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ABSTRACT

We present results from a comparative empirical study on the performance of two methods
for constructing support vector machines (SVMs). The first method is the conventional
one based on the quadratic programming approach, which builds the optimal separating
hyperplane maximizing the margin between two classes (optimal SVM). The second method
is based on the linear programming approach suggested by Vapnik to build a separating
hyperplane with the minimum number of support vectors (heuristic SVM). Using synthetic
data from two classes, we compare the classification performance of these SVMs, with an
in-depth geometrical comparison of their separating hyperplanes and support vectors. We
show that both classifiers achieve practically identical classification accuracy and general-
ization performance. However, the heuristic SVM has many fewer support vectors than the
optimal SVM. In addition, in contrast to the optimal SVM, its support vectors lie on the
furthermost borders of the classes, at the maximum distance from the opposite class. In
our future work, we will seek to find a theoretical basis to explain these geometrical pat-
terns of the heuristic SVM. We will also compare these classifiers using real benchmark data.

Key words: support vector machines, quadratic programming, linear programming, ge-
ometrical patterns of separating hyperplanes and support vectors.



1 Introduction

In this paper, we present a comparative experimental study of two methods for construct-
ing support vector machines (SVMs). One is the conventional method based on quadratic
programming (QP), while the other is based on linear programming (LP). Statistical learn-
ing theory shows that SVM classifier based on the solution of QP problem has the best
generalization ability1 among all hyperplane classifiers [12]. This classifier and its separat-
ing hyperplane are, therefore, called optimal. In [12], Vapnik proposed SVM based on the
LP problem aimed at minimizing the number of support vectors of the separating hyper-
plane. He called this classifier heuristic since no theoretical estimates of its generalization
performance were obtained at that time.

The goal of our work is to carry out an experimental investigation of similarities and
differences between the optimal and heuristic SVM classifiers. We wanted to compare the
accuracy of the classifiers, their separating hyperplanes, the number and spatial location of
their support vectors. In particular, we wanted to see how many fewer support vectors a
heuristic SVM would have in relation to the optimal SVM for the same data. We limited
our study to considering classification problems with two classes, using synthetic data, and
SVMs with linear kernels.

There are several related works which compare SVMs based on linear and quadratic
optimization, including [13, 9, 11, 2, 14]. However, we do not know any work that has studied
SVM based on Vapnik’s LP problem suggested in [12]. Besides, [13, 9, 11, 2, 14] focus on the
convergence rate and performance of the methods, and do not take into account geometrical
properties of the classifiers. The novelty of our study is in the geometrical comparison of
the separating hyperplanes and support vectors obtained by the different methods. This
comparison allows us to make important conclusions about differences between the heuristic
and optimal SVMs.

Our experiments have shown that classifiers constructed using QP and LP are practically
identical in terms of generalization ability. However, there are two important differences
between them. First, they have different number of support vectors. In line with the idea
used to formulate the LP problem, the heuristic classifier has many fewer support vectors
than the optimal one. Second, their support vectors have very different distribution in
space. As is known, for the optimal classifier its support vectors lie on the margin between
two classes. In other words, they lie on the inner borders between two classes, among those
vectors that are closest to the vectors of the opposite class. In contrast to this, for the
heuristic classifier its support vectors turned out to lie on the furthermost borders of the two
classes, at the maximum distance from the vectors of the opposite class.

This leads us to an important methodological conclusion. Over the last 15 years, the view
about special importance of the training vectors lying on the margin between the classes has
become commonplace in the SVM community. The importance of vectors lying on the
distant, furthermost borders of two classes, has been downgraded and viewed as negligible.

1The generalization ability (performance) of a classifier is defined as its ability to correctly classify new objects
that are not included in the training set.
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Our experiments show the issue about the relative importance of different vectors in the
training set is more complex that it might conventionally appear. It turns out that most
distinctive vectors of the training set can be used to build a classifier which has practically
the same performance as the optimal one, built using vectors from the margin. This suggests
that new criteria for building good classifiers should be considered. Beyond this, combining
classifiers that are related to different parts of the training set allows us to endow the latter
with a meaningful structure and interpretation. For instance, it may be split into three
subsets (Figure 1):

1) the most distinctive (contrasting, obvious) members of classes,

2) typical members, located in the central areas of the classes,

3) in-margin or margin-adjacent members (the most challenging for classification).

Figure 1: Contrast between distinctive (1), typical (2), and margin-adjacent (3) members of
two classes.

This is particularly important in situations when a classifier is needed not to classify new
observations, but rather to analyze collected data and, for instance, to evaluate features used
to describe observations.

This paper is organized as follows. In Section 2, we review the formulations of QP and LP
problems that are at the core of the optimal and Vapnik’s heuristic SVM classifiers. In Section
3, we describe the specific data models which were used to test and compare SVM classifiers.
Section 4 describes our approach to the comparison of two classifiers. Section 5 summarizes
the results of our experiments with the classifiers: their performance on different data, and
comparison of their principal features. In section 6, we describe additional experiments with
heuristic SVM which give us more insight into geometrical properties of its support vectors.
In Section 7, we state the conclusions that can be drawn from our work.
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2 Quadratic and Linear Programming in SVM

Learning

Classification problems involving two classes can be formulated in the following way. We are
given a training set of l objects xi whose classification labels yi are known: (x1, y1), (x2, y2),
. . . , (xl, yl). Objects xi are n-dimensional numerical vectors, xi = (x1i , x

2
i , . . . , x

n
i ) ∈ Rn, class

labels yi are taken from set {−1, 1}, i = 1, 2, . . . , l. Using the given training set, we want to
find a decision function f : Rn → {−1, 1}, that will correctly classify any vector from Rn.

A SVM classifier (with a linear kernel) uses a decision function of the form

f(x) = sgn((w, x) + b), (2.1)

where w ∈ Rn, b ∈ R, and (w, x) is the inner product of vectors w and x. Geometrically,
this decision function corresponds to a hyperplane defined by equation (w, x) + b = 0, which
separates Rn into two half-spaces. It then assigns label 1 to all vectors from one of the
half-spaces, and label −1 to all vectors from the other half-space.

The optimal SVM classifier uses a decision function of the form (2.1), where parameters
w = (w1, w2, . . . , wn) and b are obtained as the optimal solution of the following QP problem:

1

2

n∑
k=1

w2
k + C

l∑
i=1

ξi → min, (2.2)

subject to

yi(
n∑

k=1

wkx
k
i + b) ≥ 1− ξi, i = 1, 2, . . . , l, (2.3)

ξi ≥ 0, i = 1, 2, . . . , l, (2.4)

where C > 0 is a characteristic parameter of the classifier. The set of constraints (2.3)
implies that the decision function (2.1) should classify correctly all vectors from the given
training set, up to some admissible errors (called slack variables). Optimization criterion
(2.2) means we want to maximize the margin between the two classes and minimize the
overall error on the training vectors.

Standard practice for obtaining a solution for this problem is to solve its dual problem,
formulated by introducing a Lagrangian and written in terms of dual variables α1, α2, . . . , αl :

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

yiyjαiαj(xi, xj)→ max, (2.5)

subject to

αi ≥ 0, i = 1, 2, . . . , l,

αi ≤ C, i = 1, 2, . . . , l, (2.6)
l∑

i=1

αiyi = 0.



– 4 –

If a set α∗1, α
∗
2, . . . , α

∗
l is the optimal solution of dual problem (2.5)-(2.6), then the opti-

mal solution w, b of primary problem (2.2)-(2.4) may be found according to the following
equations:

w =
l∑

i=1

α∗i yixi, (2.7)

b = yt − (w, xt), (2.8)

where t is an index of arbitrary α∗t < C. Decision function (2.1) can thus be written as

f(x) = sgn(
l∑

i=1

yiα
∗
i (xi, x) + b). (2.9)

Expansion (2.7) has an important geometrical interpretation. In practical applications,
most of the α∗i are generally equal to zero, which means that the vector w (and parameter
b) is defined by a small number of vectors from the training set. These training vectors
are called support vectors. Geometrically, they lie on the margins between the two classes,
and in SVM model they are the only training examples important in designing an optimal
classifier.

In [12], Vapnik formulated an alternative problem to find parameters w, b of the decision
function (2.1), aimed at minimizing the number of its support vectors:

l∑
i=1

αi + C
l∑

i=1

ξi → min, (2.10)

subject to

yi(
l∑

j=1

αjyj(xj, xi) + b) ≥ 1− ξi, i = 1, 2, . . . , l,

αi ≥ 0, i = 1, 2, . . . , l, (2.11)

ξi ≥ 0, i = 1, 2, . . . , l.

In this problem, the optimization variables are α1, α2, . . . , αl, ξ1, ξ2, . . . , ξl, b. When the opti-
mal solution of (2.10)-(2.11) is found, equation (2.7) is used to calculate the vector w. The
decision function is still of the form (2.9). Similar to a quadratic SVM, the training vectors
xi with nonzero coefficients α∗i in expansion (2.7) are called support vectors.

In contrast to the optimal SVM classifier, statistical properties of the classifier obtained
from the solution of problem (2.10)-(2.11) (VC-bounds, generalization performance esti-
mates) are not known. This is why this classifier is called heuristic SVM. In the present
study we compared the generalization performance of heuristic and optimal classifiers exper-
imentally.

Let us note that the heuristic SVM can be used with kernels, too. That is, if the decision
function

f(x) = sgn(
l∑

i=1

yiα
∗
i k(xi, x) + b)
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is used instead of (2.1), where k(. , .) is a kernel function, then the generalized heuristic
classifier may be obtained by solving the same LP problem (2.10)-(2.11) where in the first
set of constraints the k(xj, xi) term is used instead of (xj, xi).

We should also note that many alternative LP formulations for the linear separation of
two classes have been proposed in the literature (see, for example, [1, 6, 7, 8, 10, 4, 5]). In
particular, some works compare SVMs based on different linear and quadratic optimization
problems [13, 9, 11, 2, 14]. In the Introduction we briefly noted the main differences between
these earlier approaches and the present study. A detailed discussion of other works lies
outside the scope of this paper.

3 Data Description

We compared the optimal and heuristic classifiers in a series of experiments with different
synthetic data. These data were deliberately endowed with simple geometrical structure to
allow easy analysis and clear interpretation of their classification. Different parameters of
the data (dimensionality, degree of separability, boundaries of the classes, etc.) have been
varied to obtain a range of classification situations wide enough to formulate convincing
conclusions about the classifiers being tested.

We generated two classes of points in n-dimensional Euclidian space using two slightly
different data models. In both models, a mixture of three n-variable Gaussian distributions
(with standard deviation σ for every variable) was used to generate each class2. In data
model I, the means of the Gaussian distributions are points A1, A2 and A3 for the first
class, and B1, B2 and B3 for the second class (Figure 2). These points lie on a single plane,
symmetrically about the origin O, ρ(A1, A2) = ρ(A1, A3) = ρ(B1, B2) = ρ(B1, B3) = r,
and ρ(A1, B1) = d, where ρ(. , .) is the Euclidean distance between two points. The angle
between the line, passing through points A1, B1, and segments A1A2, A1A3, B1B2, B1B3, is
γ. For the first class, the probability of choosing A1 as the mean of a Gaussian distribution
is p, 0 < p < 1, while the probability of choosing A2 (or A3) as the mean is 1−p

2
. The same

holds for the second class. For both classes, 2l points are generated using this model, l points
in each class. Thus, data model I has six parameters n, d, r, γ, p, l, and parameter σ.

Figure 3 shows a slightly modified geometrical structure which was used as data model
II. All parameters of this model are similar to those of model I. These two models produce
classes which have different types of boundaries: model I produces classes with more contrast
and fewer marginal points, whereas model II produces classes with fewer contrast and more
marginal points.

Six series of experiments were carried out for each data model. In each experiment, we
chose values for parameters n, d, r, γ, p, l, and generated 2l points for a training set (l points
in each class) and 2000 points for a testing set (1000 points in each class). Then, we trained,
tested and compared heuristic and optimal classifiers. Each series of experiments consisted in
varying one of six parameters n, d, r, γ, p, l (Table 1). For example, the first series consisted

2Thus, each distribution has n by n covariance matrix of diagonal form with σ on the diagonal.
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Figure 2: Geometrical structure of data model I.

Figure 3: Geometrical structure of data model II.

of eight experiments with n variation. In every series, one parameter was varied according
to Table 1, whereas all other parameters were fixed at values from the following set which
we called primary: n = 2, d = 5, r = 2.5, γ = 45 ◦, p = 0.34, l = 100. The second series
consisted of five experiments with d variation. Note that experiment with the underscored
value five was not conducted in the second series because this was the experiment with the
primary set of parameters that had been already made as the very first one. This remark
holds for every series of experiments but the first one.

Thus, a total of 25 experiments were conducted for each data model. We used σ = 2 in
all experiments. Note that for the given values of parameters d, r, γ and σ, the classes are
likely to be linearly nonseparable, and their intersection should be larger for data model II.
In fact, in experiments 10-13 (d = 3.5, 3, 2.5, 2) with data model II, points B2 and B3 lie
on the right side of points A2 and A3, so in some cases classes have considerable overlap and
are very mixed up.
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Table 1: Parameter values in the experiments. Values of the primary set are underscored.

Parameter Brief description Values Experiment
number

n Space dimensionality 2 3 4 5 10 20 30 50 1-8
d Distance between A1, B1 5 4 3.5 3 2.5 2 9-13
r Distance between A1, A2 2.5 2 1.5 1 14-16
γ Half of the angle A2A1A3 11.25 ◦ 22.5 ◦ 45 ◦ 17-18
p Probability of choosing A1(B1) 0.17 0.34 0.5 0.75 19-21
l Number of training points in

each class
100 200 300 400 500 22-25

4 Comparison of SVM Classifiers

Comparative analysis of the classifiers was done on the basis of

1) their training and testing performance (accuracy), and their errors on a testing set;

2) geometrical similarity between their separating hyperplanes (angles and distances be-
tween hyperplanes);

3) comparison of their support vectors.

We give more technical details on this analysis in the following subsections, but before
that, let us discuss one additional issue. Both optimal and heuristic classifiers have parameter
C which should be set before learning (see problems (2.5)–(2.6) and (2.10)–(2.11)). Clearly,
this parameter affects properties of the optimal and heuristic classifiers differently, and com-
paring optimal and heuristic classifiers with the same value of C seems to be inappropriate.
Therefore, we decided to compare classifiers that had optimal value of the parameter C in a
given range of values, namely, in the set H = {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}.
The optimal value of parameter C was selected using five-fold cross validation. The training
set was split into five equal parts, a classifier was trained on four parts, and the number of
its correct answers on the remaining part was calculated. This step was repeated four more
times for different parts of the training set, and the total number of correct answers was
calculated for the given value of C. Value C∗ ∈ H that gave maximum number of correct
answers in five-fold cross validation was chosen as the optimal for parameter C.

4.1 Performance of classifiers

In addition to the accuracy of classifiers on training and testing data, we also used recall,
precision, and F1 measures to characterize their performance. Assume that Table 2 describes
results of classification of a+ b+ c+ d objects into two classes.
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Table 2: Classification results summary.

Predicted True classes
classes 1 2

1 a b
2 c d

Then, recall, precision, and F1 measures are defined as follows:

recall =
a

a+ c
, precision =

a

a+ b
, F1 =

2 · precision · recall

precision + recall
.

The Tanimoto measure was used to evaluate similarity in classifiers’ testing errors. The
Tanimoto measure of similarity between two sets M1 and M2 is defined as

τ(M1,M2) =
|M1

⋂
M2|

|M1
⋃
M2|

.

It may be seen that τ(M1,M2) varies from zero to one; it equals to zero when M1 and M2

have no common elements, and to one when M1 and M2 are the same.

4.2 Coefficients of similarity between two hyperplanes

To evaluate the similarity between separating hyperplanes, we calculated weighted angles
between hyperplanes and three quantities characterizing their proximity (distance) based on
the training set. Thus, seven different characteristics were used to capture as much useful
information about the geometry of the classifiers as possible.

Let π1, π2 be the hyperplanes used by two SVM classifiers, and w1, w2 are their normal
vectors, respectively. Let K1 is a subset of all points from the training set Strain, that belong
to the first class, and K2 is a subset of all points from the training set, that belong to the
second class. For two vectors u1, u2 from Rn, we denote by α(u1, u2) the angle between them,
i.e.,

α(u1, u2) = arccos
(u1, u2)

||u1|| · ||u2||
.

For vector u and hyperplane π we denote by u(π) the orthogonal projection of u onto π.
We calculated the following quantities.

1. The angle between hyperplanes is equal to the angle between their normal vectors:

α1(π1, π2) = α(w1, w2). (4.1)

2. Angle between hyperplanes divided by angle β, where β is defined for each data configu-
ration as shown in Figure 4:

α2(π1, π2) =
α1(π1, π2)

β
. (4.2)
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This quantity takes into account the spread between two classes of points. Note that in
experiments 10–13 (d = 3.5, 3, 2.5, 2) with data model II angle β is not defined, since points
B2, B3 lie on the right side of points A2, A3, and so parameter (4.2) is not defined either.

Figure 4: Angle β.

3. The angle between hyperplanes, normalized by the average angle between vectors from
the different classes:

α3(π1, π2) =
α1(π1, π2)

1
|K1||K2|

∑
u1∈K1

∑
u2∈K2

α(u1, u2)
. (4.3)

4. Let us assume K1 = {a1, a2, . . . , am}, K2 = {b1, b2, . . . , bs}, and define sets K∗1 and K∗2 :

K∗1 = {(ai, aj) : 1 ≤ i < j ≤ m}, K∗2 = {(bi, bj) : 1 ≤ i < j ≤ s}.

Note that

|K∗1 | = |K1|
|K1| − 1

2
, |K∗2 | = |K2|

|K2| − 1

2
.

We calculated the angle between hyperplanes using one more normalization factor:

α4(π1, π2) =
α1(π1, π2)

|K1||K2|

 1

|K2| − 1

∑
u3∈K1

∑
(u1,u2)∈K∗

2

α(u1 − u3, u2 − u3)+

+
1

|K1| − 1

∑
u3∈K2

∑
(u1,u2)∈K∗

1

α(u1 − u3, u2 − u3)

 . (4.4)

5. Average distance between projections of training vectors onto the hyperplanes normalized
by the average norm of training vectors:

d1(π1, π2) =

∑
u∈Strain

||u(π1)− u(π2)||∑
u∈Strain

||u||
. (4.5)

6. Average distance between projections of training vectors onto the hyperplanes normalized
by the average distance between vectors from different classes:

d2(π1, π2) =

1
|Strain|

∑
u∈Strain

||u(π1)− u(π2)||
1

|K1||K2|
∑

u1∈K1

∑
u2∈K2

||u1 − u2||
. (4.6)



– 10 –

7. Average distance between projections of training vectors onto the hyperplanes normalized
by the average norm of their projections onto hyperplanes:

d3(π1, π2) =
2

|Strain|
∑

u∈Strain

||u(π1)− u(π2)||
||u(π1)||+ ||u(π2)||

. (4.7)

4.3 Support vectors

For two classifiers, we compared the number of their support vectors, the number of common
support vectors, and their spatial location. We used the following approach to analyze spatial
location of support vectors. For each vector in a class, we calculated the sum of Euclidean
distances (cumulative distance) between this vector and all vectors in the opposite class:

D(ai) =
s∑

j=1

ρ(ai, bj), i = 1, 2, . . . ,m,

D(bj) =
m∑
i=1

ρ(bj, ai), j = 1, 2, . . . , s,

where K1 = {a1, a2, . . . , am} is the first class of vectors, K2 = {b1, b2, . . . , bs} is the second
class of vectors, and ρ(. , .) is the Euclidian distance between two vectors (Figure 5). Then,
we created two ordered lists of all vectors in each class using calculated values:

D(ai1) ≤ D(ai2) ≤ . . . ≤ D(aim), (4.8)

D(bj1) ≤ D(bj2) ≤ . . . ≤ D(bjs). (4.9)

Take, for example, the first class. We put vector ai1 with the minimum value of D(ai1)
(closest to the opposite class) in the first position in list (4.8), vector ai2 with the minimum
value of D(ai2) among the rest of the vectors (next closest to the opposite class) – in the
second position, and so on, until we put vector aim with the maximum value of D(aim)
(most distant from the opposite class) in the last position in the list. The same was done
for the second class. Finally, for each class, we calculated minimum, maximum, and average
positions of support vectors in lists (4.8), (4.9).

5 Experimental Results

Throughout this section, a heuristic classifier based on the LP problem (2.10)–(2.11) is
denoted as SVM-L, and an optimal classifier based on the QP problem (2.5)–(2.6) is denoted
as SVM-Q. In our study, SVM-Q classifier was taken from LIBSVM library [3], and SVM-L
classifier was written by the authors in C using the MOSEK3 optimization software.

3http://www.mosek.com
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Figure 5: Calculation of cumulative distance between a vector from one class and vectors
from the other class.

5.1 Performance of classifiers

As Tables 4 and 5 show, the performance of classifiers is practically identical in all experi-
ments. Let us recall that in experiments 1–21 the size of the training set is 200 vectors, and
in experiments 22, 23, 24, and 25 it is 400, 600, 800, and 1000 vectors, respectively (equal
number of vectors in each class). The size of the testing set is 2000 vectors in all experiments
(1000 vectors in each class). As it was mentioned in Section 3, vectors generated using data
model II are more difficult to classify than those generated using data model I, because the
intersection of two classes tends to be larger for data model II. This results in lower average
performance of both classifiers on data set II.

Table 4 provides Tanimoto coefficient which measures the number of common errors of
two classifiers on a testing set. It follows from this table that SVM-L and SVM-Q misclassify
very similar subsets of vectors.

Overall, Tables 4 and 5 suggest that both classifiers build very similar separating hyper-
planes. This observation will be further substantiated below.

5.2 Separating hyperplanes

Similarity between the separating hyperplanes of SVM-L and SVM-Q, as measured by the
geometrical characteristics defined in equations (4.1)–(4.7), is shown in Tables 6 and 7. In
experiments with data model I, the average value of the angle between hyperplanes (parame-
ter α1) is 6.38 ◦, with standard deviation of 7.73 ◦ (min and max values are 0.00 ◦ and 24.98 ◦).
In experiments with data model II, the average value of the angle between hyperplanes is
5.57 ◦, with standard deviation of 6.45 ◦ (min and max values are 0.00 ◦ and 29.50 ◦). In fact,
parameters (4.1)–(4.7) are highly correlated with each other, as Table 3 shows. Therefore,
parameter α1 gives quite a complete picture of similarity between the hyperplanes. It may be
seen that the angle between the hyperplanes was rather large in experiments 2–8, where the
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dimensionality of vector space was varied. Note that in experiments 10–13 on data model II
parameter α2 is not defined (see remark after equation (4.2)).

In general, Tables 6 and 7 prove that both classifiers have very similar separating hyper-
planes.

Table 3: Correlation between parameters (4.1)–(4.7).

Data I Data II
α1 α1

α2 1.00 α2 0.77
α3 0.99 α3 1.00
α4 0.88 α4 0.98
d1 0.99 d1 1.00
d2 0.99 d2 0.99
d3 0.66 d3 0.75

5.3 Support vectors

Despite the fact that the hyperplanes of SVM-L and SVM-Q turned out to be very similar
in terms of geometry, the number of support vectors differed radically for these classifiers,
as Tables 8 and 9 show. Generally, SVM-L had several support vectors (rarely more than
three), while SVM-Q – dozens and hundreds of support vectors. Table 8 shows that nearly
in a half of experiments (10 out of 25 for data I, and 17 out of 25 for data II) the number
of support vectors for SVM-Q is larger than 75% of the training set size (marked in bold in
Table 8). Conversely, for SVM-L the number of support vectors varies from 0.1% to 12.5%
of the training set size.

In all experiments on data I and II, excluding those where n was varied (experiments
1–8), the number of support vectors for SVM-L is equal to one or two. In experiments 1–8
on data I, it changes from one to 13, and in experiments 1–8 on data II – from one to 25.

It is interesting to review experiments 1, 22–25 with l variation, where the number of
support vectors for SVM-Q significantly changes with l growth, while the number of support
vectors for SVM-L practically does not change.

As it may be seen in Table 8, in experiment 22 with data I the number of support vectors
for SVM-Q is 96% of the 400-vector training set, and is only 9.8% of the 1000-vector training
set in experiment 25. This situation may seem to be confusing, but the explanation here is
that in these experiments SVM-Q had different values of the parameter C (see Figure 7 in
Appendix).

From the last two rows of Table 8 we can see that, due to less linear separability of
classes in data model II, both classifiers have larger average number of support vectors in
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experiments with data model II.
Overall, Tables 8 and 9 clearly show how efficiently the idea used to build SVM-L works:

the heuristic SVM has many fewer support vectors, than the optimal SVM.
Table 10 shows the distribution of support vectors over the two classes for each classifier.

While this distribution is almost perfectly symmetric for SVM-Q, SVM-L tends to prefer
second class to the first when choosing support vectors. To see whether this asymmetry is
attributed to chance, we conducted nine more series of 25 experiments with each data model,
and produced the averaged distribution of support vectors in ten series of experiments, which
is given in Table 11. We can see from this table that averaged numbers still show a bias
in distribution of SVM-L support vectors over the two classes in some experiments (e.g.,
experiments number 5, 11, 15, and 17, data I), and this bias is not always one-directional
(cf. experiments 15 and 17, data I). We used t-test to see whether the average number of
support vectors in each class is the same for each experiment. In all experiments except
experiments 5, 11, 15, and 17 with data model I, this was proved to be the case with
significance level 0.01.

Tables 12 and 13 describe the spatial location of support vectors with respect to the
opposite class. As described in subsection 4.3, vectors of the training set were ordered ac-
cording to their cumulative distance to the vectors of the opposite class. For a set of support
vectors, their minimum, maximum, and average positions in this order were calculated, to
see where they lay with respect to the inner and outer boundaries of the classes.

Let us go through the first row of Table 12 with some explanations. First part of this row
says that in the first experiment SVM-L had one support vector in the second class and no
support vectors in the first class. Maximum position of its support vectors from the second
class in ordering (4.9) is, therefore, equal to the position of that single support vector, which
happened to be 100. Similarly, average and minimum position of support vectors from the
second class is equal to 100. Now, in this experiment, there were 200 vectors in the training
set, 100 vectors in each class. Thus, among all training vectors of the second class, our single
support vector is the one most distant from the opposite class.

The second part of the first row in Table 12 says that SVM-Q had 24 support vectors
in each class. In ordering (4.8), support vectors from the first class had maximum position
equal to 40, average position equal to 15, and minimum position equal to 1. Thus, among
total 100 training vectors of the first class, 24 support vectors of SVM-Q were positioned
in the range from 40 to 1, with average position being equal to 15. That is, they were
distributed among vectors closest to the opposite class. Similar interpretation is valid for
SVM-Q support vectors from the second class.

From Tables 12 and 13 we can see that the average position of SVM-L support vectors is
always greater than the average position of SVM-Q support vectors, the maximum position
of SVM-L support vectors usually corresponds to the most distant borders of the classes,
while the minimum position of SVM-Q corresponds to the most close borders of classes.
This shows that support vectors of SVM-L are selected from vectors lying further from the
opposite class, while support vectors of SVM-Q are selected from vectors lying closer to the
opposite class.
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6 Heuristic SVM: Test on Data with an Outlier

To better understand geometrical properties of support vectors used by heuristic SVM, we
conducted additional tests of this classifier on simple 2-D data containing an outlier. Using
data model shown on Figure 6, we generated two classes of points with Gaussian distribution.
In the first class, the mean of the distribution was A1, in the second class, it was B1. Points
A1 and B1 lied symmetrically about the origin, at distance d from each other, which varied
in two series of experiments. Both distributions had standard deviation σ = 2. Each class
consisted of 100 vectors.

We used this setup to test heuristic SVM in the following way. First, we built a hypeplane
separating two generated classes. Then, we substituted one point in the first class with an
outlier C1 at distance r = 10 from A1 (Figure 6), and built a new hyperplane for these
data. We continued by rotating the outlier about the center of the first class (point A1)
anticlockwise by angle γ = π/8 at a time, and building a hyperplane for each position of the
outlier. Overall, we conducted 8 experiments – one without the outlier, and seven with the
outliers C1–C7. In each experiment, we were interested which vectors would become support
vectors of the hyperplane.

Figure 6: Data model used in experiments with an outlier.

Figures 8 and 9 show results of these experiments when d = 10 and two classes are linearly
separable, and when d = 6 and two classes are overlapped. We can see from these figures
that in all experiments support vectors are always those vectors lying at the largest distance
from the opposite class. In the first series of experiments (linearly separable classes), support
vectors also lie at the largest distance from the margin between two classes. However, it is
not the case for the second series of experiments (overlapped classes). This observation gives
us an important detail of the geometrical properties of support vectors of the heuristic SVM:
these vectors lie at the maximum distance from the opposite class, but not necessarily at the
maximum distance from the margin between two classes.
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7 Conclusions and Future Work

We have shown that the heuristic and optimal SVMs have almost identical performance on
our synthetic training and testing data. This result is similar to the conclusions reported in
[13, 9, 11, 2, 14] about the performance of other LP-based SVMs.

The most interesting results of this study come from the geometrical comparison of
separating hyperplanes and support vectors used by heuristic and optimal SVMs. We have
shown that hyperplanes of these SVMs are very similar in terms of geometry, which is a
more fundamental property of these classifiers than their similar performance. We have no
theoretical explanation of this observation but we believe it can be found. We also have
shown that there are two important differences between support vectors of heuristic and
optimal SVMs. These methods differ significantly in the number of their support vectors,
and in the location of their support vectors in space. While, as is well known, the optimal
SVM selects support vectors from the margin between two classes (margin-adjacent vectors
on Figure 1), it turned out that heuristic SVM selects support vectors from the most distant
borders of two classes, at the maximum distance from the opposite class (distinctive vectors
on Figure 1).

This observation is a very interesting outcome of our study. It shows that most distinc-
tive vectors of the training set can be used to build classifiers almost identical to optimal one
which uses marginal vectors. This observation may provide a useful clue to the theoretical
analysis of the heuristic SVM. Apparently, some property related to the distance between
support vectors from opposite classes may be used to get an upperbound VC-dimension for
the heuristic SVM (similar to the margin between two classes which is used to get an upper-
bound VC-dimension for the optimal SVM, [12]). The fact that the heuristic SVM selects
the most distinctive vectors of two classes, and the number of these vectors is small, may also
allow practitioners to obtain a more meaningful interpretation and a deeper understanding
of the solution of the classification problem at hand.

In our future work, we are interested in getting theoretical insights into the traits of
heuristic SVM – both related to its geometrical similarity to optimal SVM, and to the
geometrical location of its support vectors in space. We would like to compare heuristic
and optimal SVM on real, large benchmark data. We are also interested in testing these
classifiers with non-linear kernels and in their application to regression analysis.
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Table 4: SVM-L and SVM-Q performance in percents of correctly classified objects. The
Tanimoto coefficient is given multiplied by 100.

Experiment
Data I Data II

number
Training Testing Tanimoto Training Testing Tanimoto

performance performance coefficient performance performance coefficient
SVM-L / SVM-Q SVM-L / SVM-Q for testing SVM-L / SVM-Q SVM-L / SVM-Q for testing

errors errors

1 95.0 / 95.0 95.1 / 95.0 92.3 73.5 / 73.5 73.6 / 73.7 97.4
2 95.5 / 95.5 96.3 / 96.3 94.7 75.0 / 75.5 72.3 / 72.3 97.7
3 97.5 / 97.0 95.1 / 94.8 69.7 73.5 / 74.0 71.9 / 71.7 91.0
4 95.0 / 95.0 95.5 / 95.7 72.5 74.0 / 73.0 73.0 / 73.5 78.5
5 95.5 / 95.5 95.3 / 95.3 73.4 76.5 / 78.0 71.3 / 70.6 93.7
6 96.5 / 95.0 93.6 / 94.3 57.8 78.0 / 79.0 71.1 / 71.4 80.8
7 93.5 / 94.0 94.4 / 95.4 55.3 74.5 / 75.0 67.7 / 67.1 97.7
8 96.5 / 96.0 92.3 / 94.2 47.3 78.5 / 80.5 66.8 / 69.3 64.6
9 92.5 / 92.5 92.9 / 92.1 72.4 65.5 / 64.5 66.2 / 65.7 87.4

10 91.5 / 91.5 91.6 / 90.2 64.1 60.0 / 61.5 61.5 / 61.0 91.0
11 90.0 / 90.0 89.1 / 89.4 91.2 53.5 / 53.5 55.4 / 55.7 99.4
12 89.0 / 88.5 86.9 / 86.8 94.8 53.0 / 53.5 49.9 / 49.5 95.2
13 86.5 / 86.5 84.3 / 84.0 90.4 52.5 / 53.0 51.2 / 51.1 94.2
14 95.0 / 95.0 94.5 / 94.5 99.1 75.0 / 77.5 76.6 / 77.5 80.0
15 94.5 / 95.5 94.0 / 93.7 83.6 81.0 / 81.0 80.7 / 80.6 99.7
16 94.0 / 92.0 93.0 / 91.8 60.0 83.0 / 82.5 84.1 / 83.9 88.2
17 96.5 / 95.5 96.3 / 95.7 64.9 64.5 / 65.5 65.0 / 65.0 81.0
18 96.5 / 95.5 96.1 / 96.1 82.6 67.5 / 66.5 67.3 / 67.2 90.3
19 97.5 / 97.5 97.0 / 97.0 100.0 69.5 / 68.5 69.1 / 69.2 97.4
20 95.0 / 95.5 93.8 / 93.9 68.0 77.5 / 78.0 76.5 / 77.0 82.7
21 92.0 / 91.5 91.7 / 91.7 96.4 84.5 / 83.5 82.5 / 82.6 77.9
22 96.3 / 96.3 94.9 / 95.3 86.8 77.0 / 76.3 73.3 / 73.1 96.2
23 96.3 / 96.3 94.9 / 95.1 68.9 73.0 / 73.2 73.1 / 73.6 93.3
24 95.4 / 95.5 95.5 / 95.3 78.8 72.1 / 72.5 73.5 / 73.9 94.8
25 95.7 / 95.7 95.4 / 95.4 83.2 72.8 / 73.0 73.7 / 73.6 95.0

Average 94.4 / 94.2 93.6 / 93.5 77.9 71.4 / 71.7 69.9 / 70.0 89.8
Standard
deviation

2.7 / 2.7 3.0 / 3.1 15.0 8.9 / 8.9 8.5 / 8.6 8.7
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Table 5: Recall, precision, F1 for testing data.

Experiment
Data I Data II

number
Recall Precision F1 Recall Precision F1

SVM-L / SVM-Q SVM-L / SVM-Q SVM-L / SVM-Q SVM-L / SVM-Q SVM-L / SVM-Q SVM-L / SVM-Q

1 0.94 / 0.94 0.96 / 0.96 0.95 / 0.95 0.73 / 0.73 0.75 / 0.74 0.74 / 0.74
2 0.97 / 0.97 0.96 / 0.96 0.96 / 0.96 0.72 / 0.71 0.74 / 0.74 0.73 / 0.73
3 0.95 / 0.93 0.96 / 0.97 0.95 / 0.95 0.69 / 0.69 0.79 / 0.79 0.74 / 0.74
4 0.95 / 0.95 0.96 / 0.96 0.96 / 0.96 0.71 / 0.73 0.77 / 0.75 0.74 / 0.74
5 0.95 / 0.95 0.96 / 0.95 0.95 / 0.95 0.71 / 0.70 0.71 / 0.71 0.71 / 0.71
6 0.93 / 0.94 0.94 / 0.95 0.94 / 0.94 0.71 / 0.70 0.72 / 0.74 0.71 / 0.72
7 0.95 / 0.97 0.94 / 0.94 0.94 / 0.95 0.69 / 0.68 0.65 / 0.64 0.67 / 0.66
8 0.93 / 0.92 0.92 / 0.97 0.92 / 0.94 0.68 / 0.71 0.63 / 0.64 0.65 / 0.68
9 0.92 / 0.89 0.94 / 0.96 0.93 / 0.92 0.65 / 0.64 0.69 / 0.73 0.67 / 0.68

10 0.91 / 0.87 0.92 / 0.95 0.92 / 0.91 0.61 / 0.60 0.64 / 0.65 0.62 / 0.62
11 0.87 / 0.88 0.92 / 0.91 0.89 / 0.90 0.55 / 0.55 0.60 / 0.60 0.57 / 0.58
12 0.87 / 0.87 0.87 / 0.87 0.87 / 0.87 0.50 / 0.49 0.55 / 0.53 0.52 / 0.51
13 0.83 / 0.84 0.86 / 0.84 0.84 / 0.84 0.51 / 0.51 0.54 / 0.51 0.52 / 0.51
14 0.94 / 0.94 0.95 / 0.95 0.95 / 0.94 0.75 / 0.78 0.80 / 0.76 0.77 / 0.77
15 0.93 / 0.94 0.95 / 0.93 0.94 / 0.94 0.81 / 0.80 0.81 / 0.81 0.81 / 0.81
16 0.92 / 0.88 0.94 / 0.96 0.93 / 0.92 0.83 / 0.83 0.85 / 0.85 0.84 / 0.84
17 0.96 / 0.94 0.97 / 0.98 0.96 / 0.96 0.64 / 0.66 0.70 / 0.63 0.67 / 0.64
18 0.95 / 0.96 0.97 / 0.96 0.96 / 0.96 0.65 / 0.66 0.73 / 0.70 0.69 / 0.68
19 0.98 / 0.98 0.96 / 0.96 0.97 / 0.97 0.69 / 0.69 0.71 / 0.71 0.70 / 0.70
20 0.94 / 0.95 0.94 / 0.93 0.94 / 0.94 0.76 / 0.76 0.76 / 0.79 0.76 / 0.77
21 0.91 / 0.91 0.92 / 0.92 0.92 / 0.92 0.82 / 0.82 0.84 / 0.84 0.83 / 0.83
22 0.94 / 0.94 0.96 / 0.96 0.95 / 0.95 0.72 / 0.72 0.76 / 0.77 0.74 / 0.74
23 0.95 / 0.94 0.95 / 0.96 0.95 / 0.95 0.72 / 0.73 0.76 / 0.75 0.74 / 0.74
24 0.96 / 0.95 0.95 / 0.96 0.95 / 0.95 0.72 / 0.73 0.76 / 0.76 0.74 / 0.74
25 0.95 / 0.96 0.95 / 0.95 0.95 / 0.95 0.73 / 0.73 0.76 / 0.75 0.74 / 0.74

Average 0.93 / 0.93 0.94 / 0.94 0.94 / 0.94 0.69 / 0.69 0.72 / 0.72 0.71 / 0.70
Standard
deviation

0.03 / 0.04 0.03 / 0.03 0.03 / 0.03 0.08 / 0.09 0.08 / 0.09 0.08 / 0.08
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Table 6: Angles between hyperplanes (in degrees).

Experiment α1 100 · α2 α3 α4

number Data I Data II Data I Data II Data I Data II Data I Data II

1 1.69 1.01 1.25 2.24 0.01 0.01 0.07 0.02
2 1.05 0.68 0.78 1.51 0.01 0.01 0.04 0.01
3 8.86 5.31 6.56 11.80 0.07 0.06 0.27 0.10
4 9.73 13.79 7.21 30.64 0.09 0.15 0.25 0.25
5 9.26 3.49 6.86 7.76 0.09 0.04 0.20 0.06
6 23.90 14.21 17.70 31.58 0.25 0.16 0.46 0.24
7 24.98 1.47 18.50 3.27 0.26 0.02 0.45 0.02
8 24.91 29.50 18.45 65.56 0.27 0.32 0.45 0.50
9 2.01 5.29 1.55 35.34 0.02 0.06 0.08 0.09

10 1.87 5.00 1.48 n/a 0.02 0.05 0.06 0.09
11 1.00 0.00 0.81 n/a 0.01 0.00 0.03 0.00
12 1.12 3.70 0.94 n/a 0.01 0.04 0.03 0.06
13 1.73 2.99 1.51 n/a 0.02 0.03 0.05 0.05
14 0.70 3.23 0.50 4.30 0.01 0.03 0.03 0.07
15 0.81 0.31 0.55 0.29 0.01 0.00 0.03 0.01
16 3.64 4.86 2.35 3.55 0.03 0.04 0.15 0.13
17 3.83 8.38 2.27 74.49 0.03 0.09 0.21 0.15
18 4.22 4.52 2.68 20.09 0.03 0.05 0.22 0.08
19 0.00 1.19 0.00 2.64 0.00 0.01 0.00 0.02
20 10.44 9.43 7.73 20.96 0.08 0.09 0.45 0.21
21 1.58 12.51 1.17 27.80 0.01 0.11 0.06 0.33
22 1.36 1.50 1.01 3.33 0.01 0.01 0.06 0.03
23 12.95 1.72 9.59 3.82 0.10 0.02 0.56 0.03
24 3.00 1.90 2.22 4.22 0.02 0.02 0.13 0.04
25 4.85 3.37 3.59 7.49 0.04 0.03 0.21 0.07

Average 6.38 5.57 4.69 17.27 0.06 0.06 0.18 0.11
Standard
deviation

7.73 6.45 5.73 20.90 0.08 0.07 0.17 0.12
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Table 7: Distances between hyperplanes.

Experiment d1 d2 d3
number Data I Data II Data I Data II Data I Data II

1 0.02 0.02 0.01 0.01 0.05 0.03
2 0.01 0.01 0.01 0.01 0.02 0.01
3 0.09 0.09 0.05 0.06 0.08 0.09
4 0.12 0.18 0.07 0.12 0.10 0.17
5 0.11 0.05 0.07 0.03 0.07 0.04
6 0.30 0.21 0.20 0.15 0.18 0.16
7 0.33 0.02 0.22 0.01 0.20 0.02
8 0.35 0.40 0.24 0.28 0.18 0.28
9 0.02 0.09 0.01 0.06 0.07 0.17

10 0.02 0.08 0.01 0.06 0.07 0.13
11 0.01 0.00 0.01 0.00 0.03 0.00
12 0.02 0.06 0.01 0.04 0.04 0.08
13 0.02 0.05 0.01 0.03 0.06 0.05
14 0.01 0.05 0.00 0.03 0.03 0.10
15 0.01 0.00 0.00 0.00 0.05 0.01
16 0.04 0.06 0.02 0.04 0.16 0.17
17 0.03 0.12 0.02 0.08 0.11 0.26
18 0.04 0.07 0.02 0.04 0.14 0.14
19 0.00 0.02 0.00 0.01 0.00 0.04
20 0.11 0.13 0.06 0.08 0.32 0.29
21 0.02 0.16 0.01 0.10 0.05 0.35
22 0.01 0.02 0.01 0.02 0.06 0.06
23 0.15 0.03 0.08 0.02 0.30 0.06
24 0.03 0.03 0.02 0.02 0.12 0.06
25 0.05 0.05 0.03 0.04 0.15 0.12

Average 0.08 0.08 0.05 0.05 0.11 0.11
Standard
deviation

0.10 0.09 0.07 0.06 0.08 0.10



– 21 –

Table 8: Number of support vectors for SVM-L and SVM-Q in percents of the training set
size. Numbers larger than 75% are in bold.

Experiment Size of the Data I Data II
number training set Number of Number of Number of Number of

support vectors support vectors support vectors support vectors
for SVM-L for SVM-Q for SVM-L for SVM-Q

(% of training set) (% of training set) (% of training set) (% of training set)

1 200 0.5 24.0 0.5 63.0
2 200 1.5 11.5 1.5 61.5
3 200 1.5 100.0 1.5 93.0
4 200 2.0 29.5 1.0 73.0
5 200 1.0 58.5 5.0 57.0
6 200 6.5 62.0 7.5 97.0
7 200 4.0 100.0 12.5 68.0
8 200 4.5 100.0 4.0 100.0
9 200 0.5 100.0 1.0 83.5

10 200 0.5 100.0 0.5 89.5
11 200 1.0 39.0 1.0 92.0
12 200 0.5 79.0 0.5 100.0
13 200 0.5 83.0 1.0 100.0
14 200 0.5 59.0 0.5 100.0
15 200 0.5 14.0 1.0 100.0
16 200 0.5 100.0 0.5 84.0
17 200 0.5 100.0 1.0 100.0
18 200 0.5 52.0 1.0 81.0
19 200 1.0 6.5 0.5 77.5
20 200 0.5 13.5 0.5 54.5
21 200 1.0 68.0 0.5 83.0
22 400 0.5 96.0 0.3 58.8
23 600 0.2 37.5 0.3 82.7
24 800 0.3 34.9 0.1 80.8
25 1000 0.2 9.8 0.2 62.9

Average 1.2 59.1 1.8 81.7
Standard
deviation

1.5 35.0 2.8 15.6
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Table 9: Number of common support vectors for SVM-L and SVM-Q. Numbers larger than
75% of the training set size are in bold.

Experiment Size of the Data I Data II
number training set Number of support vectors Number of support vectors

SVM-L / SVM-Q / common SVM-L / SVM-Q / common

1 200 1 / 48 / - 1 / 126 / -
2 200 3 / 23 / - 3 / 123 / -
3 200 3 / 200 / 3 3 / 186 / -
4 200 4 / 59 / - 2 / 146 / -
5 200 2 / 117 / - 10 / 114 / -
6 200 13 / 124 / - 15 / 194 / 13
7 200 8 / 200 / 8 25 / 136 / 2
8 200 9 / 200 / 9 8 / 200 / 8
9 200 1 / 200 / 1 2 / 167 / -

10 200 1 / 200 / 1 1 / 179 / -
11 200 2 / 78 / - 2 / 184 / -
12 200 1 / 158 / - 1 / 200 / 1
13 200 1 / 166 / - 2 / 200 / 2
14 200 1 / 118 / - 1 / 200 / 1
15 200 1 / 28 / - 2 / 200 / 2
16 200 1 / 200 / 1 1 / 168 / -
17 200 1 / 200 / 1 2 / 200 / 2
18 200 1 / 104 / - 2 / 162 / -
19 200 2 / 13 / - 1 / 155 / -
20 200 1 / 27 / - 1 / 109 / -
21 200 2 / 136 / - 1 / 166 / -
22 400 2 / 384 / - 1 / 235 / -
23 600 1 / 225 / - 2 / 496 / -
24 800 2 / 279 / - 1 / 646 / -
25 1000 2 / 98 / - 2 / 629 / -

Average 2.6 / 143.4 / 1.0 3.7 / 220.8 / 1.2
Standard
deviation

3.0 / 89.1 / 2.4 5.6 / 144.7 / 3.0
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Table 10: Distribution of support vectors of SVM-L and SVM-Q over classes.

Experiment Size of the Data I Data II
number training set Number of Number of Number of Number of

support vectors support vectors support vectors support vectors
for SVM-L for SVM-Q for SVM-L for SVM-Q

Class 1 / Class 2 Class 1 / Class 2 Class 1 / Class 2 Class 1 / Class 2

1 200 - / 1 24 / 24 1 / - 63 / 63
2 200 1 / 2 12 / 11 - / 3 61 / 62
3 200 - / 3 100 / 100 1 / 2 93 / 93
4 200 - / 4 30 / 29 1 / 1 74 / 72
5 200 - / 2 59 / 58 5 / 5 57 / 57
6 200 3 / 10 61 / 63 6 / 9 97 / 97
7 200 5 / 3 100 / 100 14 / 11 70 / 66
8 200 2 / 7 100 / 100 3 / 5 100 / 100
9 200 - / 1 100 / 100 1 / 1 84 / 83

10 200 - / 1 100 / 100 1 / - 89 / 90
11 200 1 / 1 39 / 39 1 / 1 92 / 92
12 200 - / 1 79 / 79 - / 1 100 / 100
13 200 - / 1 83 / 83 - / 2 100 / 100
14 200 - / 1 59 / 59 1 / - 100 / 100
15 200 - / 1 14 / 14 1 / 1 100 / 100
16 200 - / 1 100 / 100 - / 1 84 / 84
17 200 - / 1 100 / 100 1 / 1 100 / 100
18 200 - / 1 52 / 52 1 / 1 81 / 81
19 200 - / 2 7 / 6 - / 1 78 / 77
20 200 1 / - 14 / 13 - / 1 55 / 54
21 200 1 / 1 68 / 68 - / 1 83 / 83
22 400 - / 2 192 / 192 - / 1 118 / 117
23 600 1 / - 112 / 113 - / 2 248 / 248
24 800 - / 2 139 / 140 - / 1 323 / 323
25 1000 - / 2 49 / 49 - / 2 314 / 315

Average 1.9 / 2.2 71.7 / 71.7 2.7 / 2.5 110.6 / 110.3
Standard
deviation

1.5 / 2.2 44.4 / 44.7 3.6 / 2.7 72.2 / 72.5
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Table 11: Averaged distribution of support vectors of SVM-L and SVM-Q over classes in 10
series of 25 experiments.

Experiment Size of the Data I Data II
number training set Average number Average number Average number Average number

of support vectors of support vectors of support vectors of support vectors
for SVM-L for SVM-Q for SVM-L for SVM-Q

Class 1 / Class 2 Class 1 / Class 2 Class 1 / Class 2 Class 1 / Class 2

1 200 0.9 / 0.9 62.5 / 62.5 1.3 / 0.7 84.3 / 84.3
2 200 1.4 / 0.9 32.4 / 32.5 1.4 / 1.3 75.2 / 75.3
3 200 1.4 / 1.7 59.0 / 58.8 1.5 / 1.7 79.9 / 79.7
4 200 1.0 / 1.9 41.8 / 41.0 2.0 / 2.3 85.0 / 84.4
5 200 4.4 / 1.7 61.7 / 61.6 3.3 / 3.9 80.8 / 80.4
6 200 5.3 / 5.6 71.9 / 72.0 5.0 / 6.9 82.8 / 82.9
7 200 5.8 / 5.1 75.7 / 76.5 7.1 / 7.5 90.5 / 90.0
8 200 6.8 / 7.2 81.2 / 80.8 17.4 / 16.5 87.1 / 86.6
9 200 1.0 / 0.7 79.9 / 79.9 0.9 / 0.8 86.3 / 86.3

10 200 1.0 / 0.7 58.4 / 58.6 1.2 / 0.7 92.2 / 92.3
11 200 1.3 / 0.6 63.0 / 62.7 0.6 / 1.0 94.8 / 94.7
12 200 0.8 / 1.0 62.8 / 62.8 1.3 / 0.9 99.0 / 98.8
13 200 0.5 / 1.2 60.7 / 60.7 0.9 / 0.8 98.5 / 98.3
14 200 0.7 / 1.0 64.7 / 64.6 1.0 / 0.7 80.5 / 80.4
15 200 1.3 / 0.3 62.7 / 62.6 0.6 / 1.2 74.3 / 74.3
16 200 0.8 / 0.6 77.2 / 77.1 0.5 / 1.0 87.0 / 86.9
17 200 0.4 / 1.3 51.2 / 51.2 1.1 / 0.8 86.6 / 86.6
18 200 0.8 / 0.5 73.0 / 73.0 1.2 / 0.9 81.7 / 81.8
19 200 0.9 / 1.0 39.8 / 39.8 0.9 / 0.6 88.7 / 88.5
20 200 0.6 / 0.9 39.5 / 39.4 0.8 / 0.7 64.5 / 64.4
21 200 1.0 / 0.7 77.9 / 77.9 0.7 / 0.7 65.4 / 65.3
22 400 0.9 / 1.1 73.9 / 74.1 0.9 / 1.0 128.2 / 128.1
23 600 0.8 / 0.9 158.2 / 158.2 0.7 / 1.2 238.9 / 238.9
24 800 0.9 / 0.9 150.5 / 150.4 0.9 / 0.8 307.0 / 306.9
25 1000 1.0 / 0.9 151.4 / 151.7 0.9 / 1.1 373.1 / 373.4

Average 1.7 / 1.6 73.2 / 73.2 2.2 / 2.2 112.5 / 112.4
Standard
deviation

1.6 / 2.0 37.4 / 37.6 3.3 / 3.1 63.9 / 64.1
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Table 12: Location of support vectors (SV) with respect to the opposite class. Data I.

Experiment SVM-L SVM-Q
number / Number Support vectors position Number Support vector position

Size of of SV max average min of SV max average min
training set Class1 /Class2 Class1 /Class2

1 / 200 - / 1 - / 100 - / 100 - / 100 24 / 24 40 / 32 15 / 13 1 / 1
2 / 200 1 / 2 99 / 99 99 / 96 99 / 92 12 / 11 14 / 25 7 / 8 1 / 1
3 / 200 - / 3 - / 100 - / 99 - / 98 100 / 100 100 / 100 51 / 51 1 / 1
4 / 200 - / 4 - / 100 - / 94 - / 81 30 / 29 67 / 54 20 / 18 1 / 1
5 / 200 - / 2 - / 98 - / 93 - / 88 59 / 58 87 / 83 33 / 32 1 / 1
6 / 200 3 / 10 94 / 100 91 / 87 89 / 69 61 / 63 91 / 96 35 / 36 1 / 1
7 / 200 5 / 3 94 / 92 92 / 84 89 / 75 100 / 100 100 / 100 51 / 51 1 / 1
8 / 200 2 / 7 96 / 100 89 / 85 81 / 61 100 / 100 100 / 100 51 / 51 1 / 1
9 / 200 - / 1 - / 100 - / 100 - / 100 100 / 100 100 / 100 51 / 51 1 / 1

10 / 200 - / 1 - / 100 - / 100 - / 100 100 / 100 100 / 100 51 / 51 1 / 1
11 / 200 1 / 1 99 / 100 99 / 100 99 / 100 39 / 39 44 / 72 20 / 22 1 / 1
12 / 200 - / 1 - / 100 - / 100 - / 100 79 / 79 83 / 94 40 / 41 1 / 1
13 / 200 - / 1 - / 100 - / 100 - / 100 83 / 83 91 / 94 42 / 42 1 / 1
14 / 200 - / 1 - / 100 - / 100 - / 100 59 / 59 77 / 63 31 / 30 1 / 1
15 / 200 - / 1 - / 100 - / 100 - / 100 14 / 14 25 / 33 10 / 9 1 / 1
16 / 200 - / 1 - / 100 - / 100 - / 100 100 / 100 100 / 100 51 / 51 1 / 1
17 / 200 - / 1 - / 100 - / 100 - / 100 100 / 100 100 / 100 51 / 51 1 / 1
18 / 200 - / 1 - / 100 - / 100 - / 100 52 / 52 76 / 67 27 / 27 1 / 1
19 / 200 - / 2 - / 100 - / 100 - / 99 7 / 6 8 / 7 4 / 4 1 / 1
20 / 200 1 / - 100 / - 100 / - 100 / - 14 / 13 43 / 32 10 / 9 1 / 1
21 / 200 1 / 1 100 / 100 100 / 100 100 / 100 68 / 68 73 / 84 35 / 35 1 / 1
22 / 400 - / 2 - / 200 - / 200 - / 199 192 / 192 196 / 197 97 / 97 1 / 1
23 / 600 1 / - 300 / - 300 / - 300 / - 112 / 113 156 / 224 58 / 63 1 / 1
24 / 800 - / 2 - / 400 - / 400 - / 399 139 / 140 229 / 329 73 / 79 1 / 1
25 / 1000 - / 2 - / 500 - / 500 - / 499 49 / 49 171 / 119 35 / 30 1 / 1
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Table 13: Location of support vectors (SV) with respect to the opposite class. Data II.

Experiment SVM-L SVM-Q
number / Number Support vector position Number Support vectors position

Size of of SV max average min of SV max average min
training set Class1 /Class2 Class1 /Class2

1 / 200 1 / - 100 / - 100 / - 100 / - 63 / 63 97 / 91 35 / 34 1 / 1
2 / 200 - / 3 - / 99 - / 97 - / 93 61 / 62 97 / 92 37 / 36 1 / 1
3 / 200 1 / 2 96 / 100 96 / 100 96 / 99 93 / 93 99 / 98 47 / 47 1 / 1
4 / 200 1 / 1 100 / 100 100 / 100 100 / 100 74 / 72 93 / 98 41 / 42 1 / 1
5 / 200 5 / 5 100 / 97 85 / 95 73 / 93 57 / 57 98 / 100 37 / 39 1 / 1
6 / 200 6 / 9 87 / 97 48 / 73 22 / 25 97 / 97 100 / 100 50 / 49 1 / 1
7 / 200 14 / 11 94 / 95 61 / 64 5 / 2 70 / 66 100 / 100 47 / 47 1 / 1
8 / 200 3 / 5 92 / 99 59 / 87 42 / 64 100 / 100 100 / 100 51 / 51 1 / 1
9 / 200 1 / 1 100 / 99 100 / 99 100 / 99 84 / 83 98 / 94 44 / 42 1 / 1

10 / 200 1 / - 100 / - 100 / - 100 / - 89 / 90 98 / 100 46 / 46 1 / 1
11 / 200 1 / 1 100 / 97 100 / 97 100 / 97 92 / 92 99 / 100 47 / 47 1 / 1
12 / 200 - / 1 - / 99 - / 99 - / 99 100 / 100 100 / 100 51 / 51 1 / 1
13 / 200 - / 2 - / 100 - / 100 - / 99 100 / 100 100 / 100 51 / 51 1 / 1
14 / 200 1 / - 100 / - 100 / - 100 / - 100 / 100 100 / 100 51 / 51 1 / 1
15 / 200 1 / 1 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100 51 / 51 1 / 1
16 / 200 - / 1 - / 100 - / 100 - / 100 84 / 84 95 / 84 43 / 43 1 / 1
17 / 200 1 / 1 100 / 96 100 / 96 100 / 96 100 / 100 100 / 100 51 / 51 1 / 1
18 / 200 1 / 1 100 / 96 100 / 96 100 / 96 81 / 81 93 / 86 42 / 41 1 / 1
19 / 200 - / 1 - / 99 - / 99 - / 99 78 / 77 100 / 96 42 / 40 1 / 1
20 / 200 - / 1 - / 100 - / 100 - / 100 55 / 54 90 / 74 31 / 30 1 / 1
21 / 200 - / 1 - / 100 - / 100 - / 100 83 / 83 91 / 91 42 / 42 1 / 1
22 / 400 - / 1 - / 200 - / 200 - / 200 118 / 117 180 / 188 66 / 64 1 / 1
23 / 600 - / 2 - / 300 - / 300 - / 299 248 / 248 283 / 291 125 / 127 1 / 1
24 / 800 - / 1 - / 400 - / 400 - / 400 323 / 323 377 / 395 164 / 167 1 / 1
25 / 1000 - / 2 - / 500 - / 500 - / 499 314 / 315 479 / 466 172 / 179 1 / 1
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Figure 7: C values (logarithmic scale) for SVM-L and SVM-Q in experiments 1-25.
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Figure 8: Test of heuristic classifier on data with an outlier. Distance d between class centers
(black crosses) is equal to 10. On figure (a) both classes have no outliers, on figures (b)–(h) first
class (green points) has one outlier which is rotating around the center of the first class towards
the second class. Black line is the separating hyperplane, blue circles mark its support vectors.
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Figure 9: Test of heuristic classifier on data with an outlier. Distance d between class centers
(black crosses) is equal to 6. On figure (a) both classes have no outliers, on figures (b)–(h) first
class (green points) has one outlier which is rotating around the center of the first class towards
the second class. Black line is the separating hyperplane, blue circles mark its support vectors.


