold.

1. There exists ρl > 0 such that for each region Pj in Wl, there exists some point zj ∈ Pj

such that the set {zj}j is a ρl-packing. We say that the region Pj has center zj and core
radius rj := ρl.

2. Every region Pj has diameter at least ρl, and is contained in the ball B(zj , αrj), and we
denote Pj = Pj(zj , αrj).

Observe that regions from different Wl’s can intersect arbitrarily.

The assumption that there are only a bounded number ∆ of types of region radii is necessary, as
we show in Appendix B that otherwise the problem remains APX-hard, even if the regions are
disjoint balls.

Examples.

(1) Suppose the problem is defined in the Euclidean space, and the regions are continuous disjoint
balls, i.e, for each Pj, there exist zj ∈ V and ρj ≥ 0 such that Pj = B(zj , ρj). Suppose further
that the regions are partitioned into ∆ sets {Wl}l∈[∆] such that any two regions in the same
Wl have their radii differ by a multiplicative factor of at most 2. Note that in this case, ∆ ≤
1 + log2 max{ ρi

ρj
| ρj > 0}. Suppose that in some Wl, all the regions Pj = B(zj , ρj) satisfy

ρ ≤ ρj ≤ 2ρ. Then, it follows by the disjointness of the balls that the corresponding {zj}j forms

6Observe that V could be an infinite set.
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a 2ρ-packing, and obviously, Pj is contained in B(zj , 2ρ). Hence, these regions are 1-fat weakly
disjoint with ∆ types of radii. One may consider, more generally, fat regions in the sense defined
by Mitchell [Mit07], and note that his definition is included in ours. Hence, our results apply to
the class of fat regions considered in [Mit07].

(2) Suppose the problem is defined on a finite metric, and for each region Pj, there is some ρj > 0
and zj ∈ V such that B(zj , ρj) ⊆ Pj ⊆ B(zj , αρj). Suppose further that two regions are disjoint if
their corresponding ρj ’s are within a factor of 2 from each other. We can partition the regions into
∆ sets {Wl}l∈[∆] such that any two regions in the same Wl have their ρj ’s differ by a multiplicative
factor of at most 2. One can check that we also have ∆ ≤ 1 + log2 max{ ρi

ρj
| ρj > 0}, and with

respect to such {Wl}l the regions are 2α-fat weakly disjoint.

Remark 2.2 The parameter α in Definition 2.1 depends on how the regions are grouped into the
sets {Wl}l, and also on how the centers of regions are picked within each set. By decreasing the
number ∆ of sets Wl, one might possibly increase α. However, we are not concerned about the
optimal way to form the sets {Wl}l to obtain the best α and ∆. We just assume that we are given
a partition {Wl}l of regions (together with the corresponding core radius and the centers of regions
in each such Wl) such that the regions are α-fat weakly disjoint with respect to this {Wl}l, for
some α ≥ 1. The only requirement that we need in order to avoid too many Wl’s is that, the ratio
of the core radii from two different Wl’s should be at least some constant at least 2.

Remark 2.3 Observe that the α-fat weak disjointness condition implies that if all the regions in
some Wl have diameters at least δ, then the corresponding centers form a δ

2α
-packing. Moreover,

the diameters of the regions in Wl are within a factor of 2α from one another.

Restricting the Tour inside B0. Without loss of generality, we can assume that there is a
region P0 which contains only one point p0. For finite metrics, we can try each p0 in P0, and
consider those TSPN tours that pass through p0; for the special case of Euclidean metrics, see
Appendix 5. We let R to be the minimum radius of a ball centering at p0 that intersects all
regions. Suppose OPT is the length of the optimal tour. Then, it follows that 2R ≤ OPT ≤ 2nR.
Hence, the optimal tour must be contained in the ball B0 := B(p0, nR). Therefore, without loss
of generality, we only need to consider the points in B0.

Remark 2.4 Suppose the optimal tour visits pj in each Pj. If we replace each pj by p′j ∈ Pj such

that d(pj, p
′
j) ≤

εR
2n

, then we change the length of the tour by at most εOPT. Hence, we can assume

that each region has radius of either 0 or at least εR
2n

. However, we can have two regions of large
radii that almost touch each other.

We measure the complexity of the given metric by its doubling dimension.

Definition 2.5 (Doubling Dimension [Ass83, GKL03]) The doubling dimension of a met-
ric space (V, d) is at most k if for all x ∈ V , for all ρ > 0, every ball B(x, 2ρ) can be covered by
the union of at most 2k balls of the form B(z, ρ), where z ∈ V .

Observe that a set of points in k-dimensional Euclidean space induces a metric space with doubling
dimension at most O(k). Unless otherwise stated, we use only the doubling property of Euclidean
metrics, and we give explicit emphasis when the geometric properties of Euclidean metrics are
used.

Given ρ > 0, recall that a ρ-net for a set U of points is a subset S such that every point in U is
within a distance of ρ from some point in S and any two points in S are at a distance of more
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than ρ away from each other. The following fact states that for a doubling metric, one cannot
pack too many points in some fixed ball such that the points are far away from one another.

Fact 2.6 (Packing in Doubling Metrics [GKL03]) Suppose Z is a set of points in a metric
space with doubling dimension at most k. If Z is contained in some ball of radius 2sρ and for all
y, z ∈ Z such that y 6= z, d(y, z) > ρ, then |Z| ≤ 2(s+1)k.

On a high level, we use a divide and conquer paradigm. Hence, we would need a desirable scheme
for dividing up the metric space. The following decomposition schemes are widely used in the
metric embedding literature [Bar96, FRT04].

Definition 2.7 (Padded Decomposition) Given a finite metric space (V, d), a positive param-
eter D > 0 and β > 1, a D-bounded β-padded decomposition is a distribution Π over partitions
of V such that the following conditions hold.

(a) For each partition P in the support of Π, the diameter of every cluster in P is at most
D.

(b) Suppose S ⊆ V is a set with diameter δ. If P is sampled from Π, then the set S is
partitioned by P with probability at most β · δ

D
.

We consider distances of geometrically decreasing scales. Recall the relevant distances are between
εR
2n

and 2nR. We consider powers of 2, and have L := ⌈log2
4n2

ε
⌉ distance scales. We let DL := 4nR

and Di−1 := Di

2
, for 1 ≤ i ≤ L.

Definition 2.8 (Padded Hierarchical Decomposition) Given a metric space (V, d), a β-padded
hierarchical decomposition is a family {Πi}i of distributions of partitions of (V, d) such that:

(a) Each Πi is a Di-bounded β-padded decomposition of (V, d), and
(b) Suppose a hierarchical partition {Pi}i is in the support of {Πi}i. Then, for 0 ≤ i < L,
each cluster in Pi is completely contained in some parent cluster in Pi+1.

Fact 2.9 (Padded Hierarchical Decomposition for k-Dimensional Euclidean Metrics [Aro02])
Suppose a metric space resides in k-dimensional Euclidean space. Then, the randomly shifted
quadtree construction in [Aro02] gives a k-padded hierarchical decomposition. Moreover, for any
hierarchical partition sampled from it, any height-(i+1) cluster contains at most K := 2k height-i
children clusters.

Fact 2.10 (Padded Hierarchical Decomposition for Doubling Metrics [Tal04]) Suppose
a metric has doubling dimension at most k. Then, it admits an O(k)-padded hierarchical decompo-
sition. Moreover, for any hierarchical partition sampled from it, any height-(i+1) cluster contains
at most K := 2O(k) height-i children clusters.

2.1 Arora’s and Talwar’s Approximation Schemes for TSP

We give a very brief review of the hierarchical decomposition method used by Arora [Aro02] (for
low-dimensional Euclidean metrics) and Talwar [Tal04] (for doubling metrics) to design approxi-
mation schemes for TSP. A more complete description is given in Appendix A.

1. A hierarchical partition {Pi}i is sampled as in Definition 2.8. Each cluster C in each level
contains a set U(C) of points called portals, which can, for instance, be a fine enough net
of C. The search space is restricted to portal respecting tours, i.e., those that enter or leave
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a cluster only through its portals. Given positive integers m and r, a TSP tour is (m, r)-
light with respect to some hierarchical partitioning and portaling scheme if every cluster
in every height of the partition contains at most m portals and the tour enters and leaves
each cluster only through its portals for at most r times. It is shown in [Aro02, Tal04] that
for appropriate values of m and r, with constant probability, there is some (m, r)-light tour
that has length at most (1 + ε) times the optimal length.

2. A dynamic program is used to find the shortest (m, r)-light tour with respect to some
hierarchical partition and portaling scheme. Each cluster C has entries, each of which is
indexed by a configuration consisting of a collection I of entry/exit portal pairs. Since only
tours that enter and exit each cluster at most r times are considered, each such I contains
at most r entry/exit pairs of portals. Moreover, an entry stores the minimum length of
the internal segments consistent with its configuration. The running time of the dynamic
program depends on the values m and r, as well as the maximum number K of children
clusters that a parent cluster can have.

3 Augmenting the Hierarchical Decomposition Method
for TSPN

The main difficulty in applying the hierarchical decomposition method (or other similar divide
and conquer method) is that when a sub-problem contains partial regions, the corresponding
dynamic program would possibly need to try all combinations of whether the sub-problem is
responsible for those intersecting partial regions. This can potentially increase the number of
dynamic program entries by a factor of 2Ω(n). We prove a structure theorem that can reduce the
number of intersecting regions that a cluster needs to explicitly consider. In particular, if a region
P is first divided up at a certain height in the hierarchical partition, then it is only necessary for
descendant clusters down to certain height to explicitly consider the region P . These descendant
clusters each has a potential site, which when activated, can be the point responsible for the divided
region. Descendant clusters further down need not be concerned about that the divided region P
any more. We first look at what exactly happens when a region is divided up in the hierarchical
decomposition method.

Extra Cost due to Divided Regions. Suppose a region P with diameter δ is first divided in
the hierarchical partition at diameter scale Di. By the property of β-padded decomposition, this
happens with probability at most β · δ

Di
. (Recall that for metrics with doubling dimension at most

k, β = O(k).) We do not know exactly the point p ∈ P that the optimal tour visits. However,
suppose we can somehow ensure that the tour visits a point u (not necessarily in P ) instead of
p that satisfies d(p, u) ≤ γDi (for some small γ < 1); and then the tour makes a further detour
at u and visits a point q in P such that d(u, q) ≤ γDi. Then the expected extra cost incurred
is at most β · δ

Di
· 4γDi = 4βγδ. (It would be soon apparent why we perform such a convoluted

detour.) This intuition suggests that it is useful to obtain a lower bound on OPT in terms of the
diameters of the regions.

The following lemma is an extension of the packing lemmas in [EFMS05, Mit07] to doubling
metrics.

Lemma 3.1 (Existence of a Packing among Fat Weakly Disjoint Regions) Suppose Wl is
a set of α-fat weakly disjoint regions of the same type, all with core radius ρ. Let Q be a set of
points that intersect every region in Wl. Suppose that the underlying metric has doubling dimen-
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sion at most k and |Wl| > (8α)k. Then, there exists T := ⌈ |Wl|
(8α)k ⌉ points in Q that form an

αρ-packing.

Proof: Let Q be the set of points that intersects every region in Wl, i.e., for each P ∈ Wl, the

intersection Q∩P is non-empty. Let T := ⌈ |Wl|
(8α)k ⌉ ≥ 2. If suffices to show, by induction on t, that

for 1 ≤ t ≤ T , there exists a set of points Qt := {pj | 1 ≤ j ≤ t} in Q such that any two points in
Qt are at distance more than αρ from each other.

For t = 1, pick any p1 ∈ Q and set Q1 := {p1}. Then, the result is trivially true. Suppose for
some 1 ≤ t < T , there exists Qt := {pλ}

t
λ=1 in Q such that any two points in Qt are at least αρ

apart.

Let Z := {zj | Pj(zj, αρj) ∈ Wl} be the set of centers of regions in Wl, which all have core radii
ρ. From Definition 2.1, the set Z is a ρ-packing.

For each 1 ≤ λ ≤ t, let Zλ := {z ∈ Z | d(z, pλ) ≤ 2αρ}. Observe that since the doubling
dimension of the underlying metric is at most k, by Fact 2.6, we have |Zλ| ≤ (8α)k. It follows
that | ∪t

λ=1 Zλ| ≤ t · (8α)k < |Z| = |Wl|. Hence, there exists some center z ∈ Z that is not in
any of the existing Zλ’s. Suppose pt+1 is a point in the region centering at z that the tour visits,
and hence pt+1 ∈ B(z, αρ). Now, for each 1 ≤ λ ≤ t, by the triangle inequality, d(pλ, pt+1) ≥
d(pλ, z) − d(z, pt+1) > αρ, since d(pλ, z) > 2αρ and d(z, pt+1) ≤ αρ. Setting Qt+1 := Qt ∪ {pt+1}
completes the inductive step.

By taking Q to be the set of points in the set Wl of regions that a TSP tour visits, we have the
following corollary.

Corollary 3.2 (Lower Bound on OPT via Diameters of Regions) The length of any TSP

tour visiting all regions of the same type in Wl as in Lemma 3.1 is at least |Wl|
(8α)k · αρ; moreover,

we have
∑

P∈Wl
Diam(P ) ≤ 2(8α)kOPT.

Distinguishing between Common and Rare Types of Core Radii. Recall that the set W
of regions are grouped into sets {Wl}l∈[∆], where the regions in each group have their diameters
within a factor of 2 from one another. Let Wc := ∪l:|Wl|>(8α)kWl be the regions with common types
of radii, and Wr := W \Wc be those with rare types of radii. By Corollary 3.2,

∑
P∈Wc

Diam(P ) ≤

2∆ · (8α)kOPT, and observe that |Wr| ≤ ∆ · (8α)k.

Lemma 3.3 (Approximate Point Location for Divided Regions) Suppose a hierarchical par-
tition is sampled as in Fact 2.10, and a region P has diameter δ. Consider the following operation
of modifying a given TSP tour.

1. Suppose that p is the point in P for which the TSP tour visits. Consider the height-i
partition (with diameter scale Di) for which the region P is first divided.

2. Let 0 < γ < 1 and suppose that u is an arbitrary point (not necessarily in the region P )
such that d(u, p) ≤ γDi.

3. In the given tour, replace p with u.
4. Suppose q ∈ P is a point such that d(q, u) ≤ γDi. (The points p and q could be the same.)
Then, make a detour at point u: visit point q and then back again at u.

Then, the expected increase in the length of the tour is at most 4Lβγδ.

Proof: First, observe that the probability that a region P with diameter δ is first divided at the
height-i partition is at most β · δ

Di
, by the property of β-padded decomposition. Note that the
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increase in length after the modification procedure is at most 4γDi. Finally, observing that there
can be L possible values of i for which this can happen, the expected increase in the tour length
is as required.

Combining Corollary 3.2 and Lemma 3.3, we have the following structure theorem for TSPN.

Theorem 3.4 (Structure Lemma for TSPN) Consider a TSPN instance on an underlying
metric with doubling dimension at most k, and suppose that a hierarchical partition is sampled as
in Fact 2.10. Moreover, for each region P in Wc, the approximate point location modification is
performed as in Lemma 3.3 on any given tour. Then, the expected increase in length is at most
8(8α)kLβγ∆OPT, which is at most ε

2
·OPT, if we set γ = O( ε

(8α)kLβ∆
). In particular, if the given

tour is an (m, r)-light TSPN tour, whose length has an expected difference from the optimal length
of at most ε

2
·OPT, then the resulting TSPN tour has an expected increase from the optimal length

of at most ε · OPT.

We next give the details of the approximate point location procedure in Lemma 3.3.

Assigning Anchor Points for a Divided Region in Wc. We describe how the point u is
picked for a region P (that is first divided at height-i), as in Step 2 of Lemma 3.3. Observe
that P is totally contained in some height-(i − 1) cluster Ci−1. For the special case when the
diameter of P is at most γDi, then we pick an arbitrary point p ∈ P and replace the region P
with the singleton {p}; we emphasize that in this case p is NOT an anchor point for the region P .
Otherwise, consider the descendant clusters of Ci−1 that intersect with P , in decreasing height.
As soon as the diameter of an intersecting cluster C drops below γDi, or if we have reached the
lowest height where C is a height-0 cluster (which has diameter at most εR

n
, see Remark 2.4), we

pick u to be any arbitrary point inside C, and we say u is an anchor point at height-i for the region
P ; in this case, it is not necessary to consider further the descendant clusters of C for assigning
anchor points. Note that we do not know which point in the region the optimal tour would visit,
but we can ensure that the correct point would have an anchor point within a distance of γDi.

Potential Site in a Cluster. Observe that in the above description, an anchor point u for
some region is an arbitrary point in some cluster C. Hence, we pick an arbitrary point u(C) in
each cluster as a potential site, which when activated, can be an anchor point for regions partially
intersecting C. We require that if u is a potential site for a cluster C, then it must also be one
for one of its children clusters.

Ambiguous Regions for a Cluster. Recall ultimately, we want to limit the number of regions
that intersect a cluster for which the dynamic program has to explicitly consider. Given a cluster
C at height-i, its ambiguous regions are those regions P partially intersecting C that satisfy one
of the following properties.

1. The region P is in Wr, i.e., its type of core radius is rare.
2. The cluster C or any of its descendant clusters contain potential sites that can be anchor

points (at the corresponding heights) for the region P .

Technical Issues Involving Padded Hierarchical Decomposition. Before we can bound
the number of ambiguous regions for a cluster, there are some issues concerning the padded
hierarchical decomposition that need to be clarified.

1. We know that the optimal solution is contained in the ball B(p0, nR). However, if we simply
take this ball as the height-L cluster, then some regions would be divided at height-L with
probability 1, thereby violating the padded-property. It suffices to pick η ∈ [1

2
, 1] uniformly
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at random, and take the height-L cluster to be B(p0,
1
2
ηDL) (assuming β is sufficiently large,

say β ≥ 2).
2. In the argument that follows, for i ∈ [L], we would need the existence of β-padded decom-

position at height-(i + Γ), where Γ := ⌈log2
1
γ
⌉. In particular, we need the property that at

height-(i+Γ), the cluster containing p0 has diameter at most Di+Γ, and the probability that
a region with diameter δ is divided at this height is at most β · δ

Di+Γ
. For 1 ≤ s ≤ Γ, we can

simply set the “imaginary cluster” at height-(L+ s) to be B(p0,
1
2
ηDL+s), where η ∈ [1

2
, 1] is

the same as in 1. The imaginary clusters are only for the sake of the proof and do not play
any role in the actual algorithm.

Lemma 3.5 (Bounding the Number of Ambiguous Regions) The number of ambiguous re-
gions for a cluster is at most H := ∆ · (8α)k + O(α

γ
)k, where k is the doubling dimension.

Proof: Suppose cluster C is at height-i, where i ≤ L. The number of its ambiguous regions in
Wr is at most |Wr| ≤ ∆ · (8α)k. We next count the number of its ambiguous regions in Wc.

We first bound the number of ambiguous regions in Wc having diameter at least Di. If a region P
has diameter larger than Di

γ
, then it cannot have its anchor point in cluster C. The reason is that

such a region P would be first divided at a height of at least i + Γ, recall Γ := ⌈log2
1
γ
⌉. Hence,

it follows that region P ’s anchor points must be at a height larger than i. So we may assume
that Di ≤ Diam(P ) ≤ Di

γ
. Observe that such a region can be of at most Γ types of core radii.

The centers of the α-fat weakly disjoint regions from each such type form some packing, and by
Remark 2.3 and Fact 2.6, there are at most O(α)k regions from each such type. Hence, there can
be totally at most Γ · O(α)k = O(α

γ
)k such ambiguous regions.

It remains to bound the number of ambiguous regions in Wc having diameter less than Di. Note
that if a region P has diameter less than γDi, then there would be no anchor points for the region
P (at any height), and so P cannot be ambiguous. The reason is that the region must be first
divided at a height i′ ≥ i, and hence the diameter of region P is at most γDi′. In this case, an
arbitrary point p in P (which is NOT an anchor point) is picked and the region P is reduced to
{p}. Again, note that if the diameter of a region P is at least δ, then its core radius is at least
δ
2α

. By Remark 2.3 and Fact 2.6, there can be at most O(Di+δ
δ/α

)k regions with diameter around δ

that intersect cluster C. Hence, the total number of ambiguous regions having diameter less than
Di is dominated by the term corresponding to δ = γDi, which is O(α

γ
)k.

Summing up the number of ambiguous regions in all the cases gives the required bound.

4 Dynamic Program for TSPN

We describe details of the augmented dynamic program for finding the shortest TSPN tour after
the approximate point location modification as in Theorem 3.4, in addition to ensuring the (m, r)-
lightness property in the original dynamic program. In Lemma 3.5, we bound the number H of
ambiguous regions for each cluster. Hence, in the dynamic program, the number of configurations
for a cluster increases by a factor of at most 2H . Observing that there are at most K = O(1)k

children clusters for any parent cluster, we show that the running time of the dynamic program
increases by a factor of at most 2O(HK).

Theorem 4.1 Suppose that we are given an instance of TSPN, where the underlying metric
space has doubling dimension at most k, and the regions are α-fat weakly disjoint with at most



– 10 –

∆ types of radii. Then, with constant probability, the augmented hierarchical decomposition
method gives a TSPN tour of length at most (1 + ε)OPT in time TIME(TSP ) · 2O(HK) =

exp{O(∆
ε
)kO(α)k2

logk n}, where TIME(TSP ) is the time for approximating TSP with the hi-
erarchical decomposition method used by Arora [Aro02] or Talwar [Tal04].

Proof: In view of Theorem 3.4, we prove the theorem by giving the construction of the augmented
dynamic program for approximating TSPN.

Outline of the TSPN Algorithm. A hierarchical partition is first sampled. Then, the portals
for each cluster are assigned as in [Aro02] or [Tal04]. As described in Section 3, the potential sites
are chosen, the anchor points for the regions are assigned, and the ambiguous regions for each
cluster are determined. Then, the following dynamic program finds a desirable TSPN tour.

Configuration of a Cluster. The configuration of a cluster C includes the following.

1. A collection I of portal entry/exit points as before. (Recall that (m, r)-lightness implies
that |I| ≤ r.)

2. A bit vector of length equal to the number of ambiguous regions that cluster C has. Each
such bit indicates whether the cluster is responsible for the corresponding ambiguous region.

3. A bit indicating whether the potential site u(C) is activated.

Since a cluster has at most H ambiguous regions, the number of configurations for the cluster
increases by a multiplicative factor of at most 2H+1. Each entry also stores the minimum length of
the segments consistent with the configuration, and also the segments themselves if a tour needs
to be constructed eventually. We focus mainly on the new features of the dynamic program.

Base Case: Filling Entries of Height-0 Clusters. Suppose C is a height-0 cluster. We
describe the possible configurations for such a cluster and the corresponding partial lengths stored
under its entries.

1. If the cluster C contains singleton regions P , then u(C) must be activated in the configu-
ration to be responsible for all those P . Otherwise, the cluster C has both configurations
in which u(C) is activated and also those in which u(C) is not. For those configurations in
which u(C) is activated, the collection I of entry/exit points contains only a singleton {x},
where x is the closest portal to u(C) in C;7 moreover, twice the distance from x to u(C)
needs to be included to the length of the partial tour within C. If u(C) is not activated in
a configuration, then the set I is empty; and such a configuration needs not take part any
further in the dynamic program.

2. If u(C) is activated in a configuration, there is a choice for each ambiguous region P of C
of whether C is responsible for P .

3. For each region P for which the cluster C is responsible (either by necessity as in 1 or by
choice as in 2), add twice the distance between u(C) and its closest point in P to the length
of partial tour for the entry under the corresponding configuration.

Inductive Step: Determining the Configuration and Combining the Solutions from
the Children Clusters. The entries of a height-i cluster are computed from those of its children
clusters. We consider each combination of configurations of the children clusters. A configuration
for C is formed by interleaving different portal entry/exit pairs as indicated by the children clusters’
configurations. (Recall that an interleaving is valid, only if it results in a collection I of entry/exit
points that has size at most r, since we look for (m, r)-light tours.) We now concentrate on how

7Note that we can always choose a potential site u(C) that is also a portal, in which case x would also be u(C).
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the new parameters involved in the configuration operate. Here are the steps to be performed to
determine the configuration of the cluster C, and compute the corresponding entries.

1. For each region P that is totally contained in C, but is divided by the children clusters, the
configurations of the children clusters should reflect that at least one of them is responsible
for the region P . Otherwise, such a combination of the children clusters’ configurations is
invalid, and we move on to the next combination.

2. The potential site u = u(C) is activated in the configuration of C, if and only if the site u
is also activated in the corresponding child cluster that contains u.

3. Suppose the region P is ambiguous for cluster C. If possible, determine whether C is
responsible for P from the configurations of the children clusters.

4. If the configurations of the children clusters give no information of whether C is responsible
for an ambiguous region P , then it must be the case that the cluster C has a potential
site u(C) that can be an anchor point at height-i for the region P . If the potential site
u(C) is not activated, then the cluster C is not responsible for the ambiguous region P
in the configuration of C. If the potential site u(C) is activated, then there is a choice of
whether C is responsible for region P . In the case where C is responsible for the region P ,
twice the distance of u(C) to the closest point in P ∩ C is added to the length stored in
the corresponding entry of C. Note that considering choices for each ambiguous region can
increase the running time by a factor of at most 2H .

5. For each configuration of C formed in the manner described above, we update the corre-
sponding entry for C if the new partial length is less than that of the existing one.

Increase in the Running Time. We analyze the running time of the augmented dynamic
program. Note that the number of configurations for a cluster increases by a factor of at most
2H+1, and the number of children cluster is at most K. Hence the total number of combinations
of the children clusters’ configurations increases by a factor of at most 2K(H+1). For each such
combination, the time to combine them increases by a factor of at most 2H , as described in Step
4 above. Hence, it follows the total time of the augmented dynamic program increases by a
factor of at most 2O(HK). Observing that H = ∆ · (8α)k + O(α

γ
)k, K = O(1)k, γ = O( ε

(8α)kLβ∆
),

L = O(log n
ε
) and β = O(k) gives the required running time.

5 Special Case: Euclidean Metrics

We consider the special case when the underlying metric is the k-dimensional Euclidean metric,
with disjoint regions. If we use a stronger notion of fatness, then we can remove the running
time’s dependence on the number ∆ of types of region diameters.

Definition 5.1 (α-Fatness [dBGK+05, vdS]) A region P ⊆ R
k is said to be α-fat if for any

k-dimensional ball B which does not fully contain P and whose center lies in P , the volume of
the intersection of P and B is at least 1/αk times the volume of B.

Restricting the Tour in B0. Recall that for finite metrics, we can try each point p0 in the region
P0 to form some bounding ball B(p0, nR). We need to use a different approach if every region is
continuous and contains an infinite number of points. Using the method outlined in [dBGK+05],
one can approximate a minimum box intersecting all regions with center c and radius R. Note
that we can assume that there is some region P0 with diameter at most nR. Otherwise, if all
regions have diameters at least nR, then by the definition of α-fatness and disjointness, there can
be at most O(α)k regions; and hence there are only a constant number of regions and the problem
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becomes trivial. Note that for any point p0 in P0, the ball B(p0, (n + 1)R) intersects all regions.
Hence, instead of trying each p0 in P0, we can just conclude that the optimal tour must be inside
the ball B(c, 2n2R). We still have only L = O(log n

ε
) length scales to consider.

Bounding the Number ∆ of Types of Region Diameters. Note that we have shown that
the optimal tour must be inside the ball B(c, 2n2R), and as before we can assume that a region is
either a singleton or has diameter at least εR

2n
. For regions having diameter between εR

2n
and 2n2R,

we can group them between powers of 2, so that there are at most O(log n
ε
) types. Note that by

α-fatness and disjointness, there can be at most O(α)k regions having diameter larger than 2n2R.
Hence, it follows that the number of types ∆ of region diameters is at most O(log n

ε
) + O(α)k.

Hence, Theorem 1.2 follows immediately from Theorem 1.1.
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Appendix A: Review: Approximating TSP via the Hierarchical De-
composition and Portaling Method on Bounded Growth Metrics

Our techniques are based on the approximation schemes by Arora [Aro02] (for low-dimensional
Euclidean metrics) and Talwar [Tal04] (for doubling metrics), to which we refer as the Hierarchical
Decomposition Method. We give a brief review of the construction and highlight the relevant
properties that are crucial to our augmented scheme. For the moment, consider the case where
each region Pj contains only one point.

On a high level, the method divides the metric space hierarchically into smaller clusters. The
partial solutions for smaller clusters are solved and combined together to form the global solution
through dynamic programming. We next give the main ingredients of the method.

(1) Padded Hierarchical Decomposition & Portaling Scheme

Portal Assignment and (m, r)-Light Tours. Suppose a hierarchical partition {Pi} is sampled
as in Definition 2.8. For each 0 ≤ i < L, each height-i cluster C has a set U(C) of points called
portals. We consider portal respecting tours, i.e., those that enter or leave a cluster only through
its portals. This would limit the size of the search space for TSP tours. However, to ensure that a
tour of good quality is still possible, the set U(C) is chosen to be a fine enough θDi-net of C, where
θ = O( ε

βL
) is suitably small. Given positive integers m and r, a TSP tour is (m, r)-light with

respect to some hierarchical partitioning and portaling scheme if every cluster in every height of
the partition contains at most m portals and the tour enters and leaves each cluster only through
its portals for at most r times.

Theorem A.1 (Structure Theorem for TSP) Given an instance of TSP in some underlying
metric M , there exists a padded hierarchical decomposition scheme such that with probability at
least 1

2
, the hierarchical partition sampled from it admits an (m, r)-light TSP tour of length at

most (1 + ε)OPT, where

(a) if M has doubling dimension at most k, then m = (kL
ε

)O(k) and r = (kL
ε

)k; [Tal04]

(b) if M is in k-dimensional Euclidean space, then m = 2k · (O(
√

kL
ε

))k−1 and r = 2k ·

(O(
√

k
ε

))k−1. [Aro02]8

(2) Dynamic Programming for Finding (m, r)-Light Tours

We outline a dynamic program to find the shortest (m, r)-light tour with respect to some hi-
erarchical partition and portaling scheme. Similar constructions are used by by Arnbourg and
Proskurowski [AP89], Arora [Aro02] and Talwar [Tal04], and our construction for TSPN is built
upon this construction.

Configuration of a Cluster. For each cluster C with its portals U(C), there are entries, each
of which is indexed by a configuration that consists of a collection I of pairwise disjoint subsets
of U(C) of size 1 or 2.

An entry for cluster C indexed by I represents the scenario in which a tour visits cluster C via
portals described by subsets in I. A 2-subset {u, v} in I means there is a portion of the tour that
enters and exits via portals u and v. the A 1-subset {x} in I means the tour enters and leaves
cluster C through the portal x. We keep track of the length of the portion of the tour that is

8The original definition of (m, r)-lightness in [Aro02] counts crossings on only one facet of the bounding box, and
hence there is an extra factor of 2k here.
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within the cluster C. The entry indexed by I stores the length of the shortest possible internal
segments, for tours consistent with the scenario imposed by I. Note that if we have to construct
the tour, under each entry we have to store the internal segments of the tour as well. Note that
for a tour to be (m, r)-light, we must have |U(C)| ≤ m and |I| ≤ r. Hence, each cluster has at
most m2r entries.

Time for Dynamic Program. As mentioned in [Tal04], if each parent cluster C has at most K
children clusters, then the time to fill up all the entries of C is at most the product of the number
of configurations for all the children clusters and (Kr)!. This product is at most (mKr)2Kr. Since
there are at most n clusters from each of the L levels, the total time is nL(mKr)2Kr.

Appendix B: APX-Hardness for Unbounded Types of Region Diame-
ters

We next motivate why we need to make the assumption that the number of types of diameters
for the regions is bounded. It was shown in [EFS] that the TSPN problem is APX-hard for the
case where all objects are line-segments in the plane of almost equal length. We can modify this
reduction to get the following result.

Theorem B.1 The TSPN problem for doubling metrics with regions being disjoint balls of arbi-
trary types of radii is APX-hard.

Proof: We reduce the TSPN problem from VERTEX-COVER for 3-partite graphs, which cannot
be approximated within a factor 34/33, unless P = NP [CCR99].

For completeness, we first describe the construction in [EFS] again. Given a 3-partite graph
G on n vertices, we define an instance of TSPN as shown in Figure B.1. The vertices of the
graph correspond to points on the plane, and the edges correspond to neighborhoods (of size
2) of the TSPN instance in the obvious way: two points form a neighborhood if and only if
the corresponding vertices in the graph are adjacent. Furthermore, we define a large number of
singleton neighborhoods which together form a polygon with perimeter L. The small equilateral
triangle in the closeup has side-length d. If d is small enough, then an optimal tour follows the
polygon and jumps up and down to some of the vertices. The extra cost of the detour for each such
vertex is 2d−d = d. Consider an optimal tour and let S be the set of vertices of G that are visited,
then OPT = L + |S|d. Now we let d = 1/n and choose the distance between any two vertices
substantially larger, say 4/n. We let the perimeter of the polygon be 10. If there is a vertex cover
of size n/2, then there exists a tour of length L + nd/2 = 10.5. On the other hand, if there exists
a tour of length at most 10 + β, then there must be a vertex cover of size at most βn. Taking
β = 34/66 shows that TSPN cannot be approximated within a factor (10+34/66)/10.5 ≈ 1.0014.

We modify the above construction in the following way.

1. Disjoint Neighborhoods. Observe that in the above construction, the neighborhoods
are not disjoint. In particular, if a vertex v has degree d in the given graph, then the
corresponding point u would be contained in d neighborhoods. For such a vertex, we have d
copies {u1, u2, . . . , ud} of the point u. Each neighborhood can now take their unique copy of
the point u. These locations of these d points are just tiny perturbations from the original
location of the point u. This perturbation is so tiny that the following is true. Given any
tour, the tour can be modified such that if one copy ui is visited, then every copy would be
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Figure B.1: The reduction for a 3-partite graph on 12 vertices.

visited, with the increase in tour length being an arbitrarily small fraction of the optimal
length. Note that we now have disjoint neighborhoods in the Euclidean plane and we still
preserve the APX-hardness of the reduction. We denote the points in the metric space we
have constructed so far by X.

2. Neighborhoods as Disjoint Balls. Suppose W is the set of size-2 neighborhoods in the
construction. We are going to augment the metric and the neighborhoods so that each
neighborhood in W is contained in some ball in the new metric. Observe that X are points
in the Euclidean plane, and can be represented by a weighted complete graph GX , where
the length of each edge is the Euclidean distance between the corresponding points. Since
the Euclidean plane has constant doubling dimension, it follows that the metric induced by
GX also has bounded doubling dimension.

We augment the metric and the neighborhoods in the following way. Suppose there are
w = |W | neighborhoods of size 2. Let Λ > 4 be a large enough parameter, for instance, Λ is
at least 100 times the optimal length. For each 1 ≤ i ≤ w, for the neighborhood Pi = {xi, yi}
in W , we create a new point zi in the graph GX and add edges {zi, xi} and {zi, yi} to the
graph with length Λi, and we also define a new neighborhood P ′

i := {xi, yi, zi}. We let the
augmented graph be GZ with the augmented set of points Z in the metric induced by GZ .
Observe that the new set of neighborhoods are in the form BZ(zi, Λ

i). More importantly,
they are now disjoint balls.

Notice that we do not need to consider any tour that visits any zi, because such a tour would
have length at least 100 times that of the optimal tour. Hence, the APX-hardness reduction
is preserved. It remains to see if the augmented metric still has constant doubling dimension.
Now, observe that the augmented points zi are at geometrically increasing distances from
the original graph GX (which itself induces a metric with bounded doubling dimension), and
hence the metric induced by the augmented graph GZ also has constant doubling dimension.

It follows that we have constructed an instance of the TSPN in a metric with constant doubling
dimension, whose regions are either singletons or disjoint balls of the form BZ(zi, Λ

i) = {xi, yi, zi},
as required.
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