DIMACS Technical Report 2009-06 March 2009

Assignability of 3-dimensional totally tight matrices

by

Endre Boros¹

RUTCOR – Rutgers Center for Operations Research Rutgers, The State University of New Jersey
640 Bartholomew Road, Piscataway, NJ 08854-8003 e-mail: boros@rutcor.rutgers.edu

Vladimir A. Gurvich RUTCOR – Rutgers Center for Operations Research Rutgers, The State University of New Jersey 640 Bartholomew Road, Piscataway, NJ 08854-8003 email: gurvich@rutcor.rutgers.edu

Igor E. Zverovich RUTCOR – Rutgers Center for Operations Research Rutgers, The State University of New Jersey 640 Bartholomew Road, Piscataway, NJ 08854-8003 email: igorzv@rci.rutgers.edu

¹This research was partially supported by DIMACS, Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University.

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affiliate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS was founded as an NSF Science and Technology Center.

ABSTRACT

A 3-dimensional totally tight matrix $A = (a_{ijk})$ has the property that every 2×2 submatrix has a constant line [a row or a column]. We prove that all such matrices are *assignable*, that is it is possible to assign a label to each of the axial planes so that every a_{ijk} is equal to at least one of the corresponding labels. The result can be easily extended to the case of multi-dimensional matrices.

2000 Mathematics Subject Classification: 05-xx (Combinatorics).

Assignable 3-dimensional matrices, totally tight matrices

A 3-dimensional $l \times m \times n$ matrix $A = (a_{ijk})$ has three sets of "axial" planes, $P_1, P_2, \ldots, P_l, Q_1, Q_2, \ldots, Q_m$, and R_1, R_2, \ldots, R_n . Such a matrix is called *assignable* if it is possible to assign labels p_i , q_j and r_k to the axial planes P_i , Q_j and R_k so that every a_{ijk} is equal to at least one of p_i , q_j or r_k . A 3-dimensional *totally tight matrix* has the following *TT property*: every 2 × 2 submatrix has a constant line [a row or a column]. Here a 2 × 2 submatrix is obtained by taking two distinct axial planes from the same set, say P_i and P_j , choosing a pair of distinct elements in P_i , and the corresponding pair of elements in P_j .

Here is our main result.

Theorem 1. Every 3-dimensional totally tight matrix $A = (a_{ijk})$ is assignable.

Proof. We say that a plane P_r dominates a plane P_s by x (notation $P_r \rightarrow_x P_s$) if, whenever $a_{rjk} \neq a_{sjk}$, we have $a_{rjk} = x$. Here x is the domination parameter. Similar definitions are applied to the planes Q_i and R_k .

Claim 1. A 3-dimensional matrix $A = (a_{ijk})$ is totally tight matrix if and only if, for every distinct planes P_r and P_s , either $P_r \rightarrow_x P_s$ or $P_s \rightarrow_x P_r$ for some x, and similarly for the planes Q_j and R_k .

Proof. Straightforward.

The three binary relations \rightarrow_x on the sets P_i , Q_j and R_k determine three digraphs, denoted by D_P , D_Q and D_R , on the same sets. A *sink* in a digraph is a vertex v such that, for every other vertex u, there is an arc (u, v). Note that the definition allows arcs out-coming from a sink. We shall distinguish two cases.

Case 1. At least one of the three digraphs D_P , D_Q or D_R has a sink.

Without loss of generality, let P_1 be a sink in the digraph D_P . The 2-dimensional plane P_1 is assignable, see Boros, Gurvich, Makino, and Papp [1]. We assign labels to all rows and columns of P_1 , and then consider them as labels of all planes Q_j and R_k . Now, for every plane $P_i \neq P_1$, we have $P_i \rightarrow_{x_i} P_1$, since P_1 is a sink. We assign label x_i to P_i , thus obtaining an assignment for the matrix A. Note that the plane P_1 remains unlabeled.

Case 2. No one of the three digraphs D_P , D_Q or D_R has a sink.

The domination relation $P_r \to_x P_s$ is called *strict* if $P_s \to_y P_r$ does not hold for any y. We choose labels p_i and q_j for all planes P_i and Q_j according to the strict domination relation, that is we choose the domination parameters as labels.

Claim 2. For every plane R_k , all entries that are not satisfied by the labels p_i and q_j are the same.

Proof. Suppose that there exists R_k which contains distinct entries u and v that are not satisfied by the labels p_i and q_j . We may assume that u and v are in the same plane P_i or Q_j . Indeed, otherwise the entries u and v are opposite corners of a rectangle in R_k . By the TT property, at least one of the two other corners must be either u or v. Thus, we always can choose u and v in the same plane P_i or Q_j . Let $u \in P_1 \cup Q_1$ and $v \in P_2 \cup Q_1$.

Since $p_1 \neq u$, $p_2 \neq v$ and $u \neq v$, P_1 non-strictly dominates P_2 by u, and P_2 non-strictly dominates P_1 by v. The plane P_1 strictly dominates some plane P_3 by $p_1 \neq u$, therefore

P_1	u	p_1	α
P_2	v	p_1	α
P_3	u	$\beta \neq p_1$	α

Here α and β are some strings of entries, β does not contain p_1 , but it contains at least two distinct entries. We may choose an entry $x \in \beta$ distinct from u, and obtain the following submatrix

$$\begin{pmatrix} v & p_1 \\ u & x \neq u, p_1 \end{pmatrix}.$$

If $p_1 \neq v$, we have a contradiction to the TT property. Thus, $p_1 = v$:

P_1	u	v	α
P_2	v	v	α
P_3	u	$\beta \neq v$	α

Now we see that P_2 strictly dominates P_3 by v, a contradiction to the fact that $p_2 \neq v$.

Finally, we state an algorithm that produces an assignment for an arbitrary matrix of Case 2.

Step 1. Assign labels p_i and q_j to all P_i and Q_j according to the strict domination relation.

Step 2. Based on Claim 2, assign the non-satisfied constant to every plane R_k . \Box

Finally note that our method is easily extended to *n*-dimensional totally tight matrices for all n > 3.

Acknowledgment

This research was partially supported by DIMACS, Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University.

References

 E. Boros, V. Gurvich, K. Makino, and D. Papp, On acyclyc, or totally tight, two-person game forms, RUTCOR Research Report 3-2008 (Rutgers University, 2008)