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ABSTRACT

Nuclear attacks are among the most devastating terrorist attacks, with severe losses of human
lives as well as damage to infrastructure. It becomes increasingly vital to have sophisticated
nuclear surveillance and detection systems deployed in major cities in the U.S. to deter such
threats. In this paper, we outline a robust system of a mobile sensor network and develop
statistical algorithms and models to provide consistent and pervasive surveillance of nuclear
materials in major cities. Specifically, the network consists of a large number of vehicles,
such as taxicabs and police cars, on which nuclear sensors and Global Position System (GPS)
tracking devices are installed. Real time readings of the sensors are processed at a central
surveillance center, where mathematical and statistical analyses are performed. We use sim-
ulations to evaluate the effectiveness and detection power of such a network.

Key Words: Nuclear Detection and Surveillance, Latent Models, Cluster Detection, Scan
Statistics



1 Introduction
Threats to national and homeland security have become more dynamic and complex in the
past decade due to global terrorism, increased opposition to U.S. interests, greater pursuit
of nuclear power and expanded access by adversaries to sophisticated technologies and ma-
terials. Among all the threats, nuclear attacks are arguably the most devastating. They can
cause severe losses and casualties in human lives as well as long term and large scale damage
to infrastructure. As the result, there have been growing concerns regarding the prospect
of transporting, storing and detonating nuclear materials or dirty bombs in the populous
metropolitan areas. Thus it becomes increasingly vital to have sophisticated nuclear de-
tection systems deployed in major cities. Proactive monitoring and detection via pervasive
surveillance is crucial to detect and thwart the malicious attacks.

We propose in this paper a massive surveillance network of mobile sensors that are
installed in vehicles such as taxicabs, buses, and police cars. In such a network, when vehicles
with sensors move within a certain range of a nuclear source, the radiation energy from the
source will trigger the sensor devices to send out wireless signals to a central command center
along with the positions of the sensors. With the random movement and extensive coverage
nature of the vehicles, this setup provides a constant surveillance of nuclear materials. In
this massive network, the mobile sensors do not need to be of high accuracy, since the failure
of a small portion of them will not significantly affect the effectiveness of the surveillance
coverage due to sensors’ random movements. Mounted on vehicles, the sensors have fewer
size constraints and power consumption requirements. We use less sophisticated sensors
which only report binary signals instead of the actual readings of radiation intensity in this
study. A positive signal is generated when the intensity from a nuclear source exceeds a
certain threshold. Due to the mobility of the sensors, regular inspection, maintenance and
calibration can be conducted at a central location. Thus this setup will further reduce the
cost. More importantly, it is almost impossible to tamper with such a network of devices.

A mobile sensor network is often supplemented by stationary sensors. In fact, in most
cases such a supplement is necessary to cover locations with sparse or zero traffic, such as
a large park in the city. Our algorithm can be directly applied to such a combination since
the stationary sensors may be viewed as the vehicles that are not moving in our models.
While our algorithm can be easily adapted to other similar networks, we will work with the
following typical mobile sensor network designs.

• Nuclear sensors and Global Position System (GPS) tracking devices are installed on a
large number of vehicles such as taxicabs, police vehicles, fire trucks, and buses.

• The sensors and GPS devices constantly send detection and location information to
a central surveillance center. Real time tracking signals are marked onto a map of a
metropolitan area under surveillance.

• Real time analysis is done at the surveillance center using sophisticated statistical
algorithms for the detection of existence and potential locations of nuclear sources.
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Based on our preliminary investigations of current sensor technology, it is feasible to
manufacture portable nuclear sensors with high accuracy. For instance, the leading man-
ufacturers such as Thermo Scientific and ICX Technology have produced portable nuclear
sensors with long range (up to 250 feet) detection capabilities. Currently these sensors are
still too expensive for a large scale deployment. However, with the rapid advancement in
technologies, low-cost sensors with a medium range and a reasonable accuracy should be
available in the near future.

Due to many attractive characteristics of sensor networks, there have been many studies
and applications of the sensor networks in military and civil applications including surveil-
lance, smart homes, remote environment monitoring. See [1] and [2] for a recent survey.
Much of the research devotes to sensor placement, sensor reorganization and communica-
tions. In the area of radiation detection, the idea of using massive mobile sensors has been
adopted and tested by the Radiation Laboratory at Purdue University[3]. They use a net-
work of cell phones with GPS capabilities to detect and track radiation. The noise and
false positive detection problems are tackled by setting and tuning the solid state devices.
A multi-sensor nuclear threat detection problem was studied in [4] using a combinatorial
network flow algorithm.

In this paper, we propose a mobile sensor network following the aforementioned design
and use statistical algorithms to analyze the network. Since the sensor signals are not 100%
accurate, there are always false alarms or missed detections. For example, a sensor might
display positive readings when there is no such signal, or fail to detect a real signal nearby.
From the viewpoint of statistical modeling, the occurrence of missed detections can be treated
as random. Statistical methodologies are effective tools for detecting true signals against
random errors. We consider probabilistic models for sensor reading and source detection.
These models are generalized to include multiple sources with different aggregation rules. In
our work so far, we do not have a specific model of vehicle movement, which will be a future
research topic. We assume that vehicles randomly roam within the monitoring region at
each time instance. If there are many vehicles with sufficiently random movements, this is a
reasonable first approximation. Since we do not model the vehicle movement, our approach is
robust against model misidentifications, although it may compromise some detection power
compared to other methods with an accurate model of vehicle movement.

Our algorithm in this study is based on recently developed statistical methods for de-
tecting multiple spatial clusters [5] [6] [7] [8]. In particular, our simulation studies use an
algorithm from the latent modeling approach proposed by [7] [8], which mimics the process
of typical sample data generation. The method introduces a latent modeling structure and
uses likelihood inference to detect multiple clusters simultaneously in an entire region. It
can filter out known and harmless sources efficiently and is suitable to analyze the signals
from our mobile sensor framework.

As mentioned before, the proposed mobile sensor network typically consists of a large
number of sensors. The detection capability of the system depends on the size of the network,
as well as other parameters. Our discussions with law enforcement agencies reveal some
reluctance to rely on private sectors (e.g., taxicabs) in surveillance. However, are there
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enough police cars to get sufficient coverage in a region? How many vehicles are needed
for sufficient coverage? How does the answer depend upon the range, the false positive and
false negative rates of detectors? These are some of the questions that we investigate in the
paper.

The rest of the paper is arranged as follows. Section 2.1 discusses the nuclear intensity
and sensor reading models. Section 2.2 covers the detection model. Section 2.3 reviews
and outlines developments of statistical methodologies to detecting multiple spatial clusters.
Section 3 describes simulation studies on several practical scenarios. We use the simulations
to estimate detection powers of the network with different sets of parameters. Section 4
concludes the paper with discussions and future research directions.

2 Models and Methodology

2.1 Nuclear Intensity and Sensor Reading Models

We consider a nuclear source in this paper as a small portable nuclear device transported
by an individual via trucks or bags [9]. As the nuclear radiation starts from a source, the
total energy stays as a constant due to the Conservation Law of Energy. For simplicity, we
assume that radiation travels in spherical waves. Let z(r) denote the intensity at distance
r. The total energy remaining a constant for all r is 4πr2z(r), where 4πr2 is the surface
area of the sphere with radius r. As the radius increases by a factor of k, the surface area
of the sphere will increase by a factor of k2. As a result, the radiation intensity z decreases
by the inverse square of the distance r [10]: z(r) = c/r2, where the constant c is a factor
related to the total energy of the source. Since the nuclear detection device is triggered by
radiation intensity, getting closer to the nuclear source will better the chance for detection.
The ubiquitous nature of the mobile sensor network takes advantage of this property.

As previously mentioned, we assume that the sensors report binary signals. Let S denote
the status of the sensor’s reading with the value of 1 for a positive reading and 0 otherwise.
We describe S with a threshold model:

S = 1{z(r)≥d} = 1{c/r2≥d} (1)

where d is a threshold for detection and 1{.} is the indicator function. That is, if the intensity
z(r) at the sensor location is greater than the threshold d, the sensor will detect the source;
otherwise the sensor reports a negative reading.

In practice there might be multiple nuclear sources, whose energy levels and positions
will jointly determine the reading status of a sensor. In this paper, we assume that nuclear
energies from difference sources are additive. For example, they are all within same spectrum
of frequencies. Let Ω be the number of sources, cω be energy factor of the ωth source, rω be
the distance from the sensor to this source. The aggregation of intensities from all sources
at the senor location is: ztotal =

∑Ω
ω=1 cω/r2

ω. From the threshold model (1), the reading S
can be determined by:

S = 1{ztotal≥d} = 1{
∑Ω

ω=1
cω/r2

ω≥d} (2)
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2.2 Nuclear Detection Model

As with any detection device, nuclear sensors are not necessarily 100% accurate. The inac-
curacy may stem from the variability in the manufacturing process, routine wear and tear,
missing scheduled maintenance and calibrations, and undetected malfunctions. In addition,
random traces of weak environmental nuclear signals can also trigger false alerts. For exam-
ple, a person who just went through a radioactive therapy or a bag of cat litter can trigger
positive alarms. We regard such sources as trivial sources as they are weak and last a very
short period of time. Furthermore the wireless signals from the mobile sensor to the control
center may incur transmission errors.

We use the two parameters sensitivity and specificity to assess the average performance
of a sensor device. In the context of nuclear detection, sensitivity, denoted as η, presents the
probability of detecting nuclear sources where there are indeed such materials. Specificity,
denoted as ζ , is the probability of not detecting any nuclear materials where there in fact
do not exist any. Let D be the binary indicator of a sensor detecting a true nuclear source,
D equal to 1 for the positive detection and 0 otherwise. We have η = P(D = 1|S = 1) and
ζ = P(D = 0|S = 0).

The quality control characteristics of a sensor, false negative rate (FNR) and false pos-
itive rate (FPR), can be expressed in η and ζ as: FNR = P(D = 0|S = 1) = 1 − η and
FPR = P(D = 1|S = 0) = 1 − ζ . Then the probability of detecting a nuclear source is:

P(D = 1) = P(D = 1|S = 1)P(S = 1) + P(D = 1|S = 0)P(S = 0)

= (1 − ζ) + (ζ + η − 1)P(S = 1). (3)

Under the perfect scenario where both η and ζ are 1, the detection D is the same as
the reading S. In practice, extremely accurate sensors are not necessary. However, the
effectiveness of the detection methods does depend on the accuracy.

The threshold model (1) can be expressed as S = 1{A}, where A = {r ≤ (c/d)1/2} is a
sphere, or a circle on a 2-dimensional map, centered at the nuclear source and with radius
R = (c/d)1/2. The ratio of the probabilities of a positive reading inside and outside the set
A is P (D = 1|A)/P (D = 1|Ā) = P (D = 1|S = 1)/P (D = 1|S = 0) = η/(1− ζ). In the case
when both FNR and FPR are less than 25%, for instance, we have the ratio greater than 3.
That is, the sensor is 3 times more likely to report a positive signal (D = 1) inside A than
inside Ā with moderate accuracy. This type of statement matches the definition of a spatial
cluster in the statistical literature, in which the clusters are defined as areas within which
an incident of interest is more likely to happen (i.e., with a higher probability of happening
per squared unit) than outside these areas. In our setting, an incident of interest is an alert
signal with D = 1. Thus, detecting spheres or circles like A is equivalent to the cluster
detection problem in statistics.

2.3 Statistical Methods for Detecting Spatial Clusters

A traditional statistical method to detect a cluster of events in spatial data is via Scan
Statistics [11] [12] [13] [14]. The most commonly used scan statistic is the maximum number
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of cases in a fixed size moving-window that scans through the study area. The test based on
this scan statistic has been shown to be a generalized likelihood ratio test for a uniform null
against a false alternative. A related scan statistic is the diameter of the smallest window
that contains a fixed number of cases. Other scan statistics and related likelihood based
tests for localized temporal or spatial clustering have been developed, often using a range
of fixed window sizes or a range of fixed number of cases [15] [16] [17] [18]. Scan statistics
methods have also been developed under the Bayesian framework [19] [20] [21] [22] [23].

Scan statistics procedures have been successful in detecting a single significant cluster,
and they also have had some success in detecting multiple clusters of fixed sizes. But difficul-
ties arise for detecting multiple clusters of varying sizes. In recent years, there have several
attempts to overcome this difficulty. A well known approach is a stepwise regression model
together with model selection procedures to locate and determine the number of unusually
high clustering regions [5] [6]. These approaches rely on a weighted least square formulation,
although the response variable (gaps between incidents) is typically non-Gaussian. Recently,
Xie, Sun and Naus [7] developed a latent cluster model for temporal data which allows the
use of the standard likelihood inference for detecting multiple clusters. Sun [8] extended the
temporal cluster detection to spatial data and developed a spatial cluster detection method
to simultaneously detect multiple clusters of varying sizes, as well as a significant single
cluster. These approaches are based on likelihood inference and they are more efficient in
detecting clusters of varying sizes than the weighted least squares approaches developed in
[5] [6]. We use the likelihood inference based method in our study and outline below the
main points of the approach.

We first assume that there are k non-overlapping clusters with the centers and radii as
latent random variables: O = (o1, o2, ..., ok), r = (r1, r2, ..., rk). Denote the jth cluster by
Aj . We assume the observations y=(y1, y2,..., yn) are i.i.d. samples from a piecewise uniform
density function:

fθ(y|O, r, k) =

{
cαi if y ∈ Ai

c if y /∈ ⋃k
i=1 Ai

where c is a normalizing constant, θ is the collection of all unknown parameters, αi is the
relative density in cluster i.

If we want to know whether there are any significant clusters in the data, we can test a
hypothesis H0:α1 = ... = αk = 1 versus H1: at least one αj �= 1. In order to do this, we need
to calculate the observed likelihood:

fθ(y, k)=
∫

...
∫

fθ(y,O, r, δ = k)dOdr

=
∫

...
∫

fθ(y|O, r, k)fθ(O, r|k)Pλ(δ = k)dr

where δ is a random variable such that {δ = k} is the event that k non-overlapping clusters
occur in the region.

Since the integration is difficult to compute directly, we use an Expectation-Maximization
(EM) algorithm (Dempster et al [24]) to solve the estimation problem where we treat
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(y,O, r, δ = k) as the complete responses and (y, δ = k) as the observed ones. When
a cluster is significant (i.e. αj �= 1), the cluster region is determined by the conditional
distribution of oj and rj given (y, δ = k).

In reality, we don’t know the value for the number of clusters. We use a standard
model selection process, either the AIC (Aikaike Information) or BIC (Bayesian Information)
Criterion, to determine the k value.

2.4 A design question on number of vehicles

Typically, the larger the number of vehicles, the higher the statistical power of detection.
Here, the statistical power can be interpreted as the probability of detecting a true nuclear
source by the network. The required number of vehicles in the surveillance network can be
quantified by statistical power analysis. We have developed a model and carried out a large
number of computer tests to assess power of detection under different assumptions. For
example, we have studied a surveillance network that covers an area of 4000 feet by 10000
feet, roughly equal to the area of the roads and sidewalks of Mid/Downtown Manhattan. In
this phase of our research, we are disregarding the street network. We fix key parameters
such as effective range, false positive and false negative rates for the sensors.

3 Simulation Study
The key of processing sensor network information is to identify clusters from real signals
mingled with random noises. In this section we conduct simulation studies to demonstrate
that the proposed network and method can effectively detect single and multiple nuclear
sources.

3.1 Detecting multiple nuclear sources

Let us first consider a study window of a rectangular area (0, 100) × (0, 300). We assume
that there are two unknown and possibly malicious sources, one at position (33,225) and the
other at (66, 60). The choices of the positions are for illustrative purposes and they do not
impose any restrictions in the study.

We simulate 5000 points uniformly in the study window. Each point represents a vehicle
mounted with a nuclear sensor at a given time point. The models (1) and (3) determine
whether each point will be turned on to positive or not. In (1), we assume the energy factor
c=20 for the two possible sources, and the energy threshold d=0.2. As a result, the nuclear
source will not trigger the sensor if its distance is more than 10 units away. In (3), we assume
all the sensors have η of 0.990 and ζ of 0.995. For each point i, we calculate the distance
to the stationary source rs

i and the distance to the moving sources rm
i . Now the reading

probability P(Si = 1) in (2) is I{c/(rs
i )

2 + c/(rm
i )2 ≥ d}, and the detection probability

P(Di = 1) in (3) is 0.005 + 0.985P(Si = 1) from which the binary Di is generated. We keep
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the point if Di is 1 and delete it otherwise. With all the points, we apply the Latent Model
Clustering software by Sun [8].
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Figure 1: Cluster detection. The left plot displays positive signals from the sensors via
simulation. The right plot gives the detected clusters representing two nuclear sources.

Figure (1) has the simulated sensors with positive readings and detected clusters. The
”+” in the left plot marks the locations of positive signals, and the dotted circles/ellipsoids
in the right plot mark the clusters detected by the proposed method. They exactly point to
the true locations of the nuclear sources.

3.2 Design parameters in the mobile sensor network

In this simulation, we aim to design a mobile sensor network in an area of the similar size
of Midtown and Downtown Manhattan. The study region is set henceforth to a 40×100
rectangular, with one unit representing 100 feet in real distance. Thus, the rectangular has
roughly the same area as totality of the streets and side walks south of the Central Park
in New York City. We first consider a network consisting of taxicabs, where the vehicles or
sensors roam randomly within the entire study region.

The set of the network parameters is designed as: 1) sensor detection range: 250 feet
(scaled to 2.5 units) versus 150 feet (scaled to 1.5 units) (both higher than currently practi-
cal); 2) error rates (false positive rate and false negative rate): (2%, 5%) versus (5%, 10%);
3) number of sensors: from 1500 to 4000 with increments of 500. The numbers are picked in
line with the 13,000 taxicabs in New York City; 4) network type: taxicab type versus police
car type. At each set of network parameters, we repeat 200 simulations and compute how
many times (in percentage) the proposed algorithm can correctly detect a randomly placed
nuclear source as an estimate of the statical power of detection P (D = 1|S = 1).
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(a) Different detection ranges (b) Different error rates

Figure 2: Detection Power Comparison: (a) Two different sensor ranges with the same error
rates (2%, 5%). (b) Two different sets of error rates with the same sensor range of 250 ft.
The horizontal axis is the number of sensors.

We start the study on the network of taxicabs with error rates (2%, 5%) to compare
the effectiveness of the long-ranged (250 feet) against the short-ranged (150 feet) sensors.
Figure 2(a) plots the two power curves and it shows that we need more than 3,000 long-
ranged sensors to achieve around 95% detection power, while the short-ranged sensors yield
about 20% less power with the same number of sensors.

Then we continue on the tax cab type network with fixed sensor detection range of 250
feet, and study the difference between the better quality sensors (error rates of 2% and 5%)
and the lower quality sensors (error rates of 5% and 10%). The two power curves are plotted
in Figure 2(b), which reveals that inferior sensors lag about 20% in the detection power at
the sensor number of 3,000.

We also consider a network that consists of police vehicles. Note that the police patrol
cars usually are limited into the boundaries of their precincts. Thus, in our simulation we
consider the case that the sensors are moving within subregions to which they belong. The
New York City Police Department has 3000+ vehicles in 76 precincts in 5 boroughs, 22 in
Manhattan. Perhaps 500 to 750 are in the streets of the Manhattan borough at one time. In
our police car model, the study region is divided into 20 identical subregions, each with the
dimension of 10×20. A subregion in our simulation represents roughly a precinct. Within
each of the 20 subregions, we simulate 25 police cars with the long-ranged (250 feet) and
better quality (error rates of 2% and 5%) sensors and place them at random locations. With
a randomly generated source in the whole study region, this setup achieves about 35% in
detection. It suggests that the number of police cars in Manhattan would not be sufficient
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to detect nuclear sources with a high power.

4 Discussion and Future Work
This paper outlines a robust mobile sensor network and a statistical algorithm to provide
consistent and pervasive surveillance for nuclear or biological materials in major cities. Sim-
ulation studies suggest the proposed network and method can effectively detect nuclear
signals placed in a spatial region. Although we only illustrate our approach at a fixed time
point, we can collect and analyze such information at consecutive short time intervals, and
it can be extended to provide dynamic surveillance for nuclear or biological materials in a
metropolitan area.

Since static sensor networks provide a complementary detection capability, we need to
study the network with a combination of both static and mobile sensors for optimal results.
In addition, the algorithm that we have discussed is computationally intensive. In practice
the signal points can be much more than what we have in the simulations. So improving
efficiency and speed of the algorithms is the key to enable us to dynamically monitor and
detect nuclear materials.
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