### Teach Your Children Well: Sustainability Modules for High School Classrooms



#### Presented by: Tami Carpenter

MPE 2013+ WS on Data-aware Energy Use September 30, 2014



### **Rough Outline**

 $\circ$  Why modules?

How does the development process work?

• Three sample modules:

- Electric Cars
- Passive Solar Homes
- Weather Generators
- The future of PS-Future and other projects
  Other details



### About the Modules - 1

- 4-6 days of classroom activities
- They "stand-alone"
  - Often with "parts" so that teachers do not have to commit to the full module
- They link to standards:
  - Common Core
  - NGSS

9/30/2014

- Multiple disciplines:
  - Math/Science



• Even social science, language arts, etc.

### About the Modules - 2

- Student-centered, activity-driven, problembased
- Drawn from everyday life
- Encourage hands-on experimentation with problems
- Active, not passive
  - Activity

9/30/2014

- Discussion
- Exercises



Engage students in active problem solving!

4

# Can Modules Broaden Participation in STEM?

- Studies show that girls (and other underrepresented groups) respond positively to<sup>\*</sup>:
  - projects they find personally relevant and meaningful
  - hands-on, open-ended projects
  - being able to approach projects in their own way
  - being encouraged to think critically
  - collaboration



Our modules contain many of these elements



### HS Modules at DIMACS: A Chronological View

- 2006 BioMath Connection (BMC) five year project to develop 15 week-long modules in bio-math
- 2010 Interdisciplinary Mathematics and Biology (IMB) four year continuation of BMC to create five more modules and a 12<sup>th</sup> grade course
- 2010 The Value of Computational Thinking Across Grade Levels (VCTAL) four year project to develop 12 modules emphasizing computational thinking
- 2012 Mathematical and Computational Methods for Planning for a Sustainable Future (PS-Future) exploratory project developing 2 modules applying math and CS in sustainability contexts

### It Takes a Village: Module Project Components

- Authors: content and pedagogy expertise
- Summer workshop: early testing with students
- Partner schools: classroom field testing
- Advisory Board: guidance, topic selection
- Editorial Board: content review
- Evaluation: impact assessment







### A Rough Development Timeline

#### • Projects have a similar (idealized) structure





### Why Sustainability Modules?

#### • Sustainability context:

- Is personally relevant
- Spans many subjects
  - Biological sciences
  - Physical sciences
  - Social sciences
  - Math and computing



 Naturally lends itself to formulating questions and exploring solutions



### Why Sustainability Modules?

### Sustainability questions:

- Are complex
  - Require modeling
  - Promote discussion
- Involve use of data



- Are ultimately about decisions & tradeoffs
  - o Personal
  - o Municipal
  - National
  - o Global

9/30/2014







# Example: It's an Electrifying Idea!

#### • Is an electric vehicle more expensive?

- Formulating a cost of ownership model: abstraction, estimates, simplifying assumptions
- Refining the model to make it more realistic
- Using a computer and a spreadsheet model as a tool
- Computational exploration and uncertainty
- Can you get there from here?
  - Correspondence between graphs and maps
  - Graph concepts: connectivity, paths, distance
  - Algorithms and efficiency
  - Estimation and bounding







### Spreadsheet Activity: Buying a Car!



#### ExploreCost-Lesson2 [Compatibility Mode]

| , st | A            | В        | С                       | D               | E         | F              | G          | Н            | 1                       | J        | К        | L M       | N             | 0               | P                            | Q           |
|------|--------------|----------|-------------------------|-----------------|-----------|----------------|------------|--------------|-------------------------|----------|----------|-----------|---------------|-----------------|------------------------------|-------------|
|      |              |          |                         |                 |           |                |            |              |                         |          |          |           |               |                 |                              |             |
|      |              |          |                         |                 |           |                |            |              |                         |          |          | Caristi   | eifie narar   | neters          |                              | +           |
| 1    |              | \$3.00   | \$3.25                  | \$3.50          | \$3.75    | \$4.00         | \$4.25     | \$4.50       | \$4.75                  | \$5.00   | \$3.67   | Initial c | ost MPG       | tax cred        | it                           | -           |
| 5    | Nissan Leaf  | \$31,416 | \$31,416                | \$31,416        | \$31,416  | \$31,416       | \$31,416   | \$31,416     | \$31,416                | \$31.416 | \$31.416 | \$33.80   | 0 0           | 7500            |                              |             |
|      | Civic Hybrid | \$32,017 | \$32,627                | \$33,237        | \$33,846  | \$34,456       | \$35,066   | \$35,676     | \$36,285                | \$36,895 | \$33,651 | \$24,70   | 0 41          |                 |                              |             |
|      | Civic LX     | \$29,450 | \$30,312                | \$31,174        | \$32,036  | \$32,898       | \$33,760   | \$34,622     | \$35,484                | \$36,346 | \$31,760 | \$19,10   | 5 29          |                 |                              |             |
|      |              |          |                         |                 |           |                |            |              |                         |          |          |           |               |                 |                              |             |
|      |              |          |                         |                 |           |                |            |              |                         |          |          | Gas ca    | r paramete    | rs that do      | not vary                     | by veh      |
|      |              |          |                         |                 |           |                |            |              |                         |          |          | \$/gallo  | n 3.6         | 7               |                              |             |
|      |              |          |                         |                 |           |                |            |              |                         |          |          | total m   | les 100,00    | 0               |                              | •           |
|      |              | Ľ        |                         |                 |           |                |            |              |                         |          |          |           |               |                 |                              | Т           |
|      |              |          | Total Cost of Ownership |                 |           |                |            |              | Electric car parameters |          |          |           |               |                 |                              |             |
|      |              |          |                         |                 |           |                |            |              |                         |          |          | cents p   | er kv-hou     | r 1             | 1 🔳                          |             |
|      |              |          | \$55.0                  | 00              |           |                |            |              |                         |          |          | kw-hr p   | er charge     | 24              | 1                            |             |
|      |              |          | 900,0                   | ~               |           |                |            |              |                         |          |          | miles p   | er charge     | 73              | 3                            |             |
|      |              |          |                         | 00              |           |                |            |              |                         |          |          |           |               |                 | L                            |             |
|      |              |          | <u>e</u>                |                 |           |                |            |              |                         |          |          | cost of   | charging d    | 1( #######      | •                            |             |
|      |              |          | 듩 \$45,0                | 00              |           |                |            |              |                         |          |          |           |               |                 |                              |             |
| _    |              |          |                         |                 |           |                |            |              |                         |          |          |           | lls in green  | contain pa      | arameters                    | that        |
|      |              |          | S C C                   |                 |           |                |            |              |                         | _        |          | St Ib     | secoll bar    | na experim<br>- | ient with u                  | sing        |
|      |              |          | ÷ \$35,0                | 00              |           |                |            |              |                         |          |          |           | e seren bars  | ».              |                              |             |
|      |              |          |                         |                 | -         |                |            |              |                         |          |          |           |               |                 |                              |             |
|      |              |          | ğ \$30,0                | 00 <del> </del> | -         | <u> </u>       | · ·        |              |                         |          |          | Th        | e yellow cell | aboveallo       | ws you to (                  | enter       |
| ì    |              |          | 0 925 0                 | ~               |           |                |            |              |                         |          |          | an        | y gas price t | hat you'd li    | ke. The tot                  | al cost     |
| 7    |              |          | P 320,0                 | ~               |           |                |            |              |                         |          |          | of        | ownership u   | sing this ga    | is price ap                  | pears       |
| 3    |              |          | \$20,0                  | 00              |           | -              |            |              |                         |          |          | In        | ints correspo | onding to th    | e table. I f<br>lis price ar | e<br>e also |
| 1    |              |          |                         | \$3.00          | \$3.25 \$ | 3.50 \$3       | 75 \$4.0   | 0 \$4.25     | \$4.50                  | \$4.75   | \$5.00   | inc       | luded in the  | graph.          | ins pricedi                  | 2 0130      |
|      |              |          |                         |                 |           | c              | ort of Gar | (\$/aplion)  |                         |          |          |           |               |                 |                              |             |
|      |              |          |                         |                 |           | U U            | USL OF GAS | s (a/gallon) |                         |          |          |           |               |                 |                              |             |
| 2    |              |          |                         |                 |           | Missens        |            | uin Llubeid  | Civi- U                 | ~        |          |           |               |                 |                              |             |
| 3    |              |          |                         |                 | -•        | - INISSAIN LIE | ar - Ci    | vic Hybrid   | - CIVIC L               | χ.       |          |           |               |                 |                              |             |
| 4    |              | - F      |                         |                 |           |                |            |              |                         |          |          |           |               |                 |                              |             |





### Driving Activity: Road Trip?



Using a graph to represent a map.







### **Driving Activity: Charge It!**





### **Driving it Home: Outcomes**

#### • Challenges what we think we know:

- Electric cars may be cost effective
- The range limit may not be so limiting
- There's not always one answer!
- Teachers added "experiences" to content
  - Trip to electric car plant
  - Videos

9/30/2014

Students enjoyed modeling

They wanted to keep adding more variables to their model to see how it would affect cost.





### **Example: Passive Solar Homes**

#### • Students "design" a passive solar home

- Uses the sun for heat in the winter
- Blocks the sun to stay cooler in summer

#### • Why would we consider use of solar energy?

- Economic advantages
  - Payback period
  - Cost stability
- Environmental advantages
- Political advantages
- o What's stopping us?
  - Initial investment
  - No centralized maintenance







# Building a Passive Solar Home

### O Where should you put it?

- Latitude
- Temperature range
- Topography (south slopes)
- o How big are your windows?
- How long are the overhangs?
- o What materials do you use?
  - Thermal mass affects temperature fluctuation





17





### Let the Sun Shine In

#### • What floor area is hit by the sun?

#### Explore the relation between area and sun angle Physical Model







### Living in the Material World

- How do building materials affect interior temperature?
  - Increasing thermal mass decreases temperature fluctuation









### Some Comments

#### o Teachers

- When students were creating structures using cardboard, lights, protractors ... the students acted much more engaged.
- This module is really helpful in getting students to think outside the box using different activities and incorporating science, math, design, etc.

#### o Students

- I didn't even know about passive solar and it has really opened my eyes to inexpensive changes we can make when building homes.
- My dad works for Spectra Energy and I am all of a sudden a lot more interested in what he does for work.





### **Example: Weather Generators**

- Module connects climate change to the Water Cycle
- Global temperatures are rising.
  - What does that imply for the water cycle?
  - What does it imply about precipitation?
  - What does it mean for the planet?









### Weather Generator Concepts

- Weather generator: statistical model used to generate realistic synthetic data
- Statistical persistence: randomness, but not independence

Weather over Eeyore exhibits statistical persistence.



9/30/2014







### A Simple "Weather Generator"

 Tomorrow's weather is more likely to be similar to today's weather



9/30/2014



### A Simple "Weather Generator"

#### • The 10-day forecast....

#### Starting weather is Dry

| Rol |                 |
|-----|-----------------|
| Ι   | Today's Weather |
| 1   | Dry             |
| 2   | Dry             |
| 3   | Dry             |
| 4   | Wet             |
| 5   | Wet             |
| 6   | Wet             |
| 7   | Wet             |
| 8   | Dry             |
| 9   | Dry             |
| 10  | Wet             |







### A Better Weather Generator

| X         |                                               |                          |                       |                                  | Сору                          | of 111-Weathe | er Generator with co                                          | unt function - Mic                  | rosoft Excel |
|-----------|-----------------------------------------------|--------------------------|-----------------------|----------------------------------|-------------------------------|---------------|---------------------------------------------------------------|-------------------------------------|--------------|
| F         | ile Home Insert Pa                            | age Layout Fo            | ormulas Data          | Review                           | View                          | Developer     |                                                               |                                     |              |
| Vis<br>Ba | al Macros<br>Macros<br>Macro Security<br>Code | rences<br>Add-Ins<br>Add | COM Insert<br>Add-Ins | Design<br>Mode 🕄 Run<br>Controls | perties<br>w Code<br>n Dialog | Source        | o Properties in Im<br>ansion Packs in Exp<br>resh Data<br>XML | port<br>Document<br>Panel<br>Modify |              |
| F.        | <b>₩) •</b> (° • - <del>-</del>               |                          |                       |                                  |                               |               |                                                               |                                     |              |
|           | J2 🔻 🕤                                        | $f_{x}$                  |                       |                                  |                               |               |                                                               |                                     |              |
|           | Α                                             | В                        | С                     | D                                | E                             | F             | G                                                             | Н                                   | 1            |
| 1         | Transition Probabilities                      |                          |                       |                                  | Year                          |               |                                                               |                                     |              |
| 2         | wet   dry                                     | 0.29                     |                       | Day                              |                               | 1             | 2                                                             | 3                                   | 4            |
| 3         | wet wet                                       | 0.46                     |                       | 1                                | Dry                           | Dry           | Dry                                                           | Dry                                 | Wet          |
| 4         |                                               |                          |                       | 2                                | Dry                           | Dry           | Dry                                                           | Dry                                 | Wet          |
| 5         | Number of days                                | 30                       |                       | 3                                | Dry                           | Wet           | Dry                                                           | Dry                                 | Wet          |
| 6         | Number of years                               | 5                        |                       | 4                                | Dry                           | Dry           | Dry                                                           | Dry                                 | Dry          |
| 7         |                                               |                          |                       | 5                                | Dry                           | Dry           | Dry                                                           | Dry                                 | Dry          |
| 8         |                                               |                          |                       | 6                                | Dry                           | Dry           | Wet                                                           | Wet                                 | Dry          |
| 9         |                                               |                          |                       | 7                                | Dry                           | Dry           | Wet                                                           | Dry                                 | Dry          |
| 10        |                                               |                          |                       | 8                                | Wet                           | Wet           | Wet                                                           | Dry                                 | Dry          |
| 11        |                                               | Calc                     | ulato                 | 9                                | Wet                           | Dry           | Wet                                                           | Wet                                 | Dry          |
| 12        |                                               |                          | ulate                 | 10                               | Dry                           | Dry           | Wet                                                           | Dry                                 | Dry          |
| 13        |                                               |                          |                       | 11                               | Wet                           | Wet           | Wet                                                           | Dry                                 | Dry          |
| 14        |                                               |                          |                       | 12                               | Wet                           | Wet           | Dry                                                           | Dry                                 | Dry          |
| 15        |                                               |                          |                       | 13                               | Dry                           | Wet           | Dry                                                           | Dry                                 | Dry          |
| 16        |                                               |                          |                       | 14                               | Wet                           | Wet           | Dry                                                           | Wet                                 | Wet          |
| 17        |                                               |                          |                       | 15                               | Wet                           | Dry           | Wet                                                           | Dry                                 | Dry          |
| 18        |                                               |                          |                       | 16                               | Wet                           | Dry           | Wet                                                           | Dry                                 | Wet          |
| 19        |                                               |                          |                       | 17                               | Wet                           | Dry           | Wet                                                           | Wet                                 | Wet          |
| 20        |                                               |                          |                       | 18                               | Dry                           | Dry           | Wet                                                           | Dry                                 | Dry          |
| 21        |                                               |                          |                       | 19                               | Dry                           | Wet           | Dry                                                           | Wet                                 | Dry          |
| 22        |                                               |                          |                       | 20                               | Dry                           | Dry           | Dry                                                           | Wet                                 | Wet          |
| 23        |                                               |                          |                       | 21                               | Dry                           | Dry           | Dry                                                           | Dry                                 | Wet          |

9/30/2014

25



### **Generating Ideas**

• Generator transition probabilities:

- Monthly
- Past/Future
- Several locations
- Pattern of wet/dry days is more important than averages
  - Longest wet/dry spells
- Persistence leads to longer wet/dry spells
- You can see seasonality in length of spells
- O You can compare past to future



### Some Comments

#### o Teachers

- The data presented a whole lot of ambiguity. The students were not prepared for this. They are used to curves fitting nicely to the data. It was a strong example of what realworld science is like.
- Classroom discussion was rich...

#### o Students

9/30/2014

- I didn't realize how much probability comes into play. I really enjoyed seeing these things mesh. It changes the way I see weather now.
- By the end of the module I felt like there were more questions than when we had started. ... This phenomenon makes me want to investigate the topic more and might be a great idea for my research project!

27



### The Future of PS-Future

- We are proposing to expand to new topics, possibly including...
- Hydrologic Cycles (geometry)
- Spread of invasive species (probability)
- Exploring weather data (statistics)
- Biodiversity (logarithms)
- Bike path planning (discrete math)
- Tragedy of the Commons (Game Theory)
- Sustainable urban development (spatial mapping)



# To Learn More about DIMACS Modules

#### • PS-Future (sustainability) website:

- <u>http://dimacs.rutgers.edu/PS-Future/</u>
- VCTAL (computational thinking) website:
  - http://dimacs.rutgers.edu/VCTAL/
- IMB (mathematical biology) website:
  - http://dimacs.rutgers.edu/IMB
- Also, MPE one-day undergrad modules:

http://dimacs.rutgers.edu/MPE/





### Acknowledgment to NSF

- This material is based in part upon work supported by the National Science Foundation under Grant Numbers:
  - DRL 1020201 (VCTAL Electric Car)
  - DRL 1220022 (PS-Future Passive Solar & Weather Generators)
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

