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Tutorial Announcement

DIMACS Tutorial
Limits of Approximation Algorithms: PCPs and Unique Games
DIMACS Center, CoRE Building, Rutgers University, July 20 - 21, 2009

Organizers:
* Prahladh Harsha, University of Texas, Austin
* Moses Charikar, Princeton University

This tutorial is jointly sponsored by the DIMACS Special Focus on Hardness of Approxima-
tion, the DIMACS Special Focus on Algorithmic Foundations of the Internet, and the Center for
Computational Intractability with support from the National Security Agency and the National
Science Foundation.

The theory of NP-completeness is one of the cornerstones of complexity theory in theoretical
computer science. Approximation algorithms offer an important strategy for attacking compu-
tationally intractable problems, and approximation algorithms with performance guarantees have
been designed for a host of important problems such as balanced cut, network design, Euclidean
TSP, facility location, and machine scheduling. Many simple and broadly-applicable approximation
techniques have emerged for some provably hard problems, while in other cases, inapproximability
results demonstrate that achieving a suitably good approximate solution is no easier than finding
an optimal one. The celebrated PCP theorem established that several fundamental optimization
problems are not only hard to solve exactly but also hard to approximate. This work shows that
a broad class of problems is very unlikely to have constant factor approximations, and in effect,
establishes a threshold for such problems such that approximation beyond this threshold would
imply P= NP. More recently, the unique games conjecture of Khot has emerged as a powerful
hypothesis that has served as the basis for a variety of optimal inapproximability results.

This tutorial targets graduate students and others who are new to the field. It will aim to give
participants a general overview of approximability, introduce them to important results in inapprox-
imability, such as the PCP theorem and the unique games conjecture, and illustrate connections
with mathematical programming techniques.

List of speakers: Matthew Andrews (Alcatel-Lucent Bell Laboratories), Sanjeev Arora (Prince-
ton University), Moses Charikar (Princeton University), Prahladh Harsha (University of Texas,
Austin), Subhash Khot (New York University), Dana Moshkovitz (Princeton University) and Lisa
Zhang (Alcatel-Lucent Bell Laboratories)
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Lecture 1

An Introduction to Approximation Algorithms

Sanjeev Arora

Scribe: Darakhshan J. Mir

20 July, 2009

In this lecture, we will introduce the notion of approximation algorithms and see examples of
approximation algorithms for a variety of NP-hard optimization problems.

1.1 Introduction

Let Q be an optimization problem1. An optimal solution for an instance of this optimization
problem is a feasible solution that achieves the best value for the objective function. Let OPT (I)
denote the value of the objective function for an optimal solution to an instance I.

Definition 1.1.1 (Approximation ratio). An algorithm for Q has an approximation ratio α if for
instances I, the algorithm produces a solution of cost ≤ α ·OPT (I) (α ≥ 1), if Q is a minimization
problem and of cost ≥ α ·OPT (I) if Q is a maximization problem.

We are interested in polynomial-time approximation algorithms for NP-hard problems. How
does a polynomial-time approximation algorithm know what the cost of the optimal solution is,
which is NP-hard to compute? How does one guarantee that the output of the algorithm is within
α of the optimal solution when it is NP-hard to compute the optimal solution. In various examples
below, we see techniques of handling this dilemma.

1Formally, a (maximization) optimization problem is specified by two domains X ,Y, a feasibility function feas :
X × Y → {0, 1} and an evaluation function value : X × Y → R. An input instance to the problem is an element
x ∈ X . For each such x, the optimization problem is as follows:

OPT (x) = max {value(x, y)|y ∈ Y, feas(x, y) = 1} .

OPT (x) is also called the optimal value.
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1.1.1 Examples

1. 2-approximation for metric Travelling Salesman Problem (metric-TSP): Consider
a complete graph G formed by n points in a metric space. Let dij be the distance between
point i and j. The metric TSP problem is to find a minimum cost cycle that visits every
point exactly once.

The following observation relating the cost of the minimum spanning tree (MST) to the
optimal TSP will be crucial in bounding the approximation ratio.

Observation 1.1.2. The cost of the Minimum spanning Tree (MST) is at most the optimal
cost of TSP.

Algorithm A:

(a) Find the MST

(b) Double each edge

(c) Do an “Eulerian transversal” and output its cost

Observe that TSP ≤ cost(A) ≤ 2 ·MST ≤ 2 · TSP .

2. A 1.5-approximation to metric-TSP: The approximation ratio can be improved to 1.5
by modifying the above using an idea due to Christofides [Chr76]. Instead of doubling each
edge of the MST as in the above algorithm, a minimum cost matching is added among all
odd degree nodes. Observe that cost of matching ≤ 1

2TSP . So,

Cost(Appx-algo) ≤MST +
1

2
TSP ≤ 1.5 · TSP

It is to be noted that since 1976, there has been no further improvement on this approximation
ratio.

The above examples are examples of approximation algorithms that attain a constant approx-
imation ratio. In the next section, we will see how to get arbitrarily close to the optimal solution
when designing an approximation algorithm, ie., approximation ratios arbitrarily close to 1.

1.2 Polynomial-time Approximation Scheme (PTAS)

A PTAS is a family of polynomial-time algorithms, such that for every ε > 0, there is an algorithm
in this family that is an (1 + ε) approximation to the NP-hard problem Q, if it is a minimization
problem and an (1− ε)-approximation if Q is a maximization problem.

The above definition allows the running time to arbitrarily depend on ε but for each ε it should

be polynomial in the input size e.g. n
1
ε or n2

1
ε .

2



1.2.1 Type-1 PTAS

Various type of number problems typically have type-1 PTAS. The usual strategy is to try to round
down the numbers involved , so the choice of numbers is small and then use Dynamic Programming.
The classic example of such an approach is the Knapsack problem.

Knapsack problem Given a set of n items, of sizes s1, s2 . . . sn such that si ≤ 1 ∀i, and profits
c1, c2, . . . , cn, associated with these items, and a knapsack of capacity 1, find a subset I of items
whose total size is bounded by 1 such that the total profit is maximized.

The knapsack problem is NP-hard in general, however if the profits fall in a small-sized set,
then there exists an efficient polynomial time algorithm.

Observation 1.2.1. If the values c1, c2, . . . cn are in [1, . . . , w], then the problem can be solved in
poly(n,w)-time using dynamic programming.

This naturally leads to the following approximation algorithm for knapsack.

(1 + ε)-Approximation Algorithm

1. Let c = maxi ci.

2. Round down each ci to the nearest multiple of εcn . Let this quantity be ri·
(
εc
n

)
, i.e., ri = bci/ εcn c.

3. With these new quantities (ri) as profits of items, use the standard Dynamic Programming
algorithm, to find the most profitable set I ′.

The number of ri’s is at most n/ε. Thus, the running time of this algorithm is at most
poly(n, n/ε) = poly(n, 1/ε). We now show that the above algorithm obtains a (1−ε)-approximation
ratio

Claim 1.2.2.
∑

i∈I′ ci is an (1− ε)-approximation to OPT.

Proof. Let O be the optimal set. For each item, rounding down of ci causes a loss in profit of at
most εc

n . Hence the total loss due to rounding down is at most n times εc
n . In other words,∑

i∈O
ci −

εc

n
·
∑
i∈O

ri ≤ n
εc

n
= cε

Hence, εc
n

∑
i∈O ri ≥ OPT − cε. Now,∑

i∈I′
ci ≥

εc

n
.
∑
i∈I′

ri ≥
εc

n

∑
i∈O

ri ≥ OPT − εc ≥ (1− ε)OPT

The first inequality follows from the definition of ri, the second from the fact that I ′ is an optimal
solution with costs ri’s, the third from the above observation and the last from the fact that
OPT ≥ c.

3



1.2.2 Type-2 PTAS

In these kinds of problems we define a set of “simple” solutions and find the minimum cost simple
solution in polynomial time. Next, we show that an arbitrary solution may be modified to a simple
solution without greatly affecting the cost.

Euclidean TSP A Euclidean TSP is a TSP instance where the points are in R2 and the distances
are the corresponding Euclidean distances.

A trivial solution can be found in n!. Dynamic Programming finds a solution in n22n.
We now give a high-level description of a n1/ε-time algorithm that achieves a (1+ε)-approximation

ratio. Consider the smallest square that contains all n points. Use quad-tree partitioning to re-
cursively partition each square into four subsquares until unit squares are obtained. We consider
the number of times the tour path crosses a cell in the quad-tree. We construct the “simple solu-
tion” to the problem by restricting the tour to cross each dividing line ≤ 6

ε times. We can then
discretize the lines at these crossing points. Each square has ≤ 24

ε number of crossing points. A
tour may use each of these crossing points either 0, 1 or 2 times. So for the entire quadtree there
are ≤ 3

24
ε = exp(24

ε ) number of possibilities. For details see Arora’s 2003 survey [Aro03].
In the next section, we will see examples of approximation algorithms which use linear pro-

gramming and semi-definite programming.

1.3 Approximation Algorithms for MAXCUT

The MAX-CUT problem is as follows: Given a graph G(V,E) with |V | = n, find maxS⊂V |E(S, S)|.
The notation E(S, S) refers to the set of all edges (i, j) such that vertex i ∈ S and vertex j ∈ S.

1.3.1 Integer Program Version

Define variable xi, such that xi = 0, if vertex i ∈ S and xi = 1, if i ∈ S. We have the following
integer program:

Maximize
∑

(ij)∈E
eij

subject to

eij ≤ min{xi + xj , 2− (xi + xj)}, ∀(i, j) ∈ E
x1, . . . , xn ∈ {0, 1}

Notice that eij 6= 0 ⇐⇒ xi 6= xj .

4



1.3.2 Linear Program Relaxation and Randomized Rounding

This can be converted to a Linear Program as follows:

Maximize
∑

(ij)∈E
eij

subject to

eij ≤ min{xi + xj , 2− (xi + xj)}, ∀(i, j) ∈ E
x1, . . . , xn ∈ [0, 1]

Every solution to the Integer Program is also a solution to the Linear Program. So the objective
function will only rise. If OPTLP is the optimal solution to the LP, then:

OPTLP ≥ MAX-CUT

Randomized Rounding

We now round the LP-solution to obtain an integral solution as follows: form a set S by putting
i in S with probability xi. The expected number of edges in such a cut, E[|E(S, S̄)|] can be then
calculated as follows:

E[|E(S, S̄)|] =
∑

(i,j)∈E
Pr[(i, j) is in the cut]

=
∑

(i,j)∈E
xi(1− xj) + xj(1− xi)

The above calculates only an expected value of the cut, however if we repeat the above algorithm
several times, it can be seen by Markov’s inequality that we can get we can get very close to this
value. We now show that this expected value is at least half the LP-optimal, which in turns means
that it is at least half the MAX-CUT

Claim 1.3.1.

E[|E(S, S̄)|] =
∑

(ij)∈E
xi(1− xj) + xj(1− xi) ≥

1

2
OPTLP ≥

1

2
MAX-CUT

Proof. We have

OPTLP =
∑

(ij)∈E
eij =

∑
(i,j)∈E

min{(xi + xj), 2− (xi + xj)}

It can easily be checked that for any xi, xj ∈ [0, 1], we have

xi(1− xj) + xj(1− xi) ≥
1

2
·min{(xi + xj), 2− (xi + xj)}.

Thus, a term by term comparison of the LHS of the inequality with OPTLP reveals that E[|E(S, S̄)|] ≥
1
2OPTLP ≥ 1

2MAX-CUT.

We thus, have a 1/2-approximation algorithm for MAX-CUT using randomized rounding of the
LP-relaxation of the problem. Actually, it is to be noted that the LP-relaxation is pretty stupid, the
optimal to the LP is the trivial solution xi = 1/2 for all i, which in turn leads to OPTLP = |E|. But
we do mention this example as it naturally leads to the following more powerful SDP relaxation.
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1.3.3 Semi Definite Programming (SDP) Based Method

We will now sketch a 0.878-approximation to MAX-CUT due to Goemans and Williamson [GW95].
The main idea is to relax the integer problem defined above using vector valued variables. THE
SDP relaxation is as follows:

Maximize
∑

(i,j)∈E

(1− 〈~vi, ~vj〉)
2

subject to 〈~vi, ~vi〉 = 1, ∀i

Denote the optimal to the above SDP by OPTSDP . We first observe that the SDP is in fact a
relaxation of the integral problem. Let ~v0 be any vector of unit length, i.e., 〈~v0, ~v0〉 = 1. Consider
the optimal cut S that achieves MAX-CUT. Now define,

~vi =

{
~v0 if i ∈ S
−~v0 if i /∈ S, ∀i.

Consider the quantity
(1−〈~vi,~vj〉)

2 . This is 0 if the vectors ~vi and ~vj lie on the same side, and equals
1 if they lie on opposite sides. Thus, OPTSDP ≥ MAX-CUT.

How do we round the SDP solution to obtain an integral solution. The novel rounding due
to Goemans and Williamson is as follows: The SDP solution produces n vectors ~v1, . . . , ~vn. Now
pick a random hyperplane passing through the origin of the sphere and partition vectors according
to which side tof the hyperplane they lie. Let (S, S̄) be the cut obtained by the above rounding
scheme. It is easy to see that

E[|E(S, S̄)|] =
∑

(i,j)∈E
Pr[(i, j) ∈ cut]

=
∑

(i,j)∈E
Pr[~vi, ~vj lie on opposite sides of the hyperplane]

Let θij be the angle between vectors ~vi and ~vj . Then the probability that they are cut is proportional
to θij , in fact exactly θij/π. Thus,

E[|E(S, S̄)|] =
∑

(ij)∈E

θij
π

Let us know express OPTSDP in terms of the θij ’s. Since θij = cos−1(〈~vi, ~vj〉), we have

OPTSDP =
∑

(i,j)∈E

(1− cosθij)
2

By a “miracle of nature”(Mathematica?) Goemans and Williamson observed that

θ

π
≥ (0.878 . . .)× 1− cosθ

2
, ∀θ ∈ [0, π]

Hence,
E[|E(S, S̄)|]

OPTSDP
≥ 0.8788.

Thus, we have a 0.878-approximation algorithm for MAX-CUT.
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Lecture 2

The PCP Theorem: An Introduction

Dana Moshkovitz

Scribe: Alexander S. Kulikov

20 Jul, 2009

Complementing the first introduction lecture on approximation algorithms, this lecture will be an
introduction to the limits of approximation algorithms. This will in turn naturally lead to the PCP
Theorem, a ground-breaking discovery from the early 90’s.

2.1 Optimization Problems and Gap Problems

The topic of this lecture is the hardness of approximation. But to talk about hardness of approx-
imation, we first need to talk about optimization problems. Recall the definition of optimization
problems from the earlier lecture. Let us begin by giving an example of a canonical optimization
problem.

Definition 2.1.1 (MAX-3SAT). The maximum 3-satisfiability problem (MAX-3SAT) is: Given a
3-CNF formula φ (each clause contains exactly three literals) with m clauses, what is the maximum
fraction of the clauses that can be satisfied simultaneously by any assignment to the variables?

We first prove the following important claim.

Claim 2.1.2. There exists an assignment that satisfies at least 7/8 fraction of clauses.

Proof. The proof is a classical example of the probabilistic method. Take a random assignment
(each variable of a given formula is assigned either 0 or 1 randomly and independently). Let Yi be
a random variable indicating whether the i-th clause is satisfied. For any 1 ≤ i ≤ m (where m is
the number of clauses),

EYi = 0 · 1

8
+ 1 · 7

8
,
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as exactly one of eight possible assignments of Boolean constants to the variables of the i-th clause
falsifies this clause. Here we use the fact that each clause contains exactly three literals.

Now, let Y be a random variable equal to the number of satisfied clauses: Y =
∑m

i=1 Yi. Then,
by linearity of expectation,

EY = E
m∑
i=1

Yi =

m∑
i=1

EYi =
7m

8
.

Since a random assignment satisfies a fraction 7/8 of all clauses, there must exist an assignment
satisfying at least as many clauses.

The natural question to ask is if we can do better? Can we find an assignment that satisfies
more clauses. Let us phrase this question more formally. For this, we first recall the definition of
approximation algorithms from the previous lecture.

Definition 2.1.3. An algorithm C for a maximization optimization problem is called α-approximation
(where 0 ≤ α ≤ 1), if for every input x, the algorithm C outputs a value which is at least α times
the optimal value, i.e.,

α ·OPT(x) ≤ C(x) ≤ OPT(x) .

Claim 2.1.2 implies immediately that there exists an efficient (i.e., polynomial time) 7/8-
approximation algorithm for MAX-3SAT. The natural question is whether there exists an approxi-
mation algorithm that attains a better approximation ratio. The answer is that such an algorithm
is not known. The question that we are going to consider in this lecture is whether we can prove
that such an algorithm does not exist. Of course, if we want to prove this, we have to assume that
P6=NP, because otherwise there is an efficient 1-approximation algorithm.

There is some technical barrier here. We are talking about optimization problems, i.e., problems
where our goal is to compute something. It is however much more convenient to consider decision
problems (or languages), where we have only two possible answers: yes or no. So, we are going
to transform an optimization problem to a decision problem. Namely, we show that hardness of
a certain decision problem implies hardness of approximation of the corresponding optimization
problem.

Definition 2.1.4. For a maximization problem I and A < B ∈ R+, the corresponding [A,B]-gap
problem is the following promise decision problem1:

YES = {x|OPT(x) ≥ B}
NO = {x|OPT(x) < A}

We now relate the hardness of the maximization problem to the hardness of the gap problem.

Theorem 2.1.5. If the [A,B]-gap version of a maximization problem is NP-hard, then it is NP-
hard to approximate the maximization problem to within a factor A/B.

1A promise problem Π is specified by a pair (YES,NO) where YES,NO ∈ {0, 1}∗ and YES and NO are disjoint
sets. Note there is no requirement that YES ∪ NO = {0, 1}∗. This is the only difference between promise problems
and languages.
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Proof. Assume, for the sake of contradiction, that there is a polynomial time A/B-approximation
algorithm C for a maximization problem under consideration. We are going to show that this
algorithm can be used in order to solve the gap problem in polynomial time.

The algorithm for the gap problem is: for a given input x, if C(x) ≥ A, return “yes”, otherwise
return “no”.

Indeed, if x is a yes-instance for the gap problem, i.e., OPT(x) ≥ B, then

C(x) ≥ A/B ·OPT(x) ≥ A/B ·B = A

and we answer “yes” correctly. If, on the other hand, OPT(x) < A, then

C(x) ≤ OPT(x) < A

and we give the correct “no” answer.

Thus, to show hardness of approximation to within a particular factor, it suffices to show
hardness of the corresponding gap problem. Hence from now onwards, we focus on gap problems.

2.2 Probabilistic Checking of Proofs

We will now see a surprising alternate description of the hardness of gap problems. The alternate
description is in terms of probabilistically checkable proofs, called PCPs for short.

2.2.1 Checking of Proofs

Let us first recall the classical notion of proof checking. NP is the class of languages that have a
deterministic polynomial-time verifier. For every input x in the language, there exists a proof that
convinces the verifier that x is in the language. For every input x not in the language, there is no
proof that convinces the verifier that x is in the language.

For example, when the language is 3SAT, the input is a 3CNF formula ϕ. A proof for the
satisfiability of ϕ is an assignment to the variables that satisfies ϕ.

A verifier that checks such a proof may need to go over the entire proof before it can know
whether ϕ is satisfiable: the assignment can satisfy all the clauses in ϕ, but the last one to be
checked.

2.2.2 Local Checking of Proofs

Can we find some other proof for the satisfiability of ϕ that can be checked locally, by querying
only a constant number of symbols from the proof?

For this to be possible, we allow the queries to be chosen in a randomized manner (otherwise,
effectively the proof is only of constant size, and a language that can be decided using a polynomial-
time verifier with access to such a proof can be decided using a polynomial-time algorithm). The
queries should be chosen using at most a logarithmic number of random bits. The logarithmic
bound ensures that the verifier can be, in particular, transformed into a standard, deterministic
polynomial time, verifier. The deterministic verifier would just perform all possible checks, instead
of one chosen at random. Since the number of random bits is logarithmic, the total number of
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possible checks is polynomial. The number of queries the deterministic verifier makes to the proof
is polynomial as well.

To summarize, we want a verifier that given the input and a proof, tosses a logarithmic number
of random coins and uses them to make a constant number of queries to the proof. If the input
is in the language, there should exist a proof that the verifier accepts with probability at least B.
If the input is not in the language, for any proof, the verifier should accept with probability at
most A. The error probability is the probability that the verifier does not decide correctly, i.e.,
1−B + A. If B = 1, we say that the verifier has perfect completeness, i.e., it never errs on inputs
in the language.

2.2.3 The Connection to The Hardness of Gap Problems

The NP -hardness of approximation of 3SAT is in fact equivalent to the existence of local verifiers
for NP :

Hardness ⇒ Local Verifier

For [A, 1]-gap-MAX-3SAT, there is a verifier that makes only 3 queries to the proof, has perfect
completeness, and errs with probability at most A!

On input formula ϕ, the proof is a satisfying assignment for φ. The verifier chooses a random
clause of φ, reads the assignment to the three variables of the clause, and checks if the clause is
satisfied. The verifier uses logm random bits, where m is the number of clauses. If ϕ is satisfiable,
the verifier accepts the proof with probability 1. If not, at most A fraction of all clauses of φ can
be satisfied simultaneously, so the verifier accepts with probability at most A.

Moreover, the NP-hardness of [A, 1]-gap-MAX-3SAT yields local verifiers for all NP languages!
More precisely,

Claim 2.2.1. If [A, 1]-gap-MAX-3SAT is NP-hard, then every NP language L has a probabilis-
tically checkable proof (PCP). That is, there is an efficient randomized verifier that uses only
logarithmic number of coin tosses and queries 3 proof symbols, such that

• if x ∈ L, then there exists a proof that is always accepted;

• if x 6∈ L, then for any proof the probability to err and accept is at most A.

Note that the probability of error can be reduced from A to ε by repeating the action of the
verifier k = O( log 1/ε

log 1/A) times, thus making O(k) queries.

Local Verifier ⇒ Hardness

What about the other direction? Do local verifiers for NP imply the NP-hardness of gap-MAX-
3SAT, which would in turn imply inapproximability of MAX-3SAT?

For starters, let us assume that every language in NP has a verifier that makes three bit queries
and whose acceptance predicate is the OR of the three variables (or their negations). Assume
that for inputs in the language the verfier always accepts a vaild proof, while for inputs not in
the language, for any proof, the verifier accepts with probability at most A. From the above
correspondence between local verifiers and gap problems, we get that [A, 1]-gap-MAX-3SAT is
NP-hard.
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What if the verifier instead reads a constant number of bits (not 3) and its acceptance predicate
is some other Boolean function on these constant number of bits? We will now use the fact that
every Boolean predicate f : {0, 1}O(1) → {0, 1} can be written as a 3-CNF formula φ with clauses
(and some additional variables z) such that for any assignment x of Boolean values to variables of
f , f(x) = 1 iff φ(x, z) is satisfiable for some z. We have thus transformed the O(1)-query verfier
with an arbitrary Boolean acceptance predicate to a 3-query verifier with acceptance predicate an
OR of the 3 variables (or their negations). We thus have.

Claim 2.2.2. If every NP language L has a constant query verifier that uses only logarithmic
number of coin tosses and queries Q proof symbols, such that

• if x ∈ L, then there exists a proof that is always accepted;

• if x 6∈ L, then for any proof the probability to err and accept is at most A.

then [A′, 1]-gap-MAX-3SAT is NP-hard for some A′ < 1.

Thus, we have shown that the problem of proving NP-hardness of gap-MAX-3SAT is equivalent
to the problem of constructing constant query verifiers for NP. But do such verifiers exist?

2.2.4 The PCP Theorem

Following a long sequence of work, Arora and Safra and Arora, Lund, Motwani, Sudan and Szegedy
in the early 90’s constructed local verifiers for NP:

Theorem 2.2.3 (PCP Theorem (. . . ,[AS98],[ALM+98])). Every NP language L has a probabilisti-
cally checkable proof (PCP). More precisely, there is an efficient randomized verifier that uses only
logarithmic number of coin tosses and queries O(1) proof symbols, such that

• if x ∈ L, then there exists a proof that is always accepted;

• if x 6∈ L, then for any proof the probability to accept it is at most 1/2.

The proof in [AS98, ALM+98] is algebraic and uses properties of low-degree polynomials. There
is a more recent alternate combinatorial proof for the theorem due to Dinur [Din07]. We will later
in the workshop see some of the elements that go into the construction.

The PCP Theorem shows that it is NP-hard to approximate MAX-3SAT to within some constant
factor. The natural further question is: can we improve this constant to 7/8 (to match the trivial
approximation algorithm from Claim 2.1.2)? A positive answer to this question would yield a tight
7/8-hardness for approximation of MAX-3SAT.

2.3 Projection Games

In 1995, Bellare, Goldreich, and Sudan [BGS98] introduced a paradigm for proving inapproximabil-
ity results. Following this paradigm, H̊astad [H̊as01] established tight hardness for approximating
MAX-3SAT, as well as many other problems.

The paradigm is based on the hardness of a particular gap problem, called Label-Cover.
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Definition 2.3.1. An instance of a projection game (also called label-cover) is specified by bipartite
graph G = (A,B,E), two alphabets ΣA, ΣB, and projections πe : ΣA → ΣB (for every edge e ∈ E).

Given assignments A : A→ ΣA and B : B → ΣB, an edge e = (a, b) ∈ E is said to be satisfied
iff πe(A(a)) = B(b). The value of this game is

max
A,B

(
Pr
e∈E

[e is satisfied]

)
.

In a label-cover problem: given a projection game instance, compute the value of the game.

A

B

?

?

πe

The PCP-theorem could be formulated as a theorem about Label-Cover.

Theorem 2.3.2 (. . . , [AS98], [ALM+98]). Label-Cover is NP-hard to approximate within some
constant.

Proof. The proof is by reduction to Label-Cover. Recall that we have a PCP verifier from the
previous formulation. We construct a bipartite graph as follows. For each possible random string
of the verifier, we have a vertex on the left-side. Since the verifier uses only a logarithmic number
of bits, the number of such strings is polynomial. For each proof location, we have a vertex on the
right-side. We add an edge between a left vertex (i.e., a random string) and a right vertex (i.e., a
proof location), if the verifier queries this proof location on this random string. Thus, we defined
a bipartite graph. We are now going to describe the labels and projections.

The labels for the left-side vertices are accepting verifier views and for the right-side are proof
symbols. A projection is just a consistency check. For example, in case of MAX-3SAT, we have
satisfying assignments of a clause on the left-side and values of variables on the right-side.

However, this theorem is not strong enough to get tight hardness of approximation results. For
this reason, we call this the weak projection games theorem. What we actually need is a low error
version of this theorem, which improves the hardness in Theorem 2.3.2 from “some constant” to
“any arbitrarily small constant”.

Theorem 2.3.3 ((strong) Projection Games Theorem (aka Raz’s verifier) [Raz98]). For every
constant ε > 0, there exists a k = k(ε) such that is is NP-hard to decide if a given projection game
with labels of size at most k (ie., |ΣA|, |ΣB| ≤ k) has value 1 or at most ε.
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The PCP construction in the strong projection games theorem is commonly refered to as Raz’s
verifier as the theorem follows from Raz’s parallel repetition theorem applied to the construction
in Theorem 2.3.2 [Raz98]. Recently, Moshkovitz and Raz [MR08] gave an alternate proof of this
theorem that allows the error ε to be sub-constant.

Why does the label size k depend on ε in the above theorem? This is explained by the following
claim, which implies that k must be at least 1/ε.

Claim 2.3.4. There is an efficient 1/k-approximation algorithm for projection games on labels of
size k (i.e., |ΣA|, |ΣB| ≤ k).

We will later in this tutorial see how the projection games theorem implies tight hardness of
approximation for 3Sat.

We remark that for many other problems, like Vertex-Cover or Max-Cut, we do not know
of tight hardness of approximation results based on the projection games theorem. To handle such
problems, Khot formulated the unique games conjecture [Kho02]. This conjecture postulates the
hardness of unique label cover, where the projections πe on the edges are permutations. More on
that – later in the tutorial.
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Lecture 3

Approximation Algorithms for Network Problems

Matthew Andrews

Scribe: Gwen Spencer

20 July, 09

Lectures 3 and 4 will be on network/flow problems, the known approximation algorithms and
inapproximability results. In particular, this lecture will serve as an introduction to the different
types of network/flow problems and a survey of the known results, while the follow-up lecture by
Lisa Zhang will deal with some of the techniques that go into proving hardness of approximation
of network/flow problems.

3.1 Network Flow Problems

Network/Flow problems are often motivated by industrial applications. We are given a communi-
cation or transportation network and our goal is to move/route objects/information though these
networks.

The basic problem that we shall be considering is defined by a graph G = (V,E) and a set of
(source,destination) pairs of nodes which we’ll denote (s1, t1), (s2, t2), etc. We will sometimes call
these pairs “demand pairs.” There are many variants of the problem:

• Only Connectivity is required. The question is one of feasibility: “Is it possible to select
a subset of the edge set of G that connects every (si, ti) pair?”

• Capacities must be respected. Each edge has a capacity, and each (si, ti) pair has some
amount of demand that must be routed from si to ti. Observe that this problem is infeasible
if there exists a cut in the graph which has less capacity than the demand which must cross
it. Imagine variations on this problem in which more capacity can be purchased on an edge
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at some cost (that is, the capacities are not strict): the question becomes: “What is the
minimum amount of capacity that must be purchased to feasibly route all demand pairs?”

• What solutions are “good” depends on the objective function. Consider the differ-
ence between the objective of trying to minimize the maximum congestion (where congestion
is the total demand routed along an edge) and the objective of trying to minimize the total
capacity purchased: it is not hard to find examples where a good solution with respect to
the first objective is a bad solution with respect to the second objective and vice versa. The
maximum congestion objective is often used to describe delay/quality of service.

• Splittable vs. unsplittable flow. In the unsplittable flow case all demand routed between
si and ti must travel on a single (si, ti) path. In the splittable flow case each demand can be
split so that it is routed on a set of paths between si and ti.

• Directed vs. Undirected. Is the graph directed or undirected? As a rule of thumb,
problems in which the graph is directed are more difficult.

Next we’ll consider some specific problems and describe what positive and negative results exist
for each of them:

3.1.1 Minimum Cost Steiner Forest

In this problem we are interested in simple connectivity. The input to the problem is a graph with
edge costs and a set of (si, ti) pairs. The goal is to connect each (si, ti) pair via a set of edges which
has the minimum possible total cost (the cost of a set of edges is just the sum of the costs of all
edges in the set).

Notice that any feasible solution to this problem is a set of trees.
Both positive and negative results exist for this problem:

• Positive: 2-approximation (Agrawal-Klein-Ravi [AKR95], Goemans-Williamson [GW95])

• Negative: APX-hard, there exists ε such that no 1 + ε approximation algorithm exists for
the problem unless P=NP.

3.1.2 Congestion Minimization (Fractional)

The input to this problem is a graph with edge capacities and a set of (si, ti) pairs. The goal is to
connect all (si, ti) pairs fractionally (that is, for all i, to route a total of one unit of demand from si
to ti along some set of paths in the graph) in a way that minimizes the maximum congestion. The
congestion on an edge is simply the total demand routed on that edge divided by the capacity of
the edge. The maximum congestion is the maximum congestion taken over all edges in the graph.

This problem can be solved exactly in polynomial time via a linear program. We write the
linear program as follows: let ue denote the capacity of edge e, and have a decision variable xp,i
which is the amount of demand i that is routed on path p:

min z
s.t.

∑
p xp,i = 1 ∀i∑
i

∑
p:e∈p xp,i ≤ zue ∀e.

xp,i ≥ 0 ∀p, i.
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The first set of constraints says that for each demand pair i, one unit of demand must be routed
from si to ti. The second set of constraints says that for each edge e, the sum of all demand routed
on e must be less than z times the capacity of e. Since the objective is to minimize z, the optimal
LP solution finds the minimum multiplicative factor z required so that the capacity of each edge
is at least 1/z times the total demand routed on that edge (that is, the optimal z is the minimum
possible maximum congestion).

Though this LP is not of polynomial size (the number of paths may be exponentially large) it
can be solved in polynomial time, using an equivalent edge-based formulation whose variables ye,i
represent the amount of flow from demand i routed through edge e. Hence we can obtain an exact
solution to the problem.

3.1.3 Congestion Minimization (Integral)

Now consider the Congestion Minimization problem when we require the routing be integral (all
demand routed from si to ti must be routed on a single path). We can no longer solve this problem
using the linear program above. The following results are known:

• Positive: A O(log n/ log log n)-approximation algorithm where n is the number of vertices
due to Raghavan-Thompson [RT87]. This algorithm is based on the technique of randomized
rounding which we describe below.

• Negative: Andrews-Zhang [AZ07]) show that there is no (log n)1−ε-approximation unless
NP has efficient algorithms. More formally our result holds unless NP⊆ZPTIME(npolylog(n)),
where ZPTIME(npolylog(n)) is the class of languages that can be recognized by random-
ized algorithms that always give the correct answer and whose expected running time is
npolylog(n) = nlogk n for some constant k. The assumption that NP 6⊆ZPTIME(npolylog(n)) is
not quite as strong an assumption as NP 6= P but is still widely believed to be true.

Note that the gap between the positive and negative results here is large. We comment that for
the directed version of the problem, a negative result has been proved that no Ω(log n/ log logn)-
approximation exists unless NP has efficient algorithms [CGKT07, AZ08].

We now describe the Raghavan-Thompson randomized rounding method for approximating the
Integral Congestion Minimization Problem:

• Notice that the LP for the fractional problem is a linear relaxation of the IP we would write
for the integral case. Thus, the optimal solution to the fractional version is a lower bound on
the optimal value of the integral version: OPTfrac ≤ OPTintegral.

• Note that
∑

p xp,i = 1 for all i. Treat the xp,i as a probability distribution: demand i is
routed on path p with probability xp,i. By linearity of expectation, the expected congestion
of the resulting ranodmly rounded solution on each edge is at most OPTfrac.

In any given rounding though, some edges will have more than their expected congestion. It is
possible to show that for any fixed edge e, with large probability (≥ 1− 1

2n2 ) the congestion on
edge e is O(log n/ log log n)OPTfrac = O(log n/ log log n)OPTintegral. By a union bound this
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implies that with probability at least 1
2 the maximum congestion of the randomly rounded

solution on any edge is O(log n/ log log n)OPTintegral.

For the directed case this gives the best achievable approximation. Whether something better
exists for the undirected case is an open question.

3.1.4 Edge Disjoint Paths

The input is a graph with edge capacities and a set of (si, ti) pairs. The goal is to connect every
(si, ti) pair integrally using disjoint paths (that is, to find a set of paths, one connecting each pair,
such that the paths for two distinct pairs share no edges). The goal is to connect the maximum
possible number of pairs.

The following results are known:

• Positive: AO(m1/2)-approximation wherem is the number of edges, due to Kleinberg [Kle96].

• Negative: (undirected) No (log n)1/2−ε -approximation exists unless NP has efficient algo-
rithms (Andrews-Zhang [AZ06]).

• Negative:(directed) NoO(m1/2−ε)-approximation exists unless P=NP (Guruswami-Khanna-
Rajaraman-Shepherd-Yannakakis [GKR+03]).

We’ll look at Kleinberg’s m1/2 approximation algorithm for this problem (m is the number of
edges). Consider a greedy algorithm as follows:

1. Find the shortest path that connects two terminals.

2. Remove all the edges on that path from the graph.

3. Repeat until we cannot connect any more terminals.

Analysis. At all times we let G′ be the subgraph of G that contains the remaining edges (i.e.
the edges that have not been removed in Step 2). There are two cases in our analysis: either the
shortest path p linking two terminals in the remaining graph G′ has length at most m1/2, or not:

• Suppose the shortest path p in G′ has length ≤ m1/2. Each edge in p intersects at most one
path from the optimal solution (since the paths in the optimal solution are disjoint), so p
intersects at most m1/2 paths from the optimal solution. Thus, when the algorithm removes
p, at most m1/2 paths are removed from the optimal solution.

Thus, the algorithm produces at least one path for every m1/2 paths in the optimal solution.

• Suppose the shortest path p in G′ has length strictly greater than m1/2. Since the paths in
the optimal solution are disjoint, and all must have length at least as long as p, the optimal
solution has at most m/((m1/2)) = m1/2 paths in G′. Thus, to get a m1/2 approximation for
G′ the algorithm need only produce one path (so the algorithm can just use p).

We mention that for this problem we can’t hope to do better with a linear programming relax-
ation method because the gap between the optimal IP solution and the optimal LP solution can
be m1/2.
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3.1.5 Minimum Cost Network Design

The input is a graph, a set of (si, ti) pairs and a cost function f(c) for placing capacity on an edge.
The goal is to route one unit of demand between each pair in a way that requires the minimum
cost expenditure for capacity.

Commonly considered cost functions include:

1. Linear: shortest paths are optimal.

2. Constant: this results in the Steiner forest problem.

3. Subadditive: economies of scale and buy-at-bulk problems. This is a nice way of modelling
how aggregating demand onto a core network is beneficial and arises in many industrial
network design problems. For subadditive cost functions the following results are known:

• Positive: aO(log n)-approximation (Awerbuch-Azar [AA97], Bartal [Bar98], Fakcharoenphol-
Rao-Talwar [FRT04]).

• Negative: No (log n)1/4−ε approximation exists unless NP has efficient algorithms (An-
drews [And04]).

Summary

Approximation ratios vary widely for different types of network flow problems:

• Constant approximation: Steiner forest.

• O(log n)-approximation: Congestion minimization, Buy-at-Bulk network design.

• m1/2-approximation: Edge Disjoint paths.

Questions

Q: Are these algorithms actually what is used in practice?

Answer: Not exactly. Take the case of the randomized rounding that we covered: in practice
this technique may not give the best congestion due to the Birthday Paradox. It is quite likely that
there is some edge that gets higher congestion than the average by a logarithmic factor. Hence,
practical algorithms typically apply heuristics to try and reduce the congestion. One technique
that often works well is to sort the demands based on the distance between the terminals (from
closest to farthest). We then go through the demands in order and try to greedily reroute them.

We remark that industrial networks often cost a huge amount of money and so tweaking a
solution a little to save even a single percent can generate meaningful cost savings. In addition, a
lot of these real applications are huge: cutting-edge computing power together with CPLEX are
not even close to being able to solve these problems exactly. Approximation really is necessary.
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Lecture 4

Hardness of the Edge-Disjoint Paths Problem

Lisa Zhang

Scribe: David Pritchard

20 July, 2009

4.1 Overview

The edge-disjoint paths problem (EDP) is the combinatorial optimization problem with inputs

• a (directed or undirected) graph G with n nodes and m edges

• a list of k pairs of (not necessarily distinct) nodes of G, denoted (si, ti)
k
i=1

and whose output is

• a subset X of {1, . . . , k} representing a choice of paths to route

• si-ti paths {Pi}i∈X so that the Pi are pairwise edge-disjoint

and

• the objective is to maximize |X|.

In these notes, the main results are: a simple proof that for any ε > 0 it is NP-hard to approximate
the directed edge-disjoint paths problem to ratio m1/2−ε (Section 4.3); and a more complex proof
that for any ε > 0, if we could approximate the undirected edge-disjoint paths problem to ratio
log1/3−ε n, then there would be randomized quasi-polynomial time algorithms for NP (Section 4.4).
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4.2 Literature

For directed EDP, there is a simple
√
m-approximation algorithm due to Kleinberg [Kle96] (see also

Erlebach’s survey [Erl06]), which nearly matches the m1/2−ε-hardness result we will present (which
is due to Guruswami et al. [GKR+03]). A O(n2/3 log2/3 n) approximation is also known [VV04].

For undirected EDP, Kleinberg’s simple algorithm [Kle96] still gives a
√
m-approximation,

but an improved
√
n-approximation was recently obtained by Chekuri et al. [CKS06]. The main

technical ingredient in the proof we will present is the high girth argument, which was used first in
2004 by Andrews [And04] and subsequently in a variety of papers [ACG+07, AZ06, AZ07, AZ08,
AZ09, CK06, GT06b], some of which have closed the approximability and inapproximability gaps of
various problems up to constant factors. Many of these papers deal with congestion minimization,
where all demands must be routed and the objective is to minimize the maximum load on any edge.
Focusing on undirected graphs, the papers most closely related to what we will show are:

• [And04], which introduced the high girth argument and gave a polylog-hardness for buy-at-
bulk undirected network design. For this problem, all demands must be routed, and the cost
minimized. The types of “buy-at-bulk” edges used in the hardness construction were fixed-
cost edges (which once bought, can be used to any capacity) and linear-cost edges (where you
pay proportional to the capacity used). The paper reduced from a type of 2-prover interactive
system, similar to PCPs.

• [AZ06], which gave the log1/3−ε n-hardness proof we will describe in these notes. The paper
reduced from Trevisan’s inapproximability results [Tre01] on the bounded degree independent
set problem. In turn, those resuls rely on advanced PCP technology [ST00].

• [ACG+07] — a paper which was the culmination of merging several lines of work — which
resulted in an improved log1/2−ε n-hardness proof for undirected EDP. This paper uses the
hardness of constraint satisfaction problems, while the preliminary versions use the Raz ver-
ifier (parallel repetition) and directly-PCP based methods. This is so far the best inap-
proximability result known for undirected EDP, although it is very far from the best known
approximation ratio of

√
n [CKS06].

In more detail, the table below summarizes some results in the literature (lower bounds assume
NP 6⊂ ZPTIME(npolylogn), and some constant factors are omitted). Stars (?) denote results in which
the high girth method is used.

Problem Upper bound Lower Bound

Undirected EDP m1/2 [Kle96], n1/2 [CKS06] ? log1/3−εm [AZ06], ? log1/2−εm [ACG+07]

Directed EDP m1/2 [Kle96], n2/3 log2/3 n [VV04] m1/2−ε [GKR+03]

Undirected Congestion Minimization logm/ log logm [RT87] ? log1−ε logm [AZ07], ? log logm
log log logm

[RZ]

Directed Congestion Minimization logm/ log logm [RT87] ? log1−εm [AZ08], ? logm
log logm

[CGKT07]

Undirected Uniform Buy-at-Bulk logm [AA97, FRT04] ? log1/4−εm [And04]

Undirected Nonuniform Buy-at-Bulk log5 m [CHKS06] ? log1/2−εm [And04]
Undirected EDP with Congestion c

(with some restrictions on c) n1/c [AR06, BS00, KS01] ? log(1−ε)/(c+1) m [ACG+07]
Directed EDP with Congestion c

(with some restrictions on c) n1/c [AR06, BS00, KS01] ?nΩ(1/c) [CGKT07]

If the number k of terminal pairs is fixed, the undirected EDP problem is exactly solvable
in polynomial-time, using results from the theory of graph minors [RS95]. (As we will see in
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Figure 4.1: Left: the graph G in an instance of Dir-2EDP. Right: The construction of H for k = 5.
Each small yellow object is a copy of G, and each other line is a directed edge. This illustration is
adapted from Erlebach [Erl06].

Theorem 4.3.2, the directed case behaves differently.)

4.3 Hardness of Directed EDP

In this section we prove the following theorem.

Theorem 4.3.1 ([GKR+03]). For any ε > 0 it is NP-hard to approximate the directed edge-disjoint
paths problem (Dir-EDP) to within ratio m1/2−ε.

Although it is very common for inapproximability proofs in the literature to reduce one approx-
imation problem to another, this proof has the cute property that it reduces an exact problem to
an approximation problem. Phrased differently, the complete proof does not rely on any PCP-like
technology. Specifically, our starting point is the following theorem.

Theorem 4.3.2 ([FHW80]). The following decision problem (Dir-2EDP) is NP-hard: given a
directed graph G and four designated vertices s, s′, t, t′ in the graph, determine whether there are
two edge-disjoint directed paths, one from s to t, and another from s′ to t′.

(Note, this immediately shows that it is hard to NP-hard to approximate (Dir-EDP) to a
factor better than 2.)

The key to proving Theorem 4.3.1 is a construction which maps (G, s, s′, t, t′) to an instance
(H, (si, ti)

k
i=1) of Dir-EDP where k is a parameter we will tune later. The construction is illustrated

in Figure 4.1. The two important properties of this construction are the following:

(a) If G admits edge-disjoint s-t and s′-t′ paths (say P and P ′), then H has a solution of value
k (i.e. all pairs si-ti for 1 ≤ i ≤ k can be simultaneously linked by edge-disjoint paths). To
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see this, we utilize the copies of P and P ′ within each copy of G; then it’s easy to see there
are mutually disjoint paths si-ti paths (the path leaving si goes up through i− 1 copies of P ,
then right through k − i copies of P ′, to ti).

(b) If G does not admit edge-disjoint s-t and s′-t′ paths, then there is no solution for H with
value greater than 1. To see this, suppose for the sake of contradiction that there is an si-ti
path Pi and a sj-tj path Pj in H such that Pi, Pj are edge-disjoint. Without loss of generality
i < j. Then a topological argument shows that there must be some copy of H such that Pi
uses the copies of s′ and t′ and Pj uses the copies of s and t. This contradicts our assumption
about the Dir-2EDP instance.

Facts (a) and (b) show that any algorithm that has approximation ratio better than k/1 on the
Dir-EDP instance H also solves the Dir-2EDP instance.

Without loss of generality we assume G is (weakly) connected, then the encoding size of the
Dir-2EDP instance is proportional to |E(G)| and the encoding size of the Dir-EDP instance is
|E(H)| = O(k2|E(G)|). In order to conclude that it is NP-hard to approximate the Dir-EDP
instance to a factor better than k, we need |E(H)| to be polynomial in |E(G)|. Thus we may take

k = |E(G)|α for any constant α. Going back to the analysis, we get k = |E(H)| α
2α+1 ; hence by

taking α→∞, we get the desired result (that it is NP-hard to approximate Dir-EDP to a factor
k = m1/2−ε).

4.4 Hardness of Undirected EDP

In this section we sketch the proof of the following theorem.

Theorem 4.4.1 ([AZ06]). For any ε > 0, if we can approximate the directed edge-disjoint paths
problem (Undir-EDP) to within ratio O(log1/3−εm), then every problem in NP has a probabilistic
always-correct algorithm with expected running time exp(polylog(n)), i.e. NP ⊂ ZPTIME(exp(polylog(n))).

We fully describe the construction of the proof and give intuition for the analysis, but skip some
of the detailed parts and precise setting of parameters. The construction creates a simple graph (i.e.
one with no parallel edges) so the theorem also holds with logm replaced by log n since these are the
same up to a factor of 2. The proof shows more precisely that NP ⊂ coRPTIME(exp(polylog(n))),
i.e. it gives a quasi-polynomial size, randomized reduction with one-sided error that is right at least
(say) 2/3 of the time; then standard arguments1 allow us to move to ZPTIME. Here is the proof
overview.

• The starting point is the inapproximability of the independent set problem (IS) in bounded-
degree graphs: find a set of mutually non-adjacent vertices (an independent set) with as large
cardinality as possible. We denote the degree upper bound by ∆.

1We insert Q into standard complexity class names to denote quasi-polynomial time. Suppose NP ⊂ coRQP. Then
there is a f(n)-time algorithm for SAT with f quasi-polynomial. This also implies NQP ⊂ coRQP since every NQP
language with quasi-polynomial running time g(n) is equivalent (by the Cook-Levin construction) to satisfiability
of a formula of size g(n), and it can be decided in time f(g(n)) which is quasi-polynomial. The definition of RQP
immediately implies RQP ⊂ NQP hence RQP ⊂ coRQP. Taking complements we deduce RQP = coRQP and it is
easy to show that RQP ∩ coRQP = ZPQP, hence NP ⊂ coRQP = ZPQP. Alternatively, see Lemma 5.8 in [EH03] for
a more efficient construction.

22



• As usual, our goal is to find a transformation from IS instances to Undir-EDP instances
which preserves the “NP-hard-to-distinguish gap” in the objective function.

• We will create a new graph G in the following way. Roughly we “define a path” Pi for each
vertex vi of the IS instance so that Pi ∩ Pj 6= ∅ iff vi, vj are adjacent. (It is easy to see this
is possible, with the length of Pi proportional to the degree of vi.) Then we define G to be
the union of all Pi. (See Figure 4.2.)

• To get some intuition for the rest of the proof, define the terminals si, ti of the Undir-EDP
instance to be the endpoints of Pi. Then it is almost true that the Undir-EDP instance is
isomorphic (in terms of feasible solutions) to the IS instance. The significant problem is that
G necessarily also contains si-ti paths other than Pi, which may be used for routing. (Such
paths are obtained by using a combination of edges taken from different Pj ’s; see Figure 4.2.)

• To get around this problem, we transform G into a different graph H defined by two parame-
ters x, c. Each intersection of two paths Pi, Pj is replaced by c consecutive intersections; and
we replace each Pi with x images {Pi,α}xα=1. The construction of H has a lot of independent
randomness, two consequences of which are that (i) when vi, vj are adjacent, we can lower-
bound the probability that Pi,α ∩ Pj,β 6= ∅ and (ii) H has few short cycles. We call each
Pi,α a canonical path; for each canonical path its endpoints define a terminal pair for the new
Undir-EDP instance.

• The optimum of the Undir-EDP solution is at least x times the optimum of the IS instance.
To get our hardness-of-approximation result, we also need that when the Undir-EDP opti-
mum is “large”, so is the IS optimum. This is done via a map from Undir-EDP solutions
R on H to IS solutions S on G. The map is parameterized by a number a ≤ x. We (1)
throw away all non-canonical paths in R and (2) take vi in S iff at least a out of the x paths
{Pi,α}xα=1 are routed by Y . The final analysis uses the fact that the canonical paths have
length O(c∆) while most non-canonical paths are long; the latter depends on the fact that H
has few short cycles.

4.4.1 Hardness of Bounded-Degree Independent Set

Trevisan [Tre01] showed that for any constant ∆, it is NP-hard to approximate the independent set
problem within ratio ∆/2

√
log ∆ on graphs with degrees bounded by ∆. For our purposes, we need

a version of this that works for super-constant ∆. By extending the framework in Trevisan [Tre01],
Andrews and Zhang [AZ06] proved the following:

Theorem 4.4.2. Consider the family of graphs with upper bound ∆ = logb n on degree, where n
is the number of nodes and b is a constant. If there is a (logb−ε n)-approximation algorithm for IS
on these graphs for any ε > 0, then NP ⊂ coRPTIME(nO(log logn)).

4.4.2 The Graphs G and H

First we give a formal description of the graph G we sketched earlier. Let G0 denote the IS
instance, without loss of generality G0 is connected. Each edge e = vivj of G0 yields two vertices
u{i,j}, w{i,j} ∈ V (G) and each vertex vi of G0 yields two vertices si, ti; these are all the vertices
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Figure 4.2: An illustration of how the independent set instance, G0 (left), yields a Undir-EDP
instance on graph G (right). The colour of vi in G0 corresponds to the colour of canonical path
Pi in G. Note that in this example, even though {v1, v2} is not an independent set, there are
edge-disjoint s1-t1 and s2-t2 paths (P1, and a non-canonical s2-t2 path).

of G. Let the neighbours of vi in G0 in any order be vp, vq, . . . , vr, then we define the path
Pi := (si, u

{i,p}, w{i,p}, u{i,q}, w{i,q}, . . . , u{i,r}, w{i,r}, ti). More precisely, for each adjacent pair of
vertices in this list we define an edge of G; this constitutes all of the edges of G. Every edge of
the form u{i,j}w{i,j} appears in both Pi and Pj , while every other edge of G appears in exactly one
Pi. The number of vertices and edges of G is O(|E(G0)|) and the number k of terminal pairs is
|V (G0)|.

There are two additional ideas needed to define H, one whose effect is to randomly replace Pi
by x images {Pi,α}xα=1 and another whose effect is to increase the probability that two paths Pi,α,
Pj,β intersect when vivj ∈ E(G0).

Consider the following probabilistic operation fx on graphs: replace every vertex v by x “copies”
{vα}xα=1, and replace every edge vv′ with a random bipartite matching of {vα}xα=1 to {v′α}xα=1, where
these matchings are chosen independently for all input edges vv′. Thus fx multiplies the total
number of vertices and edges by x. Note that if vv′ is an edge of some graph K and 1 ≤ α, β ≤ x
then the probability that uαvβ ∈ fx(K) is exactly 1/x; we will later use this fact, as well as the
independence of the different random matchings, to show that fx(K) behaves like a random graph
in terms of short cycles. We define the image of terminal pairs under fx as follows. Define Pi,α
as the unique path in fx(G) obtained by starting at si,α (which denotes (si)α) and following the
images of edges of Pi. Pi,α does not necessarily end at ti,α, rather it ends at ti,β =: t′i,α for some
uniformly random β. The terminal pairs of fx(G) are all pairs (si,α, t

′
i,α). We call the Pi,α canonical

paths.
At this point it is straightforward to compute the following: if vivj ∈ E(G0) and α, β are

fixed, the probability that the paths Pi,α, Pj,β intersect in fx(G) is exactly 1/x. More generally,
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Figure 4.3: Illustrating, for c = 3, the operation used to transform G (left) into G′ (right).

for subsets A,B of {1, . . . , x}, the probability Pr[{Pi,α}α∈A ∪ {Pj,β}β∈B are mutually edge-disjoint
in fx(G)] can be expressed as some function δ(x, |A|, |B|)2. We would like to decrease this (i.e.
increase the probability some Pi,α intersects some Pj,β), and to do so, we consider a graph G′

obtained similarly to G except, for vivj ∈ E(G0), we force Pi and Pj to intersect c times. We give
an informal but precise definition since the formal definition is lengthy. To construct G′ from G,
we perform the following for all edges vivj ∈ E(G0): replace the intersection edge u{i,j}w{i,j} with
the gadget pictured in Figure 4.3, and simultaneously redefine Pi, Pj to follow the indicated paths.
Not only will this cause the new Pi and Pj to intersect c times, but the images of these intersections
under fx will be independent in the sense that, for all subsets A,B of {1, . . . , x}, the probability
Pr[{Pi,α}α∈A ∪ {Pj,β}β∈B are mutually edge-disjoint in fx(G′)] decreases to δc(x, |A|, |B|).

Finally, H is defined to be fx(G′), with canonical paths Pi,α and terminal pairs defined as for
fx(G).

4.4.3 Small Cycles

The graph H = fx(G′) we defined is not quite a “random graph” in the usual (Erdős-Renyi)
sense, but it has enough randomness that it has a typical property of random graphs, namely
that the number of small cycles can be bounded. This is done using the first moment method
(Markov’s inequality), analogous to the 1963 Erdős-Sachs theorem (e.g. that in the Erdős-Renyi
model G(n, d/n) the number of cycles of length g is at most dg in expectation).

If C is any simple cycle in G′, then it is not hard to see that the expected number of simple

2Explicitly, δ(x, |A|, |B|) = (x− |A|)!(x− |B|)!/(x− |A| − |B|)!x!.
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cycles in H that are “images” of C is 1. This is a good bound but it is not quite sufficient for
our purposes, since cycles may exist in H whose inverse image in G′ is not simple. To be precise
about getting a bound, for each edge vv′ of G′, we say that it has x2 corresponding potential edges
{vαv′β | 1 ≤ α, β ≤ x} in H = fx(G′). (In any realization of H, exactly x of these edges are actually
present.) Then it is not hard to see that we get the following: conditioned on the existence of
any κ < x potential edges in H, the probability that any other potential edge is in H is at most
1/(x− κ). Then the first moment method allows us to show:

if g < x/2,E[# cycles in H of length ≤ g] ≤ O(n0c∆)g+1 (4.4.1)

where we define n0 = |V (G0)|. Note that this bound is independent of x; roughly speaking this is
because the factor of x in |V (H)| cancels with the factor 1/x in the probability of H containing
any given potential edge. Eventually, we will set g to be poly-logarithmic in n0, and the right-hand
side of Equation (4.4.1) will be quasi-polynomial in n0.

It is not hard to argue that H has maximum degree 3, so each vertex has O(2g) vertices within
distance g; combining this fact with Equation (4.4.1) gives us the following form of the “high-girth
argument” that we use in the final proof:

Pr[O(n0c∆)g+1 vertices in H have distance ≤ g to a cycle of length ≤ g] ≥ 9/10. (4.4.2)

4.4.4 Analysis Sketch

As mentioned earlier, our reduction uses the following map R 7→ S from Undir-EDP routings on
H to independent sets on G0, parameterized by a number a: put vi into S if at least a out of the x
paths Pi,α for i are routed by R. To be exact, S is only an independent set with some probability,
which we would like to make large. By applying simple bounds to δ, for any A,B ⊂ {1, . . . , x} with
|A|, |B| ≥ a and for i, j adjacent in G0, we have that

Pr[{Pi,α}α∈A ∪ {Pj,β}β∈B mutually edge-disjoint in fx(G′)] ≤ exp(−ca2/x). (4.4.3)

For any two fixed adjacent vertices vi, vj in G0, by a union bound, the probability that any
subsets A,B with |A|, |B| ≥ a exist, such that A and B fail the event in (4.4.3) is at most(
x
a

)(
x
a

)
exp(−ca2/x). Therefore using another union bound,

Pr[S independent] ≥ 1− |E(G0)|
(
x

a

)(
x

a

)
exp(−ca2/x). (4.4.4)

The setting of parameters in the proof is then chosen so that Pr[S independent] is at least 9/10.
This, along with Theorem 4.4.2 and Equation (4.4.2), are the three sources of error in the proof.

At a high level the analysis breaks the paths in R into four types,

(a) a canonical path Pi,α so that #{β|Pi,β ∈ R} ≥ a.

(b) a canonical path Pi,α so that #{β|Pi,β ∈ R} < a

(c) a non-canonical si,α-t′i,α path where si,α has distance ≤ g to a cycle of length ≤ g

(d) any other non-canonical si,α-t′i,α path

and applies the following analysis (recall n = |E(G0)|):
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• The number of paths of type (a) is at most |S|x.

• The number of paths of type (b) is at most (n0 − |S|)a.

• The number of paths of type (c) is at most O(n0c∆)g+1 by (4.4.2).

• To upper bound the number of paths of type (d), let P ′ denote one such path. The union of
P ′ and Pi,α contains a simple cycle, but the length of that cycle is at least g. The length of
Pi,α is fixed at O(c∆) and hence the length of P ′ is at least g − O(c∆). Since the type-(d)
paths are disjoint, there are at most |E(H)|/(g −O(c∆)) of them.

This gives a lower bound on |S| in terms of |R|. The proof is then completed by setting the
parameters carefully. In detail, using the fact that the greedy algorithm for independent set on G0

always gives a solution of value at least n0/(∆ + 1), we can show that |S| is an independent set
with size at least a constant times |R|/x provided that g>∆2c, x>∆a, c>x

a ln x
a + x lnn0

a2 , x>∆2c ·
O(n0∆c)g hold, where we have omitted some constant factors. (These conditions come from the
relative contributions of the different types of paths, as well as the error bounds.) The ratio of
inapproximability for Undir-EDP is then roughly ∆ as a function of the input size m = |E(H)| =
O(n0c∆x), and it is not hard to show that ∆ is roughly log1/3m at maximum. (In [AZ06], a precise
setting of parameters is given.)
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Lecture 5

Proof of the PCP Theorem (Part I)

Prahladh Harsha

Scribe: Ashkan Aazami

20 July, 2009

In this lecture and the follow-up lecture tomorow, we will see a sketch of the proof of the PCP
theorem. Recall the statement of the PCP theorem from Dana Moshkovitz’s lecture earlier today.
Dana had mentioned both a weak form (the original PCP Theorem) and a strong form (Raz’s
verifier or hardness of projective games). We need the strong form as it is the starting point of
most tight inapproximability results. “Standard proofs” of the strong form proceed as follows:
first prove the PCP Theorem [AS98, ALM+98] either using the original proof or the new proof of
Dinur [Din07] and then apply Raz’s parallel repetition [Raz98] theorem to it to obtain the strong
form. However, since the work of Moshkovitz and Raz [MR08], we can alternatively obtain the
strong form directly using the proof techniques in the orginal proof of the PCP Theorem along
with the composition technique of Dinur and Harsha [DH09]. We will follow the latter approach in
this tutorial.

5.1 Probabilistically Checkable Proofs (PCPs)

We first introduce the probabilistically checkable proof (PCP) and some variants of it.
Our goal is to construct a PCP for some NP-complete problem. We will work with the NP-

complete problem Circuit-SAT. Let C be an instance of the Circuit-SAT problem. A PCP
consists of a verifier V that is provided with a proof π of acceptance of the input instance C.
The goal of the verifier is to check if the given proof is “valid”. Given the input C, the verifier
V generates a random string R and based on the input instance C and the random bits of R it
generates a list Q of queries from the proof π. Next, the verifier V queries the proof π at the
locations of Q and based on the content of the proof in these locations the verifier either accepts
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the input C as an acceptable instance or rejects it. The content of π at the locations Q is called the
local view of π and it is denoted by πQ. We denote the local predicate that the verifier checks by ϕ;
the verifier accepts if ϕ(πQ) = 1 and it rejects otherwise. The verifier has the following properties:

Completeness: If C is satisfiable then there is a proof π such that the verifier always accepts with
probability 1; i.e.,

∃π : Prob [ϕ(πQ) = 1] = 1.

Soundness: If C is not satisfiable then for every proof π the verifier accepts with probability at
most δ (say δ = 1

3);

∀π : Prob [ϕ(πQ) = 1] ≤ 1

3
.

π

V V

A : UA → ΣA B : UB → ΣB

A(u)

B(v)

(u, v)V (C,R) = (Q,ϕ)
π|Q: local view
ϕ: local predicate

V accepts if ϕ(π|Q) = 1 V accepts if πu,v(A(u)) = B(v)

πu,v

PCP 2-provers projective PCP

Figure 5.1: PCP and 2-queries projective PCP

The original PCP Theorem now can be stated formally as follows.

Theorem 5.1.1 (PCP Theorem [AS98, ALM+98]). Circuit-SAT has a PCP (with the above
completeness and soundness properties) that uses |R| = O(log n) random bits and queries |Q| =
O(1) locations of the proof where n is the size of the input circuit.

Note that the length of the proof π is polynomial in n, the size of the input instance C, since
the length of the random string is O(log n) so the verifier can make 2O(logn) number of queries.

5.1.1 Strong Form of the PCP Theorem and Robust PCPs

Now we introduce a strong form of the PCP theorem, this is also called the 2-prover projection
game theorem. In this type of PCPs, there are two non-communicating provers A : UA → ΣA and
B : UB → ΣB and a verifier V. Given the input instance C, the verifier first generates a random
string R of length logarithmic in the input size and then using the random string, it determines two
locations u and v and generates a projection function πu,v : ΣA → ΣB. The verifier then queries
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the two provers UA and UB on locations u and v respectively and accepts the provers’ answers if
they are consistent with the projection function ie., πu,v(A(u)) = B(v).

We can now state the strong from of the PCP theorem as follows.

Theorem 5.1.2 (Strong form of PCP (aka Raz’s verifier, hardness of projection games) [Raz98]).
For any constant δ > 0, there exist alphabets ΣA,ΣB such that the Circuit-SAT has a 2-prover
projection game with a verifier V such that

Completeness: If C is satsifiable (C ∈ Circuit-SAT) then there exist two provers A : UA →
ΣA, B : UB → ΣB such that

Prob [πu,v(A(u)) = B(v)] = 1

Soundness: If C is not satisiable (C /∈ Circuit-SAT) then for all pairs of provers A : UA →
ΣA, B : UB → ΣB, we have

Prob [πu,v(A(u)) = B(v)] ≤ δ.

Now we introduce the notion of robust PCP. These PCPs have a stronger soundness property.
In the ordinary PCPs, the soundness property says that if the input instance C is not an acceptable
input, then the local predicate that the verifier checks is not satisfied with high probability. In the
robust PCPs the local view is far from any satisfying assignment with high probability.

First for some notation. Given two codewords x and y, the agreement between x and y is
defined as agr(x, y) = Prob

i
[xi = yi]. For a given set S of code-words, we define the agreement of

S and x by agr(x, S) = maxy∈S agr(x, y). Let us denote the set of all satisfiable assignments to the
local predicate ϕ by SAT (Q).

The robust PCPs have the same completeness property as in the ordinary PCPs, but they have
a stronger soundness property. More precisely, the following soundness property of regular PCPs
is replaced by the stronger “robust soundness” property.

Soundness:
C /∈ Circuit-SAT⇒ Prob [πQ ∈ SAT (ϕ)] ≤ δ

Robust Soundness:
C /∈ Circuit-SAT⇒ E[agr(πQ, SAT (ϕ))] ≤ δ

We call PCPs with the robust soundness property, robust PCPs.

5.1.2 Equivalence of Robust PCPs and 2-Provers Projection PCPs

Note that robust PCPs are just regular PCPs with a stronger soundness requirement. We now
show that robust PCPs are equivalent to 2-provers projection PCPs. Given a robust PCP with
the verifier V and the prover π, we construct a 2-prover projective verifier V ′ and two provers
A,B as follows. The prover B is the same prover as π. For each possible random string R and
the corresponding queries Q of the verifier V , the prover A has the local view πQ at the location
indexed by R; i.e., the prover A has all possible local views of the prover π. The verifier V ′ of the
2-prover projection PCP is as follows.
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1. Generate a random string R and compute a set Q of queries as in the verifier V.

2. Query 1: Asks the prover A for the entire “accepting” local view (i.e., πQ).

3. Query 2: Ask the prover B for a random location within the local view (i.e., (πQ)i).

4. Accept if the answer of the prover B is consistent with the answer of the prover A.

It is an easy exercise to check the following two facts. The constructed 2-provers PCP has the
completeness property. Tthe robust soundness of the robust PCP translates into the soundness of
the 2-provers PCP. A closer look at this transformation reveals that it is in fact, invertible. This
demonstrates a syntactic equivalence between robust PCPs and 2-prover projection PCPs. Note
that in this equivalence, the alphabet size of the left prover |ΣA| translates to query complexity
of the robust PCP verifier (to be precise, free-bit complexity of robust PCP verifier). Given this
equivalence, our goal to prove Theorem 5.1.2 can be equivalently stated as constructing for every
constant δ, robust PCPs for Circuit-SAT with robust soundness δ and query complexity some
function of δ (but independent of n).

5.2 Locally Checkable Codes

Our goal is to construct a robust PCP for the Circuit-SAT over a constant size alphabet with
constant number of queries for arbitrarily small soundness error. To achieve this goal, we need to
transform a NP-proof (or a certificate for an NP problem) to a proof that can be locally checked.
To do this, we use locally checkable codes. There are two potential candidates for locally checkable
codes.

1. The first one is the Directed Product code; the new proof of the PCP theorem by Dinur and
the proof of the parallel repetition theorem of Raz are based on this encoding.

2. The second one is the Reed-Muller code which is based on the low-degree polynomials over a
finite field F, and the original proof of the PCP theorem is based on this encoding.

We use the Reed-Muller code in construction of the robust PCP.
A PCP, by definition, is a locally checkable encoding of the NP witness. In the rest of today’s

lecture, we shall construct locally checkable encodings of two very specific properties, namely “low-
degreeness” and “being zero on a sub-cube”. We will define these properties formally shortly,
however it is worth noting that neither of these properties is a NP-complete property. In the next
lecture, we will show how despite this, we can use the local checkability of these two properties to
construct PCPs for all of NP.

5.2.1 Reed-Muller Code

Let F be a finite field, and let Pmd be the set of all m-variate polynomials of degree at most d over
F. The natural way of specifying a function f ∈ Pmd is to list the coefficients of f . It is easy to

check that a m-variate polynomial of degree d has
(
m+d
m

)
coefficients. The Reed-Muller encoding of

f is the list of the evaluations of f on all x ∈ Fm; the codeword at the position indexed by x ∈ Fm
has value f(x). The length of this codeword is |Fm|.

This encoding is inefficient but there is an efficient “local test” to find out if a given codeword
is close to a correct encoding of a low degree polynomial.

31



• Question: Given a function f : Fm → F, how does one check if f is a Reed-Muller encoding:
The straightforward way to do this is to interpolate the polynomial and check if it has degree
at most d.

• Question: Given a function f : Fm → F, how does one locally check if f is close to a Reed-
Muller encoding. A test for this purpose was first suggested by Rubinfeld and Sudan [RS96]
This test is based on the fact that a restriction of a low-degree polynomial (over Fm) to a line
(or any space with small dimension) is also a low-degree polynomial.

5.2.2 Low Degree Test (Line-Point Test)

Given the evaluations of function f on all points in Fm. Our goal is to check if f is close to a
m-variate polynomial of degree at most d; we do this by checking the values of the function f on
a random line. A set {x+ ty|t ∈ F}, for some x, y ∈ Fm, is called a line in Fm.
Low Degree Test (LDT):

1. Pick a random line ` in Fm; this can be done by picking two random points x, y ∈ Fm.

2. Query the function f on all points of the line `. Let f |` denote the restriction of f on the line
` (i.e., f |`(t) = f(x+ ty)).

3. Accept if f |` is an univariate low-degree polynomial (i.e., f |` ∈ P1
d).

Clearly, if f ∈ Pmd , then f |` is an univariate polynomial of degree at most d. Hence, we have
the perfect completeness.

Completeness: f ∈ Pmd ⇒ Prob [LDT accepts] = 1

Rubinfeld and Sudan [RS96] proved the following form of soundness for this test.

Soundness: ∀δ, ∃δ′ : Prob [LDT accepts] ≥ 1− δ ⇒ f is (1− δ′)-close to some low-degree polyno-

mial (i.e., agr(f,Pmd ) ≥ 1− δ′).

We will actually need the following stronger soundness that was proven by Arora and Su-
dan [AS03].

Stronger Soundness: E[agr(f |`,P1
d)] ≥ δ ⇒ agr(f,Pmd ) ≥ δ −mε, where ε = poly(m, d, 1

|F|).

Raz and Safra [RS97] proved an equivalent statement (with better dependence of |F| on d) for the
plane-point test as opposed to the line-point test.

5.2.3 Zero Sub-Cube Test

In this section, we introduce another test that is used in the construction of robust PCPs. Let f be
a polynomial over Fm and let H be a subset of F. We want to test if f is a low degree polynomial
(i.e., f ∈ Pmd ) and if it is zero on the sub-cube Hm (i.e., f |Hm ≡ 0). Using the low degree test
(LDT) we can check if f ∈ Pmd , but to test if f is zero on Hm it is not enough to pick few random
points from Hm and test if f is zero on those points.

Before describing the correct test, we present two results about the polynomials.
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Lemma 5.2.1 (Schwartz-Zippel). Let f be a m-variate polynomial of degree d over Fm. If f is
not a zero polynomial (i.e., f 6≡ 0), then

Prob
x

[f(x) = 0] ≤ d

|F| .

The above lemma shows that if a low degree polynomial over a sufficiently large field is not zero
at every point, then it can only be zero on small fraction of points.

Proposition 5.2.2. Let f be a polynomial of degree at most d over Fm. The restriction of f to
Hm is a zero polynomial (i.e., f |Hm ≡ 0) if and only if there exist polynomials q1, . . . , qm of degree
at most d− |H| such that

f(x) =
m∑
i=1

gH(xi)qi(x), (5.2.1)

where gH(x) =
∏
h∈H (x− h) is an univariate polynomial (of degree |H|).

Now we describe the Zero Sub-cube Test. In the LDT we assumed that the evaluation of f on
all points are given in the proof table. By the above Proposition if the polynomial f of degree at
most d is zero on Hm then there are polynomials q1, . . . , qm of degree at most d− |H| that satisfy
Equation (5.2.1). In the Zero Sub-Cube Test, we require that the proof table also contains the
evaluations of q1, . . . , qm (in addition to the evaluation of f) on all points in Fm.
Zero Sub-cube Test:

1. Choose a random line ` in Fm.

2. For f, q1, . . . , qm check if f |`, q1|`, . . . , qm|` is a low degree polynomial. In more detail, check
if f |` has degree at most d, and for each i = 1, . . . ,m check if qi|` has degree at most d− |H|.

3. For each x ∈ `, check if f(x) =
∑m

i=1 gH(xi)qi(x).

4. Accept if each of the above tests passes, and reject otherwise.

Combining the soundness of the low-degree test and the above properties of polynomials, we
can prove the following completeness and soundness of the Zero Sub-cube Test. Let Zmd denote
the set of m-variate polynomials P of degree d such that P |Hm = 0. Also for any line `, let acc(`)
denote the set of accepting local views of the Zero Sub-cube Test for the random line `.

Completeness: If f ∈ Zmd , then Prob [Zero Sub-cube Test accepts] = 1 or equivalently Prob [(f |`, q1|`, . . . , qm|`) ∈ acc(`)] =

1.

Soundness: E[agr((f |`, q1|`, . . . , qm|`), acc(`))] ≥ δ ⇒ agr(f,Zmd ) ≥ δ − mε − d/|F|, where ε =
poly(m, d, 1

|F|).
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Proof of the PCP Theorem (Part II)

Prahladh Harsha

Scribe: Geetha Jagannathan & Aleksandar Nikolov

21 July, 2009

6.1 Recap from Part 1

Recall that we want to construct a robust PCP for the NP-Complete problem. I.e. for every
n-sized instance x of the NP-complete problem L we want to construct a proof Π, which can be
checked by a verifier using a random string R of length log n and a constant-size query Q. The
verifier computes a local predicate φ of the local view Π|Q and accepts iff φ(Π|Q) = 1. We want
the construction to satisfy the following properties.

Completeness: If x ∈ L then there exists a proof Π such that

Prob
R

[φ(Π|Q) = 1] = 1.

Soundness: If x /∈ L then for all proofs Π,

E[agr(Π|Q, sat(φ))] ≤ δ.

Recall further that in Part I we constructed a PCP with the parameters above not for any
NP-complete property but for the specific “Zero on a Subcube” property. We say that a function
f : Fm → F satisfies the “Zero on Subcube” property iff:

• f is a low-degree polynomial P .

• P vanishes on Hm, where H ⊆ F.
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6.2 Robust PCP for CIRCUIT-SAT

In this part of the proof we will show how to use the local test for Zero on a Subcube to construct
a PCP for the CIRCUIT-SAT problem.

6.2.1 Problem Definition

Figure 6.1: CIRCUIT-SAT’s input

CIRCUIT-SAT is the following decision problem:

• Input: A circuit C with n gates (Figure 6.1); k of them are the input gates w1, . . . , wk, and
the rest are OR and NOT gates with fan in at most 2 and fanout at most 1. Let’s associate
variables z1, . . . , zn with each gate (including the input gates). Variable zi is the output of
gate i. The output gate outputs 1.

• Output: 1 iff there exists an assignment to z1, . . . , zn that respects the gate functionality,
and 0 otherwise.

Note that a proof for this problem is an assignment to z1, . . . , zn, and verifying the proof amounts
to checking that the assignment respects gate functionality at each gate. To use our local Zero on a
Subcube test for CIRCUIT-SAT we need to encode the assignment and the circuit C algebraically,
so that an assignment satisfies C iff a related function is a low-degree polynomial that vanishes
on a small subcube. Representing the assignment and the circuit algebraically is performed by a
process known as arithmetization.

6.2.2 Arithmetization of the Assignment

First we will map an assignment to the gate variables z1, . . . , zn to a low-degree polynomial over
an arbitrary field Fm so that the assignment is encoded by the polynomial.

Let |Hm| = n and choose an arbitrary bijection Hm ↔ [n]. The assignment maps each gate to
either 0 or 1, so it is equivalent to a function A : Hm → {0, 1}. We choose H so that {0, 1} ⊆ H ⊆ F,
and we can write A : Hm → F.

The following (easy-to-prove) algebraic fact will be used in the arithmetization of the circuit.
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Fact 6.2.1 (Low-Degree Extension (LDE)). For any function S : Hm → F, there exists a poly-
nomial Ŝ : Fm → F such that Ŝ|Hm ≡ S and the degree of Ŝ for each variable is at most |H|.
Therefore the total degree of Ŝ is at most m|H|.

Then A : Hm → F is mapped by the low-degree extension to a polynomial Â : Fm → F and the
degree of Â is at most m|H|.

6.2.3 Arithmetization of the Circuit

Our goal is to derive a rule from the circuit C which maps any polynomial Â : Fm → F to a
different low-degree polynomial PÂ : F3m+3 → F, such that PÂ|H3m+3 ≡ 0 if and only if Â encodes
a satisfying assignment. Note that the existence of such a rule is all we need to construct a PCP
for CIRCUIT-SAT, as it reduces verifying a satisfying assignment to testing the Zero on a Subcube
property.

We will specify the circuit in a slightly different fashion to enable the arithmetization. Consider
a function C̄ : H3m × H3 → {0, 1} that takes three indexes i1, i2, i3 ∈ [n] = Hm and three bits
b1, b2, b3 ∈ {0, 1} ⊆ H and outputs a bit as follows based on the functionality of the gate whose
input variables are zi1 and zi2 and output variable is zi3 .

C̄(i1, i2, i3, b1, b2, b3) =



1, iff the assignment zi1 = b̄1, zi2 = b̄2 zi3 = b̄3, where i1 and i2

are input values to gate i3 and i3 is the output value is an

INVALID configuration for the gate i3

0 otherwise.

Figure 6.2 illustrates the meaning of the arguments of C̄.

Figure 6.2: Setting of gate variables for C̄

Now once again we can use the LDE to map C̄ : H3m+3 → F to a low-degree polynomial
Ĉ : F3m+3 → F.
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We are ready to construct the rule we need. Given any q : Fm → F we define P(q) : F3m+3 → F
such that

P(q)(x1, . . . , xm︸ ︷︷ ︸
x1

, xm+1, . . . , x2m︸ ︷︷ ︸
x2

, x2m+1, . . . , x3m︸ ︷︷ ︸
x3

, z1, z2, z3)

= Ĉ(x1,x2,x3, z1, z2, z3)(q(x1)− z1)(q(x2)− z2)(q(x3)− z3).

Note that if q is low-degree, P(q) is also low-degree.
The motivation for defining P(q) in this way will become clear when we apply the definition to

Â:

P(Â)(i1, i2, i3, b1, b2, b3) = Ĉ(i1, i2, i3, b1, b2, b3)(Â(i1)− b1)(Â(i2)− b2)(Â(i3)− b3). (6.2.1)

It is now an easy case-analysis to observe the following.

Observation 6.2.2. P(Â)|H3m+3 ≡ 0⇔ Â is a satisfying assignment.

6.2.4 The PCP Verifier

Given a circuit C, the PCP proof consists of the oracles Â : Fm → F and PÂ : F3m+3 → F.
The PCP verifier needs to make the following checks:

• Â satisfies the low-degree test

• PÂ satisfies the low-degree test

• (PÂ, Â) satisfies the rule described in (6.2.1).

• PÂ is zero on the subcube Hm.

Given the low-degree test and zero-on-subcube test, it is straightforward to design a PCP that
performs the above tests. The PCP verifier expects as proofs the oracles Â : Fm → F, PÂ : F3m+3 →
F, q1 : F3m+3 → F, . . . , q3m+3 : F3m+3 → F. The oracles q1, . . . , q3m+3 are the auxiliary oracles for
performing the zero-on-subcube test. The verifier first picks a random line ` in F3m+3. It reads
the value of all the oracles along the line `. It checks that the restrictions of all the oracles to the
line is low-degree. It then checks that for each point x on the line l, the “zero-on-subcube” test is
satisified, namely

PÂ(x) =

3m+3∑
i=1

qi(x)gH(xi).

It finally checks for each point on that (6.2.1) is satisified. This completes the description of the
PCP verifier.

For want of time, we will skip the analysis of the Robust PCP (see [BGH+06] and [Har04] for
details).

Let us now compute the parameters of the PCP verifier. Here n = Hm is the input length.
Let us assume m = log(n)/ log log(n). We can choose |F| = poly(m|H|). The PCP verifier makes
O(|F|) = poly log n queries and the amount of randomness used is O(m log(|F|)) = O(log n). The
above construction yields a robust PCP of the following form
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Theorem 6.2.3. CIRCUIT-SAT has a robust PCP that uses O(log n) randomness, makes poly log n
queries and has (1/poly log n) robust soundness parameter.

Observe that the robust PCP constructed in the above theorem has polylog query complexity
and not constant, as we had originally claimed. In the next section, we give a high level outline of
how to reduce number of queries (from polylog to constant) using a composition technique originally
designed by Arora and Safra [AS98].

6.2.5 PCP Composition

In this section, we describe briefly the PCP composition (due to Arora and Safra [AS98]) that
helps in reducing the number of queries made by the verifier form poly log(n) to constant without
affecting the other parameters too much. Recall that the PCP verifier on input x and an oracle
access to a proof φ, tosses some random coins and based on the randomness queries some locations.
Denote the query locations as the set I. The PCP verifier evaluates a CIRCUIT-SAT predicate
φ(Π|I) and accepts or rejects based on the outcome of the predicate. The PCP constructed in the
previous section achieves O(log(n)) randomness and O(poly log(n)) number of queries. We would
like to reduce the query complexity from poly log n to O(1). How do we do this? How does one
check that Π|I satisfies φ without reading all of Π|I and only reading a constant number of locations
in Π|I . Arora and Safra suggested that use another PCP to recursively perform this check: φ|I = 1.
Let us denote the original PCP verifier as the outer verifier and the one that checks the predicate φ
without reading the entire set I as the inner verifier. The inner verifier gets the circuit φ and (Π|I)
as inputs. But if it reads all the input bits then the query complexity is not reduced. Instead, the
inner gets as input the circuit and an oracle to the proof of (Π|I) and it now needs to check that
the proof in this location satisfies φ. This requires some care as a simple recursion will not do the
job. A composition in the context of robust PCPs (or equivalently 2-query projective PCPs) was
first shown by Moshkovitz and Raz [MR08]. A more generic and simpler composition paradigm
for was then shown by Dinur and Harsha [DH09]. For want of time, we will skip the details of the
composition and conclude on the note that applying the composition theorem of Dinur and Harsha
to the robust PCP constructed in Theorem 6.2.3, one can obtain the constant query PCP with
arbitrarily small error as claimed before (see [DH09] for the details of this construction).
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H̊astad’s 3-Bit PCP

Subhash Khot

Scribe: Dev Desai

21 July, 2009

Previously, we saw the proof of the PCP theorem and its connection to proving inapproximability
results. The PCPs that we have seen so far have constant number of queries, but over a large
alphabet. Now we are interested in designing useful PCPs while keeping the number of query bits
low. The purpose of this lecture is to present such a PCP construction, which leads to optimal
inapproximability results for various problems such as MAX-3SAT and MAX-3LIN.

7.1 Introduction

The PCP theorem and Raz’s parallel repetition theorem [Raz98] give the NP-hardness of a problem
called LABEL COVER (which we will define shortly). This problem is the canonical starting point
for reductions that prove inapproximability results. Such reductions can be broadly categorized
into two:

Direct reductions. These have been successful in proving inapproximability for network prob-
lems, lattice based problems, etc.

Long code based reductions. Salient examples of such results can be found in the paper of
Bellare, Goldreich, and Sudan [BGS98] and H̊astad [H̊as01].

Long code based reductions have been successful for many important problems like MAX-CUT,
albeit with a catch: many of these results depend on conjectures like the Unique Games Conjec-
ture [Kho02], which will be the subject of the next lecture. The focus of this lecture is to prove the
powerful result of H̊astad’s, which can be stated as follows:
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Theorem 7.1.1 (H̊astad’s 3-bit PCP [H̊as01]). For every ε, η > 0, NP has a PCP verifier that
uses O(log n) random bits, queries exactly 3 bits to the proof, evaluates a linear predicate on these
3 bits, and has completeness 1− ε and soundness 1/2 + η.

We can view the bits in this PCP proof as boolean variables. Then the test of the verifier can
be interpreted as a system of linear equations, each equation corresponding to the triplet of bits
tested for a given random string. Thus, we immediately obtain the hardness for the MAX-3LIN
problem (where an instance of MAX-3LIN is a system of linear equations modulo 2 with at most
3 variables per equation, and we are interested in maximizing the fraction of equations that can
simultaneously be satisfied).

Corollary 7.1.2. For every ε, η > 0, given an instance of MAX-3LIN, it is NP-hard to tell if 1− ε
fraction of the equations are satisfiable by some assignment or that no assignment satisfies more
than 1/2 + η fraction of the equations.

In other words, getting an efficient algorithm with approximation guarantee better than (1/2 +
η)/(1 − ε), which is ≈ 1/2 (since we can choose ε and η to be arbitrarily small), for MAX-3LIN
is impossible unless P = NP. This result is tight since a random assignment satisfies half of the
equations in expectation. Note that the imperfect completeness in the result is essential if P 6= NP,
since Gaussian elimination can be used to efficiently check whether any system of linear equations
can be completely satisfied.

We now go on to the proof of Theorem 7.1.1. Here, the concepts of Proof composition, Long
codes and Fourier analysis play a pivotal role. We will start with a high-level picture of the PCP
and work our way down to the actual 3-bit test.

7.2 Proof Composition

The standard method to construct a Long code based PCP is by composing an Outer PCP with
an Inner PCP. These two concepts are explained below.

The Outer PCP

The Outer PCP is based on a hard instance of the LABEL COVER problem.

Definition 7.2.1. A LABEL COVER problem L(G(V,W,E), [m], [n], {πvw|(v, w) ∈ E}) consists of:

1. A bipartite graph G(V,W,E) with bipartition V , W .

2. Every vertex in V is supposed to get a label from a set [m] and every vertex in W is supposed
to get a label from a set [n] (n ≥ m).

3. Every edge (v, w) ∈ E is associated with a projection πvw : [n] 7→ [m].

We say that a labeling φ : V 7→ [m], φ : W 7→ [n] satisfies an edge (v, w) if πvw(φ(w)) = φ(v). The
goal is to find a labeling that maximizes the number of satisfied edges.

Let us define opt(L) to be the maximum fraction of edges that are satisfied by any labeling.
As mentioned earlier, the hardness of LABEL COVER is obtained by combining the PCP theo-
rem [FGL+96, AS98, ALM+98] with Raz’s parallel repetition theorem [Raz98].
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Theorem 7.2.2. For every δ > 0, there exist m and n such that given a LABEL COVER instance
L(G, [m], [n], {πvw}), it is NP-hard to tell if opt(L) = 1 or opt(L) ≤ δ.

It is useful to think of the above theorem as a PCP that makes 2 queries over the constant (but
large) alphabets of size m and n. The verifier just picks an edge at random, queries the labels of
the endpoints of this edge and accepts if and only if these labels satisfy the edge. This PCP, which
is based on a hard instance of LABEL COVER forms our Outer PCP.

The Inner PCP

The Outer PCP verifier expects some labels as the answers to its two queries. We will compose this
verifier with an Inner PCP verifier, which expects the proof to contain some encoding (in our case,
the Long Code) of the labels, rather than the labels themselves. We choose to have an encoding
of the labels so that we can check just a few bits of the proof and tell with a reasonable guarantee
whether the labeling is valid.

Thus, the Inner verifier expects large bit strings (supposed to be encodings) for each vertex in
G. Let the edge picked by the Outer verifier be (v, w). Then the Inner verifier checks 1 bit from gv
(the supposed encoding of the label of v) and 2 bits from fw (the supposed encoding of the label of
w). Note that the Inner verifier is trying to simulate the Outer PCP. It needs to check the following
two things in one shot:

Codeword Test The strings fw and gv are correct encodings of some j ∈ [n] and i ∈ [m].

Consistency Test These i and j satisfy π(j) = i.

We can therefore convert a PCP which asked 2 large queries to a PCP which asks 3 ‘bit’ queries.
We now need to show the following two implications:

1. (Completeness) opt(L) = 1 =⇒ ∃ Proof Pr[acc] ≥ 1− ε.

2. (Soundness) opt(L) ≤ δ =⇒ ∀ Proofs Pr[acc] < 1
2 + η.

The completeness follows by the design of the PCP and should be regarded as a sanity check on the
construction. The soundness will be proved by contraposition. We will assume that Pr[acc] ≥ 1/2+η
and then decode the labels to satisfy a lot of edges.

7.3 The Long Code and its Test

H̊astad’s Inner PCP verifier does the codeword test and consistency test in one shot. For clarity,
let us first analyze just the codeword test. We will see how to incorporate the consistency test in
the next section. For the codeword test, we need to look at the particular encoding that the Inner
PCP will use: the Long Code. It is defined below.

Definition 7.3.1. The Long Code encoding of j ∈ [n] is defined to be the truth table of the boolean
dictatorship function on the jth coordinate, f : {±1}n 7→ {±1} such that f(x1, . . . , xn) = xj.

Some observations are in order. Note that we are representing bits by {±1} and not {0, 1}.
This is done just for the sake of clarity, since the calculations done with {±1} are less messy. Also
note that the Long Code is huge. An element j ∈ [n] will require log n bits to represent, but the
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Long Code of j requires 2n bits, a doubly-exponential blowup! We can get away with this because
n, the alphabet size, is a constant.

Now for a short aside on Fourier analysis. Recall that for each S ⊆ [n], the Fourier character
χS : {±1}n 7→ {±1} is defined as

χS(x) =
∏
i∈S

xi.

These characters form an orthonormal basis for the set of Boolean functions f : {±1}n 7→ {±1}.
All such functions can therefore be written in terms of this basis, called the Fourier expansion, as

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

where f̂(S) is called the Fourier coefficient of set S. For Boolean functions, these coefficients satisfy
Parseval’s identity, namely

∑
S⊆[n] f̂(S)2 = 1.

Back to the Long Code. In terms of Fourier expansion, the Long Code of element j is the
same as the function χ{j}. Thus it is simple to write down, since the only non-zero coefficient is

f̂({j}) = 1. The Long Code then fits into a general class of functions which have high Fourier
coefficients of low order. This fact will be useful in the soundness analysis of the test.

On to the codeword test. This will essentially be a linearity test, that is, we will check whether

f(x+ y) = f(x) + f(y).

Since we are in the {±1} domain, this linearity translates to checking whether

f(xy) = f(x)f(y).

We will also introduce a small randomized perturbation in the linearity test. This is done to improve
the overall soundness of the test.

Definition 7.3.2. An ε-perturbation vector is a string of ±1 bits, where each bit is independently
set to −1 with probability ε and 1 with probability 1− ε.

The final codeword test is described below. It is a randomized 3-bit linear test that checks
whether the input function is close to a Long Code.
Long Code Test:

Input: Function f : {±1}n 7→ {±1} and error parameter ε.
Test: Pick x, y ∈ {±1}n at random. Pick an ε-perturbation vector µ ∈ {±1}n and let z = xyµ.

Accept if and only if
f(z) = f(x)f(y).

Let us analyze the completeness and soundness of this test. We have the following theorem.

Theorem 7.3.3. Given a truth table of a function f : {±1}n 7→ {±1} and ε > 0, the following are
true for the Long Code Test:

1. If f = χ{j} for some j, then Pr[acc] = 1− ε.
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2. If Pr[acc] ≥ 1/2 + η, then f “resembles” a Long Code in the following sense: ∃ S ⊆ [n]
such that |f̂(S)| ≥ η and |S| ≤ O((1/ε) log(1/η)), in other words, there exists a large Fourier
coefficient of low order.

Proof. To prove the completeness part, assume that f = χ{j} for some j ∈ [n], that is, it is a Long
Code. Then the test will “Accept” if and only if

zj = xjyj ⇐⇒ xjyjµj = xjyj ⇐⇒ µj = 1

which happens with probability 1− ε.
For the soundness analysis, assume that Pr[acc] ≥ 1/2 + η. We can write this probability in

terms of the test as

Pr[acc] = Ex,y,µ
[

1 + f(z)f(x)f(y)

2

]
.

This is a standard PCP trick that is used often in analyzing such tests. Substituting for Pr[acc]
and using the Fourier expansion of f ,

1

2
+ η ≤ 1

2
+

1

2
Ex,y,µ[f(xyµ)f(x)f(y)]

2η ≤ Ex,y,µ

∑
S⊆[n]

f̂(S)χS(xyµ)

∑
T⊆[n]

f̂(T )χT (x)

∑
U⊆[n]

f̂(U)χU (y)


=
∑
S,T,U

f̂(S)f̂(T )f̂(U)Ex,y,µ [χS(xyµ)χT (x)χU (y)]

=
∑
S,T,U

f̂(S)f̂(T )f̂(U)Ex,y,µ [χS(x)χS(y)χS(µ)χT (x)χU (y)]

=
∑
S,T,U

f̂(S)f̂(T )f̂(U)Ex [χS(x)χT (x)]Ey [χS(y)χU (y)]Eµ [χS(µ)] .

We can simplify the last expression by using orthonormality of the χ’s to argue that

Ex[χS(x)χT (x)] = Ex

∏
i∈S

xi
∏
j∈T

xj

 =
∏

i∈S∆T

Ex[xi] =

{
1 if S = T,

0 otherwise

where S∆T stands for the symmetric difference between sets S and T . Thus the terms in the
summation will vanish unless S = T = U . We then get

2η ≤
∑
S

f̂(S)3 Eµ[χS(µ)]. (7.3.1)

As an aside, the Long Code Test without perturbations was analyzed long before H̊astad by Blum,
Luby and Rubinfeld [BLR93]. In that case, we just get∑

S

f̂(S)3 ≥ 2η =⇒ |f̂max|
∑
S

f̂(S)2 ≥ 2η =⇒ ∃ large |f̂ | (since
∑

f̂2 = 1).

Now, with perturbation, we have

Eµ [χS(µ)] = Eµ

[∏
i∈S

µi

]
= [1(1− ε) + (−1)ε]|S| = (1− 2ε)|S|.
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Substituting this in Inequality (7.3.1), we get

2η ≤
∑
S

f̂(S)3(1− 2ε)|S|.

We can again think of the above sum as a convex combination (since
∑
f̂2 = 1). This implies that

there exists an S such that f̂(S)(1− 2ε)|S| ≥ 2η. Thus we have

Pr[acc] ≥ 1

2
+ η =⇒ ∃ S : |f̂(S)| ≥ 2η and |S| ≤ O

(
1

ε
log

1

η

)
.

The Long Code test can be thought of as an analog of the concept of gadget in NP reductions.
In particular, Theorem 7.3.3 is very important and is the crux of the PCP. We will prove similar
results in the analysis of later tests.

7.4 Incorporating Consistency

Let us restate what we want from our 3-bit test. Recall that the inputs to the Inner PCP verifier
are two supposed Long codes, g and f , of two vertices v and w, and the projection π between them.
We have to check two things in one shot:

1. g and f are Long codes of some i ∈ [m] and j ∈ [n].

2. π(j) = i.

We are going to do this by reading 1 bit from g and 2 bits from f and applying a 3-bit linear test
similar to the Long code test.
Consistency Test:

Input: Functions g : {±1}m 7→ {±1} and f : {±1}n 7→ {±1}, projection π : [n] 7→ [m], and
error parameter ε.

Test: Pick x ∈ {±1}m, y ∈ {±1}n at random. Pick an ε-perturbation vector µ : {±1}n. Let
z = (x ◦ π)yµ. Accept if and only if

f(z) = g(x)f(y).

In the above test, the vector (x◦π) is defined as (x◦π)j = xπ(j) ∀ 1 ≤ j ≤ n. Such a definition
is needed because x and y are vectors of different sizes.

The analysis of the above test is similar to that of the Long Code test. Hence, we will skip a
rigorous proof and state only the important details. The completeness is simple to analyze.

For the soundness analysis, we can imagine a restricted case where n = m, π = id (identity
permutation), and f = g. Then the test is exactly the 3-bit Long Code test that we saw in the
previous section and we get

Pr[acc] ≥ 1

2
+ η

Theorem 7.3.3−−−−−−−−−→
∑
S⊆[n]

|S|≤O( 1
ε

log 1
η

)

f̂(S)3 ≥ η Cauchy-Schwarz−−−−−−−−−−→
∑
S⊆[n]

|S|≤O( 1
ε

log 1
η

)

f̂(S)4 ≥ η2.
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Now if we have different f and g, one can verify by analysis similar to that in Theorem 7.3.3 that
instead of the above inequality, we would get∑

S⊆[n]

|S|≤O( 1
ε

log 1
η

)

ĝ(S)2f̂(S)2 ≥ η2.

Further, now if π 6= id and n 6= m, then we would end up with the inequality in the following
theorem.

Theorem 7.4.1. The following are true for Consistency Test(g, f, π, ε):

1. If f = χ{j}, g = χ{i} and π(j) = i, then Pr[acc] = 1− ε.

2. If Pr[acc] ≥ 1/2 + η, then f and g are correlated in the following sense:∑
S⊆[m],T⊆[n]

|S|,|T |≤O(1/ε log(1/η))
S,Tcorrelated by π

ĝ(S)2f̂(T )2 ≥ η2

where “S, T correlated by π” means that there exist i ∈ S, j ∈ T such that π(j) = i.

We are now ready to describe H̊astad’s composed PCP verifier.
H̊astad’s 3-bit PCP:

Input: Hard instance of LABEL COVER, L(G(V,W,E), [m], [n], {πvw}) (given by Theorem 7.2.2)
and error parameter ε.

Verifier: Pick edge (v, w) ∈ E at random. Let gv and fw be the supposed Long codes of the two
vertices. Run Consistency Test(gv, fw, πvw, ε).

The following theorem gives the completeness and soundness of the verifier.

Theorem 7.4.2. Given a hard instance of LABEL COVER, L, H̊astad’s PCP guarantees

1. (Completeness) If opt(L) = 1, then there exists a proof for which Pr[acc] ≥ 1− ε.

2. (Soundness) If Pr[acc] ≥ 1/2 + 2η, then opt(L) ≥ ε2η3/ log2(1/η), that is, there is a labeling
to L that satisfies at least ε2η3/ log2(1/η) fraction of edges.

Proof. For the completeness part, we can assume that the proof contains correct encodings on
correct labels. Then by Theorem 7.4.1, the Verifier accepts with probability 1− ε on every choice
of edge. Therefore, the overall acceptance probability also remains 1− ε.

Now for the soundness part. If Pr[acc] ≥ 1/2 + 2η, then by an averaging argument, for at least
η fraction of the edges (v, w) ∈ E, Consistency Test(gv, fw, πvw, ε) accepts with probability at least
1/2 + η.

Fix any such good edge. Then by Theorem 7.4.1, we have∑
|S|,|T |≤O(1/ε log(1/η))
∃ i∈S,j∈T : π(j)=i

ĝv(S)2f̂w(T )2 ≥ η2. (7.4.1)

We will now define labels for vertices v and w. First, we pick sets S ⊆ [m] and T ⊆ [n] with
probability ĝv(S)2 and f̂w(T )2 respectively. Next, we pick labels i ∈ S and j ∈ T at random.
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This is a randomized labeling and by the probabilistic method, the argument goes through. In
expectation, at least

η︸︷︷︸
Pr[Pick

good edge]

· η2︸︷︷︸
Pr[Pick correlated S,T ]

by Inequality 7.4.1

· ε2

log2(1/η)︸ ︷︷ ︸
Pr[Pick i∈S,j∈T

s.t. π(j)=i]

fraction of label-cover edges are satisfied.

Finally, observe that if we set δ = cε2η3/ log2(1/η), then Theorem 7.2.2 and Theorem 7.4.2
together prove Theorem 7.1.1.

7.5 Concluding Remarks

In this lecture, we have seen and analyzed H̊astad’s powerful 3-bit PCP. There are a few subtleties
in the construction of this PCP that are worth mentioning. The first subtlety, that we have already
seen in the Introduction, is that we have to sacrifice perfect completeness if we want our Verifier
to have linear predicates.

The second issue is that any linear test can be satisfied if everything is 0 (or +1 in our case).
Moreover, in the soundness analysis of Theorem 7.4.2, the sets S and T that are chosen by the
probability distributions {ĝv(S)2} and {f̂w(T )2} respectively should not be empty. This problem
is taken care by an operation called folding. For more information, the reader can look at the
references below.

Some good references for more information on H̊astad’s PCP are Chapter 22 in Arora and
Barak’s textbook [AB09], Khot’s article on Long code based PCPs [Kho05] and H̊astad’s original
paper [H̊as01].
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Lecture 8

Semidefinite Programming and Unique Games

Moses Charikar

Scribe: Alantha Newman

21 July, 2009

8.1 Unique Games

The topic of Unique Games has generated much interest in the past few years. The Unique Games
Conjecture was posed by Khot [Kho02]. We will discuss the associated optimization problem and
the algorithmic intuition and insight into the conjecture, as well as the limits of these algorithmic
techniques. Finally, we mention the amazing consequences implied for many optimization problems
if the problem is really as hard as conjectured.

We now define the Unique Games problem. The input is a set of variables V and a set of k
labels, L, where k is the size of the domain. Our goal is to compute a mapping, ` : V → L, satisfying
certain constraints that we now describe. Let E denote a set of pairs of variables, {(u, v)} ⊂ V ×V .
For each (u, v) ∈ E, there is an associated constraint represented by πuv, indicating that `(v)
should be equal to πuv(`(u)); we assume that the constraint πvu is the inverse of the constraint πvu
i.e, πuv = π−1

vu . Thus, our goal is to compute the aforementioned mapping, ` : V → L, so as to
maximize the number of satisfied constraints.

Each constraint, πuv, can be viewed as a permutation on L. Note that this permutation may
be different for each pair (u, v) ∈ E. For a pair (u, v) ∈ E, if v is given a particular label from
L, say `(v), then there is only one label for u that will satisfy the constraint πuv. Specifically,
`(u) should equal πvu(`(v)). Hence, the “unique” in Unique Games. The practice of calling this
optimization problem a unique “game” stems from the connection of this problem to 2-prover 1-
round games [FL92]. The Unique Games problem is a special case of Label Cover (discussed in
other lectures in the workshop), in which each constraint forms a bijection from L to L. Having
such a bijection turns out to be useful for hardness results.
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8.2 Examples

We will refer to E as a set of edges, since we can view an instance of Unique Games as a graph
G = (V,E) in which each edge (u, v) ∈ E is labeled with a constraint πuv. We now give some
specific examples of optimization problems that are special cases of Unique Games.

8.2.1 Linear Equations Mod p

We are given a set of equations in the form xi − xj ≡ cij (mod p). The goal is to assign each
variable in V = {xi} a label from the set L = [0, 1, . . . p − 1] so as to maximize the number of
satisfied equations. Note that each constraint is a bijection.

8.2.2 MAXCUT

Given an undirected graph G = (V,E), the Max Cut problem is to find a bipartition of the vertices
that maximizes the weight of the edges with endpoints on opposite sides of the partition.

We can represent this problem as a special case of Linear Equations mod p and therefore as a
special case of Unique Games. For each edge (i, j) ∈ E, we write the equation xi−xj ≡ 1 ( mod 2).
Note that the domain size is two, since there are two possible labels, 0 and 1.

8.3 Satisfiable vs Almost Satisfiable Instances

If an instance of Unique Games is satisfiable, it is easy to find an assignment that satisfies all of
the constraints. Can you see why? Essentially, the uniqueness property says that if you know
the correct label of one variable, then you know the labels of all the neighboring variables. So
we can just guess all possible labels for a variable; at some point your guess is correct and this
propagates correct labels to all neighbors, and to their neighbors, and so on. This is a generalization
of saying that if a graph is bipartite (e.g. all equations in the Max Cut problem are simultaneously
satisfiable), then such a bipartition can be found efficiently. So when all constraints in an instance
of Unique Games are satisfiable, this is an “easy” problem.

In contrast, the following problem has been conjectured to be “hard”: If 99% of the constraints
are satisfiable, can we satisfy 1% of the constraints? The precise form of the conjecture is known as
the Unique Games Conjecture [Kho02]: For all small constants ε, δ > 0, given an instance of Unique
Games where 1 − ε of the constraints are satisfied, it is hard to satisfy a δ fraction of satisfiable
constraints, for some k > f(ε, δ), where k is the size of the domain and f is some function of ε and
δ.

How does f grow as a function of ε and δ? We claim that f(ε, δ) > 1/δ. This is because it can
easily be shown that we can satisfy a 1/k fraction of the constraints: Randomly assigning a label to
each variable achieves this guarantee. Thus, in words, the conjecture is that for a sufficiently large
domain size, it is hard to distinguish between almost satisfiable and close to unsatisfiable instances.

8.3.1 Almost Satisfiable Instances of MAXCUT

We can also consider the Max Cut problem from the viewpoint of distinguishing between almost
satisfiable and close to unsatisfiable instances. However, for this problem, a conjecture as strong as
that stated above for general Unique Games is clearly false. This is because we can always satisfy
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at least half of the equations. (See Sanjeev’s lecture.) We now consider the problem of satisfying
the maximum number of constraints given that a (1− ε) fraction of the constraints are satisfiable.
We write the standard semidefinite programming (SDP) relaxation in which each vertex u (with a
slight abuse of notation) is represented by a unit vector, u.

max
∑

(u,v)∈E

1− u · v
2

u · u = 1 ∀u ∈ V
u ∈ Rn ∀u ∈ V.

For a fixed instance of the Max Cut problem, let OPT denote the fraction of constraints satisfied
by an optimal solution, and let OPTSDP denote the value of the objective function of the above
SDP on this instance. If OPT ≥ (1−ε)|E|, then OPTSDP ≥ (1−ε)|E|, since OPTSDP ≥ OPT . In
Lecture 1 (Sanjeev’s lecture), it was shown that using the random hyperplane rounding of Goemans-
Williamson [GW95], we can obtain a .878-approximation algorithm for this problem. We will now
try to analyze this algorithm for the case when OPT is large, e.g. at least (1 − ε)|E|. From a
solution to the above SDP, we obtain a collection of n-dimensional unit vectors, where n = |V |. We
choose a random hyperplane, represented by a vector r ∈ N(0, 1)n (i.e. each coordinate is chosen
according to the normal distribution with mean 0 and variance 1). Each vector u ∈ V has either a
positive or a negative dot product with the vector r, i.e r · u > 0 or r · u < 0. Let us now analyze
what guarantee we can obtain for the algorithm in terms of ε.

As previously stated, we have the following inequality for the SDP objective function:∑
(u,v)∈E

(1− u · v)

2
≥ (1− ε)|E|.

Let θ′uv represent the angle between vectors u and v, i.e. arccos(u · v). Let θuv denote the angle
(π − θ′uv). Then we can rewrite the objective function of the SDP as:∑

(u,v)∈E

1 + cos(θuv)

2
.

Further rewriting of the objective function results in the following:∑
(u,v)∈E

1 + cos(θuv)

2
=

∑
(u,v)∈E

1− 1− cos (θuv)

2

= |E| −
∑

(u,v)∈E

1− cos (θuv)

2

= |E| −
∑

(u,v)∈E
sin2 (

θuv
2

)

≥ |E| − ε|E|.

We say that vertices u and v are “cut” if they fall on opposite sides of the bipartition after rounding.

Pr[u and v cut] =
θ′uv
π

= 1− θuv
π
.
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The expected size of S—the number of edges cut in a solution—is:

E[S] =
∑

(u,v)∈E
1− θuv

π

= |E| −
∑

(u,v)∈E

θuv
π
.

Assume for all (u, v) ∈ E that sin2 ( θuv2 ) = ε. Then sin ( θuv2 ) =
√
ε. For small θ, we have that

sin (θ) ≈ θ. Therefore, θuv/2 ≈
√
ε.

Thus, the expected value E[S] ≥ |E|(1−c√ε) for some constant c. In other words, if we are given
a Max Cut instance with objective value (1− ε)|E|, we can find a solution of size (1− c√ε)|E|. In
other words, an almost satisfiable instance can be given an almost satisfying assignment, although
the assignment has a weaker guarantee.

8.4 General Unique Games

What happens for a large domain? How do we write an SDP for this problem? Before we had
just one vector per vertex. Now for each variable, we have k values. So we have a vector for each
variable and for each value that it can be assigned. First, we will write a {0, 1} integer program
for Unique Games and then we relax this to obtain an SDP relaxation.

8.4.1 Integer Program for Unique Games

Recall that L is a set of k labels. For each variable u and each label i ∈ L, let ui be an indicator
variable that is 1 if u is assigned label i and 0 otherwise. Note that the expression in the objective
function is 1 exactly when a constraint πuv is satisfied.

max
∑

(u,v)∈E

∑
i∈L

ui · vπuv(i)∑
i∈L

ui = 1 ∀u ∈ V.

Now we move to a vector program. The objective function stays the same, but we can add some
more equalities and inequalities to the relaxation that are valid for an integer program. Below, we
write quadratic constraints since our goal is ultimately to obtain a quadratic program.∑

i∈L
ui · ui = 1 ∀u ∈ V, i ∈ L,

ui · uj = 0 ∀u ∈ V, i 6= j ∈ L.
Additionally, we can also add triangle-inequality constraints on triples of vectors, {ui, vj , wh} for
u, v, w ∈ V and i, j, h ∈ L:

||ui − wh||2 ≤ ||ui − vj ||2 + ||vj − wh||2, (8.4.1)

||ui − vj ||2 ≥ ||ui||2 − ||vj ||2. (8.4.2)

These constraints are easy to verify for 0/1 variables, i.e. for integer solutions. Note that these
constraints are not necessary for the integer program, but they make the SDP relaxation stronger.
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8.4.2 Trevisan’s Algorithm

We now look at an algorithm due to Trevisan [Tre08]. Recall that if we know that every constraint
in a given instance is satisfiable, then we can just propagate the labels and obtain a satisfiable
assignment. The algorithm that we discuss is roughly based on this idea.

How can we use a solution to the SDP relaxation to obtain a solution that satisfies many
constraints? Suppose that OPT is |E| and consider two vertices u and v connected by an edge. In
this case, the set of k vectors corresponding to u is the same constellation of k vectors corresponding
to vertex v, possibly with a different labeling. If OPT is (1 − ε)|E|, then although these two
constellations may no longer be identical, they should be “close”. The correlation of the vectors
corresponds to the distance, i.e. high correlation corresponds to small distance. Thus, we want to
show that the vector corresponding to the label of the root vertex r is “close” to other vectors,
indicating which labels to assign the other vertices.

An Algorithm for Simplified Instances

Consider the following “simplified instance”. Recall that the constraint graph consists of a vertex
for each variable and has an edge between two variables if there is a constraint between these
two variables. Suppose the constraint graph has radius d: there exists a vertex r such that every
variable is a distance at most d from vertex r. The following lemma can be proved using the ideas
discussed above.

Lemma 8.4.1. If every edge contributes 1−ε/8(d+1) to the SDP objective value, then it is possible
to efficiently find an assignment satisfying a (1− ε)-fraction of the constraints.

We now give the steps of the rounding algorithm.

Rounding the SDP

(i) Find root vertex, r, such that every other vertex is reachable from r by a path
of length at most d.

(ii) Assign label i to r with probability ||ri||2.

(iii) For each u ∈ V , assign u label j, where j is the label that minimizes the
quantity ||uj − ri||2.

As mentioned earlier, the intuition for this label assignment is that uj is the vector that is
“closest” to ri. We now prove the following key claim: For each edge (u, v), the probability that
constraint πuv is satisfied is at least 1 − ε. In particular, recall that edge (u, v) is mislabeled if
`(v) 6= πuv(`(u)). Thus, we want to show that the probability that edge (u, v) is mislabeled is at
most ε.

Since r is at most a distance d from all other vertices, a BFS tree with root r has the property
that each u has a path to r on the tree of distance at most d. Fix a BFS tree and consider the
path from r to u: r = u0, u1, u2, . . . , ut−1, ut = u, where t ≤ d. Let πu1 denote the permutation
πu0,u1 , and recursively define πuk as the composition of permutations (πuk,uk−1) · (πuk−1). Let
πv = (πuv) · (πu). We now compute the probability that vertex u is assigned label πu(i) and that
vertex v is assigned label πv(i), given that r is assigned label i. Note that if both these assignments
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occur, then edge (u, v) is satisfied. (Since edge (u, v) may also be satisfied with another assignment,
we can think of our calculation as possibly being an underestimate on the probability that edge
(u, v) is satisfied.)

Let A(u) denote the label assigned to vertex u by the rounding algorithm. We will show:

Pr[A(u) = πu(i)] ≥ 1− ε

2
and Pr[A(v) = πv(i)] ≥ 1− ε

2
.

This implies that the probability that constraint πuv is satisfied is at least 1− ε. Now we compute
the probability that A(u) 6= πu(i). Suppose that uj for j 6= πu(i) is closer to vector ri than uπu(i)

is. In other words, suppose:

||uj − ri||2 ≤ ||uπu(i) − ri||2. (8.4.3)

Let Bu be the set of labels such that if r is assigned label i ∈ Bu, then u is not assigned label πu(i).
Note that label j belongs to Bu iff inequality (8.4.3) holds for j. Thus, the probability that u is
not labeled with πu(i) is exactly:

Pr[A(u) 6= πu(i)] =
∑
i∈Bu
||ri||2.

One can verify that if there is some label j such that inequality (8.4.3) holds, then the quantity
||ri||2 is at most 2||ri − uπu(i)||2. This proof makes use of inequalities from the SDP, (8.4.1) and
(8.4.2), as well as inequality (8.4.3). (See Lemma 8.6.1 from [Tre08], which we include in the
Appendix.) Recall that each edge in the graph (and thus each edge on the path from r to u in the
BFS tree) contributes at most 1 − ε/8(d + 1) to the objective value. By triangle inequality, this
implies that

∑
i∈L ||ri − uπu(i)||2 ≤ ε/4. Thus, we conclude:

Pr[A(u) 6= πu(i)] =
∑
i∈Bu
||ri||2

≤ 2
∑
i∈Bu
||ri − uπu(i)||2

≤ 2
∑
i∈L
||ri − uπu(i)||2

≤ ε

2
.

Similarly, we conclude that Pr[A(v) 6= πv(i)] ≤ ε/2, which implies that the probability that con-
straint πuv is not satisfied is at most ε.

Shift Invariant Instances

In the case of Linear Equations mod p, we can add more constraints to the SDP relaxation, which
allow for a simplified analysis of the rounding algorithm. For any assignment of labels, we can shift
each of the labels by the same fixed amount, i.e, by adding a value k ∈ L to each label, and obtain
an assignment with the same objective value. This property of a solution has been referred to as
shift invariance. In these instances, the following are valid constraints. Note that p = |L|.

||ui||2 =
1

p
u ∈ V, i ∈ L,

ui · vj = ui+k · vj+k u, v ∈ V, i, j, k ∈ L.
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In this case, we obtain a stronger version of Lemma 8.4.1.

Lemma 8.4.2. In a shift invariant instance in which every edge contributes more than 1−1/2(d+1)
to the SDP objective value, it is possible to efficiently find an assignment that satisfies all of the
constraints.

We will show that in this case, the vector ri is closer to vector uπu(i) than to vector uj for any
label j 6= πu(i). In other words, ri · uπu(i) > ri · uj for all j ∈ L. If each edge contributes more than
1− 1/2(d+ 1) to the objective value, then ||ri−uπu(i)||2 < 1/p. This implies that ri ·uπu(i) > 1/2p.
By triangle inequality, we have:

||uj − uπu(i)||2 ≤ ||uj − ri||2 + ||ri − uπu(i)||2
2

p
≤ 2

p
− 2ri · uj +

1

p
⇒

ri · uj ≤
1

2p
.

Assuming that vector uj is closer to ri than vector uπu(i), we obtain the following contradiction:

1

2p
< ri · uπu(i) ≤ ri · uj ≤

1

2p
.

Note that in the case of shift invariance, r is assigned each label from L with equal probability.
Because of shift invariance, it does not actually matter which label r is assigned. Thus, we can just
assign r a label i arbitrarily (we no longer need randomization) and then proceed with the rest of
the SDP rounding algorithm.

Extension to General Instances

Applying this SDP rounding to general graphs may not yield such good results as in Lemmas 8.4.1
and 8.4.2, since the radius of an arbitrary graph can be large, and the objective values of the SDP
relaxation would therefore have to be very high for the lemmas to be applicable. In order to apply
these lemmas, we break the graph into pieces, each with a radius of no more than O(log n/ε). Doing
this requires throwing out no more than an ε-fraction of the constraints. The following lemma is
originally due to Leighton and Rao [LR99] and can also be found in [Tre08].

Lemma 8.4.3. For a given graph G = (V,E) and for all ε > 0, there is a polynomial time
algorithm to find a subset of edges E′ ⊆ E such that |E′| > (1 − ε)|E|, and every connected
connected component of E′ has diameter O(log |E|/ε).

Using this lemma, we obtain the following guarantee for general instances: Given an instance
for which OPT is at least (1 − cε3/ log n)|E|, we can efficiently find a labeling satisfying a 1 − ε
fraction of the constraints. Note that c is an absolute constant. For shift invariant instances, we
can satisfy (1− ε)|E| of the constraints for an instance where OPT is at least (1− cε2/ log n)|E|.

Given a graph, we remove the ε
3 fraction of constraints that contribute the least to the objective

value. This leaves us with at least (1 − ε/3)|E| constraints that each contributes at least 1 −
3cε2/ log n (or 1 − 3cε/ log n for shift invariant instances) to the objective value. We can apply
Lemma 8.4.1 (or Lemma 8.4.2) with d = log n/ε, satisfying at least (1 − 2ε/3)|E| constraints (or
(1− ε/3)|E| constraints).
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8.5 Improving the Approximation Ratio

Algorithms with improved approximation guarantees for Unique Games have been presented in
[GT06a, CMM06]. The latter work gives an algorithm with the following guarantee: Given an
instance of Unique Games with a domain size k for which OPT is at least (1− ε)|E|, the algorithm
produces a solution that satisfies at least max{1−√ε log k, k−ε/(2−ε)} fraction of the constraints.
Furthermore, it has been shown that the existence of an efficient algorithm that can distinguish
between instances in which (1−ε)|E| constraints can be satisfied and those at which less than k−ε/2

constraints can be satisfiable, would disprove the Unique Games Conjecture [KKMO07]. Moreover,
it is sufficient to refute the conjecture if this algorithm works only for the special case of Linear
Equations mod p. Thus, focusing on shift invariant instances is a reasonable approach.

Additionally, the Unique Games problem has been studied for cases in which the constraint
graph is an expander; in an instance in which OPT is at least (1 − ε)|E|, one can efficiently find
a solution satisfying at least 1 − O( ελ) fraction of the constraints, where λ is a function of the
expansion of the graph [AKK+08, MM09].

8.6 Consequences

The interest in the Unique Games Conjecture has grown due to the many strong, negative conse-
quences that have been proved for various optimization problems. Assuming the Unique Games
Conjecture, it has been shown that the Goemans-Williamson algorithm for Max Cut (presented
in Sanjeev’s lecture) achieves the optimal approximation ratio [KKMO07]. More surprisingly,
there are many other NP-complete optimization problems for which the best-known approxima-
tion guarantees are obtained via extremely simple algorithms. Nevertheless, no one has been able
to find algorithms with improved approximation guarantees, even when resorting to sophisticated
techniques such as linear and semidefinite programming. Such optimization problems include the
Minimum Vertex Cover problem and the Maximum Acyclic Subgraph problem, for which the best-
known approximation factors are 1/2 and 2, respectively. If the Unique Games Conjecture is true,
then these approximation ratios are tight [KR08, GMR08]. This phenomena has been investigated
for several other optimization problems as well. A recent result shows that for a whole class of
constraint satisfaction problems, which can be modeled using a particular integer program, the in-
tegrality gap of a particular SDP relaxation is exactly equal to its approximability threshold under
the Unique Games Conjecture [Rag08].

Appendix

We include the following lemma from [Tre08] and its proof:

Lemma 8.6.1. Let r,u,v be vectors such that: (i) u · v = 0, (ii) ||r − u||2 ≥ ||r − v||2, and (iii)
the vectors r,u,v satisfy the triangle inequality constraints from the SDP. Then ||r−u||2 ≥ 1

2 ||r||2.

Proof. There are three cases:

1. If ||u||2 ≤ 1
2 ||r||2, then by (8.4.2), we have:

||r− u||2 ≥ ||r||2 − ||u||2 ≥ 1

2
||r||2.
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2. If ||v||2 ≤ 1
2 ||r||2, then by (8.4.1), and subsequently (8.4.2), we have:

||r− u||2 ≥ ||r− v||2 ≥ ||r||2 − ||v||2 ≥ 1

2
||r||2.

3. If ||u||2, ||v||2 ≥ 1
2 ||r||2, then from (8.4.1) and assumption (ii), we have:

||v − u||2 ≤ ||v − r||2 + ||r− u||2 ≤ 2||r− u||2.

By Pythagoras theorem and by orthogonality of u and v (assumption (i)), we have:

||v − u||2 = ||v||2 + ||u||2.

Finally, we have:

||r− u||2 ≥ 1

2
||v − u||2 =

1

2
||v||2 +

1

2
||u||2 ≥ 1

2
||r||2.
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Lecture 9

Unique Games Hardness for MAXCUT

Subhash Khot

Scribe: Igor Gorodezky

21 July, 2009

9.1 Introduction: MAXCUT and Unique Games

In this lecture we sketch the proof of one of the more remarkable consequences of the Unique Games
Conjecture: MAX-CUT is inapproximable to any constant better than α, where

α = min
−1≤ρ≤1

2

π

arccos(ρ)

1− ρ ≈ .87856 (9.1.1)

is the approximation ratio of the Goemans-Williamson algorithm.

9.1.1 The Goemans-Williamson algorithm

Recall that given a graph G = (V,E,w) with edge weights wij ≥ 0, the MAX-CUT problem asks
for S ⊆ V that maximizes

∑
i∈S,j /∈S wij (we call this the weight of the cut induced by S). We will

write mc(G) for the maximum weight of a cut in G.
MAX-CUT is NP-hard. The best known approximation algorithm for MAX-CUT is due to

Goemans and Williamson [GW95] and is as follows: given G = (V,E,w), first solve the MAX-CUT
SDP

max
∑
ij

wij
1− vi · vj

2
(9.1.2)

||vi||2 = 1, i = 1, . . . , n

vi ∈ Rn, i = 1, . . . , n
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to get a set of unit vectors v1, . . . , vn in Rn. Then, uniformly sample a hyperplane through the
origin and define S ⊆ V to be the set of i such that vi lies “above” this hyperplane.

We saw in Sanjeev’s lecture (Lecture 1) that the Goemans-Williamson algorithm gives, in
expectation, an (α − ε)-approximation for any ε > 0 (this additive error of ε stems from the fact
that semidefinite programs must be solved to within some fixed, arbitrarily small accuracy). The
algorithm can be derandomized (see [MH99]) to yield a deterministic (α − ε)-approximation to
MAX-CUT.

A series of subsequent hardness results culminated in H̊astad’s PCP-based proof in [H̊as01] that
MAX-CUT is NP-hard to approximate to within 16/17 ≈ .941. Then, roughly a decade after the
publication of the Goemans-Williamson algorithm, Khot, Kindler, Mossel and O’Donnell proved in
[KKMO07] that, assuming the Unique Games Conjecture, it is NP-hard to approximate MAX-CUT
to within any factor greater than α. This suggests, as Khot et al. note, that the geometric nature
of the Goemans-Williamson algorithm is intrinsic to the MAX-CUT problem.

9.1.2 Label Cover and Unique Games

The inapproximability of MAX-CUT is conditional on the Unique Games Conjecture, which we
state in this section.

A unique game L is a bipartite graph with left-side vertex set V, right-side vertex set W, edge
set E, and a set of labels of size M . Each edge (v, w) has an associated constraint function πv,w
which is a permutation of [M ] (i.e. a bijection from the set of labels to itself). We will sometimes
refer to a unique game with these parameters in the longhand L(V,W,E, [M ], {πv,w}).

A labeling of a unique game L is an assignment of a label from [M ] to each vertex of L. A
labeling satisfies the edge (v, w) if πv,w maps the label of w to the label of v. We define

opt(L) = max{ r | there exists a labeling of L that satisfies r|E| edges}.

The unique Label Cover problem with parameter δ is the problem of deciding, given a unique game
L(V,W,E, [M ], {πv,w}), whether opt(L) ≥ 1 − δ or opt(L) ≤ δ. That is, given L, we are asked
to decide whether there exists a labeling that satisfies nearly all edge constraints, or whether no
labeling can satisfy more than a tiny fraction of them. We will write this decision problem as
ULC(δ).

Intuition tells us that computing opt(L) should be a hard problem, but what about ULC(δ)?
That is, if we are asked not to compute opt(L) but simply to decide whether it is very large or very
small, does the problem become easier? The Unique Games Conjecture claims that the answer is no.

The following is (a slightly weakened form of) the conjecture, first stated by Khot in [Kho02].

Unique Games Conjecture ([Kho02]) : For any δ > 0 there exists a constant M such that it
is NP-hard to decide ULC(δ) on instances with a label set of size M .

9.1.3 The Main Result

We are ready to present the main result of [KKMO07]. This result can be stated in the form of a
PCP for the ULC(δ) problem, by which we mean a probabilistically checkable proof system such
that given a unique game L and a proof, if opt(L) ≥ 1 − δ then the verifier accepts with high
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Figure 9.1: A unique game with M = 3. The constraint π is associated with the highlighted edge.
The edge is satisfied by the labeling in the figure if π(3) = 2.

probability c (completeness), while if opt(L) ≤ δ then the verifier accepts with low probability s
(soundness). As usual, the verifier only uses O(log n) random bits on an instance of size n.

Theorem 9.1.1. For every ρ ∈ (−1, 0) and ε > 0 there exists δ > 0 such that there is a PCP for
ULC(δ) in which the verifier reads two bits from the proof and accepts iff they are unequal, and
which has completeness

c ≥ 1− ρ
2
− ε

and soundness

s ≤ 1

π
arccos(ρ) + ε.

Before sketching the proof of this theorem in Section 9.3, let us see how it implies the inapprox-
imability of MAX-CUT. Recall that mc(G) is the maximum weight of a cut in G.

Corollary 9.1.2. For every ρ ∈ (−1, 0) and ε > 0 there exists δ > 0 and a polynomial-time
reduction from an instance L of ULC(δ) to an instance G = (V,E,w) of MAX-CUT such that

opt(L) ≥ 1− δ =⇒ mc(G) ≥ 1− ρ
2
− ε

opt(L) ≤ δ =⇒ mc(G) ≤ 1

π
arccos(ρ) + ε.

Proof. Given ρ and ε, let δ be the same as in Theorem 9.1.1. Given an instance L of ULC(δ),
consider the PCP given by that theorem. Define the graph G to have the bits of the proof as
vertices,1 and create an edge between two bits if there is a non-zero probability of that pair of bits
being sampled by the verifier. Finally, set w to be the trivial weight function that is 1 on all edges.

Observe that a proof, which is an assignment of a value in {−1, 1} to the bits, corresponds to
a cut in G, and the number of edges crossing this cut is precisely the probability that this proof
is accepted by the verifier. The claim now follows from the completeness and soundness of the
PCP.

1As we will later see, if L is of the form L(V,W,E, [M ], {πv,w}) then there will be |W |2M vertices in G.
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Assuming the Unique Games Conjecture, for any δ > 0 there is some constant M such that it
is NP-hard to decide ULC(δ) on instances with a label set of size M . Now, by standard arguments,
Corollary 9.1.2 implies that it is NP-hard to approximate MAX-CUT to within

arccos(ρ)/π + ε

(1− ρ)/2− ε >
arccos(ρ)/π

(1− ρ)/2

for any ρ ∈ (−1, 0). Therefore, MAX-CUT is hard to approximate to within any constant larger
than

min
−1≤ρ≤0

2

π

arccos(ρ)

1− ρ = min
−1≤ρ≤1

2

π

arccos(ρ)

1− ρ = α

which is the promised inapproximability result.
Let us turn our attention, then, to proving Theorem 9.1.1. The proof will rely on a highly

nontrivial result in boolean Fourier analysis that we state in the next section.

9.2 Majority is Stablest

The proof of Theorem 9.1.1 makes crucial use of the Majority is Stablest (MIS) theorem, which is
an extremal result in boolean Fourier analysis. In this section we state this theorem after defining
the necessary concepts.

We will use the common convention that bits take value in {−1, 1} rather than {0, 1} (in par-
ticular, we identify x ∈ {0, 1} with y ∈ {−1, 1} using the bijection y = (−1)x). Thus, a boolean
function is a map f : {−1, 1}n → {−1, 1}. In what follows we will assume familiarity with the basic
concepts of boolean Fourier analysis, as we lack the space for a thorough review of the subject; a
reader seeking such a review is directed to the survey [O’D08].

We begin with several definitions. Given f : {−1, 1}n → {−1, 1}, define the influence of xi on
f to be the probability over all n-bit strings that f changes value when the ith bit is flipped:

Infi(f) = Prob
x∈{−1,1}n

[f(x) 6= f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)] .

It is not hard to show that
Infi(f) =

∑
S|i∈S

f̂(S)2 (9.2.1)

and indeed, equation (9.2.1) can be used to define the influence of a variable on a non-boolean
function f : {−1, 1}n → R.

Given a bit string x and some ρ ∈ (−1, 1), let us define a distribution over y ∈ {−1, 1}n by
setting

yi =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2

We write y ∼ρ x to mean a y sampled from such a distribution. Now, given a boolean function f
and ρ ∈ (−1, 1), define the noise sensitivity of f at rate ρ to be

NSρ(f) = Prob
x, y∼ρx

[f(x) 6= f(y)]
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where x is sampled uniformly and y ∼ρ x. It can be shown that

NSρ(f) =
1

2
− 1

2

∑
S

f̂(S)2ρ|S|. (9.2.2)

As before, equation (9.2.2) serves as the definition of noise sensitivity for non-boolean functions.
We observe that if f is a dictator function, i.e. f(x1, . . . , xn) = xi for some i, then NSρ(f) is

exactly (1 − ρ)/2 since f̂(S) = 0 when S 6= {xi} and is 1 otherwise. If f is the majority function
(the boolean function whose value on a bit string is equal to the value of the majority of the bits),
then it can be shown (see [KKMO07] for references) that

NSρ(f) =
1

π
arccos(ρ) + o(1).

Observe that when ρ ∈ [0, 1), the noise sensitivity of a dictator function is lower than that of the
majority function. The MIS theorem (proven in [MOO05]) tells us that if we disqualify dictators by
restricting our attention to functions in which no coordinate has large influence, then the majority
function achieves the smallest possible noise sensitivity.

Theorem 9.2.1 (Majority is Stablest, [MOO05]). For every ρ ∈ [0, 1), ε > 0 there exists δ such
that if f : {−1, 1}n → [−1, 1] with E [f ] = 0 and Infi(f) ≤ δ ∀i, then

NSρ(f) ≥ 1

π
arccos ρ− ε.

Note the additional requirement that E [f ] = 0; such functions are called balanced. Our applica-

tion requires the following corollary from [KKMO07]. It states that if we choose a negative rather
than positive ρ, the majority function becomes the least stable.

Corollary 9.2.2. For every ρ ∈ (−1, 0), ε > 0 there exists δ such that if f : {−1, 1}n → [−1, 1]
with Infi(f) ≤ δ ∀i, then

NSρ(f) ≤ 1

π
arccos ρ+ ε.

Observe that f is no longer required to be balanced.
Looking ahead to the proof of Theorem 9.1.1, the test that the verifier will perform on the PCP

in the theorem will be, in a way, a noise-sensitivity test on a boolean function. Thus, we will be
able to bound the soundness of this test by appealing to the MIS theorem.

9.3 Proving Theorem 9.1.1

In this section we sketch the construction of the PCP whose existence is claimed in Theorem 9.1.1.
Recall that the PCP is for the problem ULC(δ), so the verifier is given a unique game L(V,W,E, [M ], {πv,w})
and a proof that is accepted with high probability if opt(L) ≥ 1− δ and accepted with low proba-
bility if opt(L) ≤ δ. The PCP will be parameterized by ρ ∈ (−1, 0) and ε > 0.

It follows from the results of [KR08] that given L, we may assume with no loss of generality
that all v ∈ V have the same degree. Thus, uniformly sampling v ∈ V and then uniformly sampling
a neighbor w ∈W of v yields a uniformly random edge (v, w). Therefore, if we define a proof to be
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a labeling of L that maximizes the proportion of satisfied edge constraints, and define the verifier’s
test to be uniformly sampling (v, w) and checking if this labeling satisfies πv,w, then we would have
a proof with completeness 1− δ and soundness δ. However, such a test involves sampling Ω(logM)
bits, and we require a test that samples only 2.

We therefore look for a way to encode elements of the label set [M ] in a way that will allow such
a test. To this end, we will encode labels using the Long Code, which we first saw in Subhash’s
lecture (Lecture 7) on H̊astad’s 3-bit PCP.

9.3.1 Motivation: the Long Code

Recall that in the Long Code, the codeword encoding i ∈ [M ] is the truth-table for the dictator
function f(x1, . . . , xn) = xi. In our PCP, the proof will be a labeling of L with each label encoded
using the Long Code. It remains to design a test for the verifier with the properties specified in
Theorem 9.1.1. Before explicitly stating the test in the next section, we use this section to motivate
its construction.

Given a boolean function f , let us say that f is far from a dictator if all coordinates have
negligible influence. It is not hard to design a 2-bit test that, given a truth-table for a function f ,
accepts with high probability if f is a dictator and with low probability if f is far from a dictator.
The test required for our PCP must clearly do more than this, but for the moment let us warm up
with this simpler problem.

Consider the following noise-sensitivity test: sample x ∈ {−1, 1}n uniformly, sample y ∼ρ x as
in Section 9.2, and accept iff f(x) 6= f(y). By definition, the probability of accepting is NSρ(f),
the noise sensitivity of f .

The completeness of this test is thus exactly the noise-sensitivity of a dictator function, which
is (1 − ρ)/2. On the other hand, we can use Corollary 9.2.2 to bound the soundness: if f is far
from a dictator its noise-sensitivity is at most arccos(ρ)/π + ε.

Returning to our PCP, we require a 2-bit noise-sensitivity test with (almost) exactly these
parameters that instead of testing whether a boolean function is a dictator or far from it, tests
whether an encoded labeling of L (which consists of many boolean functions) satisfies many edge
constraints, or far from it.

9.3.2 The Test

In this section we describe our PCP’s verifier test. First, some notation. For x ∈ {−1, 1}M and
a bijection π : [M ] → [M ], let x ◦ π denote the string (xπ(1), . . . , xπ(M)). Given a unique game
L(V,W,E, [M ], {πv,w}) and the associated PCP proof (which the verifier expects is the Long Code
encoding of a labeling), let fv be the Long Code encoding of the label given to v ∈ V , and define
fw for w ∈W analogously.
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The 2-bit verifier test:

1. Given L(V,W,E, [M ], {πv,w}) and a proof, sample v ∈ V uniformly, then

sample two of its neighbors w,w′ ∈W uniformly and independently.

2. Let π = πv,w and π′ = πv,w′ be the constraints for edges (v, w) and (v, w′).

3. Sample x ∈ {−1, 1}M uniformly and sample y ∼ρ x.

4. Accept if fw(x ◦ π) 6= fw′(y ◦ π′).

Completeness. Assume that opt(L) ≥ 1−δ and that the proof given to the verifier encodes all
labels correctly (i.e. as dictator functions). Let the labels of v, w,w′ be i, j, j′ ∈ [M ], respectively.
With probability at least 1− 2δ, both (v, w) and (v, w′) are satisfied by the labeling, which implies
π(j) = π′(j′) = i. Conditioning on this event, we have

fw(x ◦ π) = xπ(j) = xi and fw′(y ◦ π′) = yπ′(j′) = yi.

Since xi = yi with probability (1− ρ)/2, the test accepts with the same probability. We conclude
that the completeness is at least (1 − 2δ)(1 − ρ)/2. Tweaking our choice of ρ, we conclude that
completeness is at least (1− ρ)/2− ε, as desired.

Figure 9.2: The 2-bit verifier test samples v ∈ V , two neighbors w,w′ ∈W , then compares fw and
fw′ on certain inputs.

Soundness. As usual, bounding the soundness is the difficult part; we only sketch the argu-
ment. The proof is in the contrapositive direction: assuming that the test accepts with probability
greater than arccos(ρ)/π + ε, we prove the existence of a labeling that satisfies many edges by
exploiting the resulting Fourier-analytic properties of the boolean functions encoded in the proof
(which is where Corollary 9.2.2 comes in).
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The proof is as follows. Given v ∈ V , let pv be the probability that the test accepts after
choosing v from V . Then

pv = E
w,w′,x,y∼ρx

[
1− fw(x ◦ π)fw′(y ◦ π′)

2

]
=

1

2
− 1

2
E
w,w′

[
E

x,y∼ρx
[
fw(x ◦ π)fw′(y ◦ π′)

]]
.

Standard Fourier-analytic arguments can be used to show that

E
x,y∼ρx

[
fw(x ◦ π)fw′(y ◦ π′)

]
=
∑
S

f̂w(S)f̂w′(S)ρ|S|

from which it follows that

pv =
1

2
− 1

2
E
w,w′

[∑
S

f̂w(S)f̂w′(S)ρ|S|
]

=
1

2
− 1

2

∑
S

E
w,w′

[
f̂w(S)f̂w′(S)

]
ρ|S|

=
1

2
− 1

2

∑
S

E
w∼v

[
f̂w(S)

]
E

w′∼v

[
f̂w′(S)

]
ρ|S|

where the last equality follows from the independence of w and w′ (and w ∼ v means that w is a
neighbor of v). If we define a function gv : {−1, 1}n → [−1, 1] by

gv(z) = E
w∼v

[fw(z ◦ πv,w)]

then it is not hard to show that
ĝv(S) = E

w∼v

[
f̂w(S)

]
.

Therefore, returning to pv, we have

pv =
1

2
− 1

2

∑
S

E
w∼v

[
f̂w(S)

]
E

w′∼v

[
f̂w′(S)

]
ρ|S|

=
1

2
− 1

2

∑
S

ĝv(S)2ρ|S|

= NSρ(gv)

where the last equality is by equation (9.2.2).
Recall that we assumed that the test is accepted with probability at least arccos(ρ)/π + ε.

Standard averaging arguments tell us that pv ≥ arccos(ρ)/π + ε/2 for at least an ε/2 fraction of
v ∈ V . By the above, we have

NSρ(gv) ≥ arccos(ρ)/π + ε/2

for such v. Now we conclude by Corollary 9.2.2 (having tweaked ε as necessary) that for such a
v, gv has an influential coordinate. This fact can be used to show that for a constant fraction of
neighbors w of v, fw has a small set of influential coordinates. These various influential coordinates
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can be used to define a labeling that satisfies a large fraction of constraints; we direct the reader
to [KKMO07] for the gory details.

A final caveat: technically, if we want to prove that fw has a small set of influential coordinates
for a constant fraction of neighbors w of v, it is not enough to assume that gv has a coordinate
with large influence. What is required is for gv to have a coordinate with large low-degree influence,
which is defined, in analogy to equation (9.2.1), as

Infk
i (f) =

∑
S | i∈S,|S|≤k

f̂(S)2

for some constant k. If we define low-order noise sensitivity in obvious analogy to equation (9.2.2),
it is possible to prove low-order analogues of the Majority is Stablest theorem and Corollary 9.2.2,
which can then be used to formalize the argument that we have sketched.

This completes the description of the PCP test and the proof of Theorem 9.1.1.

9.4 The Big Picture

The past few years have seen a flurry of powerful inapproximability results conditional on the
Unique Games Conjecture. In [Rag08], Raghavendra exhibits a canonical semidefinite programming
relaxation of an arbitrary CSP whose integrality gap, assuming UGC, is precisely equal to the best
possible approximation ratio for that CSP. In FOCS 2009, Raghavendra and Steurer presented an
efficient rounding scheme for these SDPs that achieves the integrality gap.

UGC has been used to prove that Vertex Cover is conditionally inapproximable to within 2− ε
(see [KR08]). This proof utilizes a theorem on the influence of boolean functions due to Friedgut.
In addition, it was independetly shown by Khot and Vishnoi [KV05] and Chawla et al. [CKK+06]
that UGC implies the hardness of approximating Sparsest Cut to within any constant. These
proofs, as expected, use theorems on the influence of boolean functions due to Kahn-Kalai-Linial
and Bourgain.

Underlying these results are surprising and fruitful connections between unique game reductions,
semidefinite programming relaxations of CSPs, extremal problems in Fourier analysis, and isoperi-
metric problems in geometry. The reader is directed to Section 5 of [KKMO07] for an insightful
high-level discussion of how these connections are manifested in the particular case of MAX-CUT.
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