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ABSTRACT

We investigate a random network design problem speci�ed by a complete graph with n
nodes whose edges have associated �xed costs that are independent random variables, and
variable costs associated that are also independent random variables. The objective is to
�nd a spanning tree whose total �xed cost plus total variable cost is minimum, where the
total variable cost is the sum of variable costs along all paths from a source node to every
other node. Here we examine the distributions of total �xed cost and total variable cost
obtained from random tree generation, and compare the expectations in solving the di¤erent
components of a random network design problem using simulation.
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1 Introduction

Solving network design problems has become a critical optimization problem in today�s highly
connected world. Finding good networks typically requires a tradeo¤ between the cost of
establishing links and nodes in a network, and usage costs incurred over some time horizon.
Design problems are often modeled using the complete graph with n vertices, denoted byKn,
to represent the collection of all possible nodes and links. The edges fei;j = fi; jg : i 6= jg of
Kn are used to represent potential links, and associated with every edge is both a �xed cost
fi;j and a variable cost vi;j. Among the most common type of design problems is to �nd a
spanning tree T that minimizes the sum of total �xed costs (TFC) based on the edges used
in T , plus total variable cost (TVC) determined by the sum of variable costs along all n� 1
paths from a root node to every other node in T . When variable costs are negligible, the
problem reduces to a minimum spanning tree problem. When �xed costs are negligible, the
problem reduces to a shortest paths problem. When both costs are signi�cant, the problem
requires a compromise between these two trees, which may be very hard to �nd. Problems
with just a single source are known to be NP-hard. Now suppose that the edges in Kn, have
associated �xed costs that are independent random variables, and variable costs that are
also independent random variables. Then our design problem is called the random network
design problem.
Minimum spanning tree and shortest path problems problems with random edge weights

have been studied by many (e.g. see [2,3,4,5,6,7]). Randomized approaches have been used
to �nd approximate solutions when deterministic methods are impractical, and are often
used when test problems are needed to evaluate new algorithms. But very few studies have
been made on random network design problems that require a compromise solution between
TFC and TVC. Here, we examine the distribution of total cost over all possible spanning
trees of Kn, as well as the two components TFC and TVC. By Cayley�s Theorem, we know
that the population consists of the costs associated with nn�2 spanning trees of Kn. If one
were to consider just the distribution of total �xed costs, it would be natural to ask if a
random sample of spanning trees yields a mean total �xed cost that is statistically equal
to a mean total �xed cost of random sample of subsets of n � 1 edges? Motivated by the
Central Limit Theorem, one can also ask: is the distribution of total �xed costs obtained
from spanning trees approximately normal? Futhermore, what is the relative position of the
total �xed cost of a minimum spanning tree (MST)? Similar questions can be investigated
for the total variable cost structure and the shortest paths tree (SPT). Answers can be used
to compare the two problems and determine which component of the problem we should
expect to obtain a better solution using random trees. This will also shed some light on how
well one should expect simulation to solve the network design problem.

One approach to solving a network design problem is to model the problem as an integer
program and use discrete optimization software. But a network design problem with as
few as 15 nodes can take a long time to solve (e.g., see [1]). An alternative approach is to
consider generating random trees to try to �nd a good approximate solution. The questions
posed above were initially investigated using random trees. After examining many di¤erent
simulations we shall elaborate on several cases that we beleive to be representaive of our
�ndings. Consider a random network design problem whose �xed costs are uniformly and
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independently distributed in the interval [10; 150]; from here on denoted by u[10; 150] (or
u[a; b] in general), and variable costs from u[5; 50]. Using a well known proof of Cayley�s
Theorem to represent spanning trees as (n � 1)-tuples included in [8], we generated 1,000
random trees. The TFC vs. TVC were then graphed using a scatter plot and is given in
Figure 1. Descriptive statistics for the simulation results are also given in Table 1. Included
in the scatterplot is the MST whose costs are represented by the coordinates of the point
on the extreme left, and the SPT, whose costs are given by the coordinates of lowest point
in the scatterplot. Prim�s algorithm was used to obtain the MST which has a TFC of 330,
and a TVC of 1,587. The SPT included in the scatterplot of Figure 1 was obtained using
Dijkstra�s algorithm and has a TVC of 247, and a TFC of 1,322.

Mean Median St.Dev. Min Max MST SPT Edge Weights
TFC 1,106.4 1,102 130.7 710 1,479 330 1,322 u[10; 150]
TVC 1,408.1 1,353 397.7 556 2,786 1587 247 u[5; 50]
TC 2,514.5 2,468 411.2 1,635 3,965 1,917 1,569 NA

Table 1. Descriptive Statistics for 1,000 Random Trees, the MST, and the SPT

When considering a minimum spanning tree or shortest path problems with random edge
weights, most studies assume that the weights are from u[0; 1]. Since in a network design
problem with both �xed and variable costs, �xed costs are generally larger than variable
costs, we looked at cases that re�ect this. Although the case where fi;j 2 u[0; 1] and vi;j 2
u[0; 1] was examined. The resulting scatterplot of TFC vs. TVC was nearly identical to the
scatterplot given in Figure 1 with the man di¤erence being that the total �xed costs were
shifted down.
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Figure 1. A Scatterplot of TFC vs. TVC for 1,000 Random Trees with
fi;j 2 u[10; 150] and vi;j 2 u[5; 50]
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Results from the simulations were used to guide subsequent investigation which is orga-
nized as follows. In Section 2 we discuss the distribution of TFC and explain why the MST
is an extreme outlier. In Section 3 we discuss the distribution of TVC. In the last section we
consider the total cost distribution and how our �ndings relate to the e¢ ciency of random
tree generation. Random tree generation was performed using Microsoft�s Visual Basic for
Applications with the Excel interface. Statistical computations and charts were all obtained
using Minitab Release 15.

2 The distribution of total �xed costs

Consider the distribution of the total �xed cost for subsets of edges of size 14 for the random
network design problem described above, i.e., n = 15 with fi;j 2 u[10; 150]. It follows
from the Central Limit Theorem that this distribution is approximately normal. But what
happens when we consider the TFC of spanning trees? In particular, does the tree structure
requiring that a subset of edges form a connected subgraph of Kn without any cycles a¤ect
the sample mean or the type of distribution? A snapshot of the distribution of TFC obtained
from the 1,000 random spanning trees is given by the histogram in Figure 2. To test the
hypothesis that there is no signi�cant di¤erence between the two distributions we generated
1,000 random subsets of 14 edges and found the total �xed cost for each subset. This gave
a sample mean of total �xed cost x = 1; 108 with a sample standard deviation of s = 148.
Next, we used a two-tailed z-test for 2 samples and tested the hypothesis that the di¤erence
in mean total �xed cost is zero. The result was a p-value of 0.306 implying that there is no
statistically signi�cant di¤erence of the means at the 95% con�dence level.
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Figure 2. The Distribution of TFC for 1,000 Random Trees with fi;j 2 u[10; 150]

To con�rm the fact that the distribution of TFC for the spanning trees is normal, we
performed an individual distribution identi�cation test in Minitab. This tests the input data
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against 14 di¤erent possible distributions. Indeed, the normality of the distribution was
con�rmed at the 95% con�dence level with a p-value of 0.082. The results remained true for
fi;j 2 u[0; 1], and when the fi;j are chosen from a normal distribution. However, when �xed
costs follow an exponential distribution the TFC distribution failed to be normal.

Property 1 Given a random network design problem Kn; if the fi;j are uniformly or
normally distributed, then the distribution of total �xed cost is approximately normal.

Observe from Table 1 that the smallest and largest TFC found from the random trees is
710 and 1,479, which yield z-scores of z = �3:03 and z = 2:85;respectively. Since the distri-
bution is approximately normal, we know that the range captures 99.66% of the data. But,
as noted above, th e total �xed cost of the MST is 330 which yields a z-score of z = �5:94. If
one were to use the best tree obtained from the simulation, the approximate minimum total
�xed cost would be more than double the actual minimum. After running many simulations
we noticed that the MST always had a z-score below �5:00 which motivated the following
analysis.
The random network design problem is a generalized version of the random minimum

spanning tree problem which seeks to �nd the minimum spanning tree in Kn whose edge
weights are independent random variables. In a remarkable theorem of Frieze [4], he showed
that the limit as n �!1 of the expected sum of the MST ofKn whose edges have weights in
u[0; 1] is �(3) =

X1

i=1
i�3 = 1:202... The function �(n) =

X1

i=1

1
in
is the famous Reimann

zeta function. Fill and Steele [2] obtained a formula to compute the expected weight of
an MST and computed the expected weight for 2 � n � 9. This work was continued by
Gamarnik [6] who found the expected weight of the MST of Kn for all n � 45.
It is well known that for the probability distribution u[a; b]; the mean is � = a+b

2
with

standard deviation � =
q

(b�a)2
12

: Since the mean of a sum of random variables is the sum of
the means, we know that the mean sum for a spanning tree of Kn whose edges have random
weights from u[0; 1] is given by � = n�1

2
. Moreover, the variance is the sum of the variances,

so the standard deviation of the tree sums is � =
q

n�1
12
: For example, with n = 15, we

expect the mean tree weight to be 7 with standard deviation 1.080.
Let zn be the z-score of an MST for Kn whose edges have random weights from u[0; 1].

For su¢ ciently large n we we know that

zn =
1:202 � (n�1

2
)q

n�1
12

<
1 � (n�1

2
)q

n�1
12

=
2
p
3p

n� 1
�
p
3
p
n� 1:

Hence, as n �! 1 we see that zn �! �1. For example, if n = 15, we see that zn �
�5:37, and for n = 101, we have zn � �16:90. In general, we have shown that zn is O(

p
n).

Property 2 Given a random network design problem Kn whose �xed costs satisfy fi;j
2 u[0; 1]; let zn be the z-score for the total �xed cost of an MST. Then zn �

p
3(3:404�n)p

n�1 .
Moreover, zn is O(

p
n) and as n �!1; it holds that zn �! �1.
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3 The distribution of total variable costs

To determine the total variable cost for a spanning tree T with root node r, one must sum
the variable costs along the path in T from r to i, for every node i. Thus certain vij will
appear repeatedly in the total variable cost sum. For example in the network given in Figure
3 the shortest paths and their corresponding costs are as given. The TVC is 181. Notice
how the variable cost on edge {1,3} appears 3 times in the TVC sum.

From To Nodes Path Cost
1 2 1,2 33
1 3 1,2 23
1 4 1,2,4 33 + 25 = 58
1 5 1,3,5, 23 + 7 = 30
1 6 1,3,5,6, 23 + 7 + 7 = 37

2       (10,25)
4

3 (81,7)
5

1 6

(147,33) (32,39)

(92,23) (12,7)
(65,18)(80,40)

Figure 3 A 6-node network with fi;j 2 u[10; 150] and vi;j 2 u[5; 50]

The distribution of TVC obtained from the 1,000 random trees for the n = 15, vi;j
2 u[5; 50] problem is illustrated by the histogram given in Figure 4. The smallest TVC found
from the random trees was 556, giving z = �2:14. Whereas the SPT gives a TVC of 247,
implying a z-score of z = �2:93. In 50 runs of the simulation we observed that the z-score
of the SPT was always greater than �3:00. Moreover, the distribution does not appear
to be normal, but rather skewed to the right. An individual distribution identi�cation test
indicates that the distribution of TVC is lognormal at the 95% con�dence level with a p-value
of 0.518.
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Figure 4 The Distribution of TVC for 1,000 Random Trees with vi;j 2 u[5; 50]

The lognormal result explains why the z-scores for the SPT is much closer to the minimum
obtained from the simulation. However, when the range was changed from vi;j 2 u[5; 50] to
vi;j 2 u[0; 1], the distribution of total variable cost was neither normal nor lognormal. So
there is dependence on a and b. This also happened when the vi;j were selected from a
normal distribution. One of the reasons why the distribution for total variable cost is no
longer normal, but instead skewed to the right is because the number of terms included in
the calculation of TVC is no longer constant, but varies from tree to tree. When calculating
TFC there are always n � 1 terms in the calculation. It is interesting to ask: on average
how many of the terms vi;j are there in the total variable cost sum? As noted in Table 1,
the average TVC for the 1,000 random trees with vij chosen from u[5; 50] is 1,408.1. Since
the average vi;j is 5+50

2
= 27:5, we obtain an estimate of 1408:1

27:5
� 51:2 terms. As a check,

we point out that the average number of terms used to compute TFC with fij chosen from
u[10; 150], is 1106:4

80
� 13:8, or rounded to the nearest integr is 14, which is what one expects.

The edge-wise standard deviations are 40.4 for fi;j and 13.0 for vi;j. However, the rel-
atively large number of terms used in the computation of TVC explains why the standard
deviation is much larger for TVC. In Table 1 we see that the standard deviation for TFC
is 130.7 and for TVC it is 397.7. This results in smaller z-values for the TVC distribution
when comparing it to the TFC distribution, and in particular, a smaller z-value for the SPT
compared to the z-value for the MST.

In [5] it was shown that for a random shortest paths problem where edge weights are
u[0; 1], the distance between each pair of nodes is bounded by c(log n)=n almost surely, for
some constant c. Moreover, the order of magnitude of this bound cannot be improved. To
determine the total variable cost associated with an SPT consider the n�1 paths from node
1 to the other n � 1 nodes. Since all of these paths have length at most c log n / n; the
expected sum of the path lengths of an SPT is at most c(n�1)(log n)=n < c0 log n, or simply
O(log n).
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Property 3. Given a random network design problem Kn whose variable costs satisfy
vi;j 2 u[0; 1], the expected TVC of an SPT is O( log n).

Open Problem Given a random network design problem Kn whose variable costs satisfy
vi;j 2 u[0; 1], let zn be the z-score for the total variable cost of an SPT. As n �!1 does zn
�! �1 or is zn bounded by a constant?

4 Conclusions and the distribution of total cost

We have seen that the minimum �xed cost attained by the MST is an extreme outlier in the
distribution of TFC. In contrast, the minimum TVC attained by the SPT is not nearly as
extreme when n = 15. Hence, if one were to use random trees with a sample size of 1,000
to �nd an approximate solution, then we can expect to be close to the minimum total TVC,
but not very close to the minimum TFC. Random tree generation requires a much larger
sample size to get close to a minimum �xed cost. Properties 1 and 2 shed some light on
why this happens. Moreover, the standard deviation for the TFC is much smaller than the
standard deviation of TVC, because the number of edges used to compute TFC is constant
. The problem with �xed costs is that the tails of the simulated distribution �ll up very
slowly and the MST weight is located beyond �5�, for n as small as 15. Using the results
obtained above we can determine an appropriate sample size for random tree generation.
We determined the MST would have a z-score between �5 and �6. Since, in a normal
distribution P (�6:00 < z < �5:00) = 0:00000029, one must be willing to generate roughly
10,000,000 random trees to expect a z-score less than �5:00.
We have seen that for the TVC distribution, the probability mass is skewed right. So

for example when n = 15, the z-score of an SPT is between �2:00 and �3:00. For a normal
distirbution we know that P (�3:00 < z < �2:00) = 0:0214:The probability that z is between
�2:00 and �3:00 for the TVC distribution is even larger. So generating 1,000 random trees
should produce a tree with a TVC with a z-score below �2:00, and hence close to the TVC
obtained by the SPT.
Next we address the distribution of total cost. We have seen the the distributions of total

�xed cost is normal, and the distribtion of total variable costs have been, normal, lognormal
and sometimes neither. For the problem discussed in the introduction with n = 15, fi;j
2 u[10; 150] and vi;j 2 u[5; 50], the total cost has a lognormal distribution. A simulation
similar to the one described above was performed with �xed costs aassociated with edges
that follow a normal distibution with mean 80 and standard deviation 20, and edge variable
costs also normally distributed with mean 25 and standard deviation 5. Again TFC follows
a normal distribution and TVC is lognormal. The z-scores are �2:86 for the SPT and �6:19
for the MST. However, when variable costs and �xed costs were both from u[0; 1], the total
variable cost failed to follow a lognormal, nor a normal distribution. But the total �xed costs
distribution remained normal.
The above discussion is a good illustration of how simulation may not provide good

approximation when trying to obtain an extreme value. This can be a problem when using
the random network design problem to test new algorithms.
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