

The Value of Computational Thinking Across Grade Levels 9-12 (VCTAL)

Computational Thinking

- ISTE & CSTA say that Computational Thinking (CT) is a problem-solving process that includes:
- · Formulating problems in a way that enables us to use a computer solve them
- Logically organizing and analyzing data
- Representing data through abstractions such as models and simulations
- Automating solutions through algorithmic thinking (a series of ordered steps)
- Identifying, analyzing, and implementing possible solutions with the goal of achieving the most efficient and effective combination of steps and resources
- Generalizing and transferring this problem solving process to a wide variety of problems

VCTAL Goals

- Help to define "Computational Thinking" and its place in high school curricula
- · Develop, test, and implement an innovative mix of twelve instructional modules for grades 9-12
- Host summer Prototyping Workshops for students to assist authors in writing the modules and teachers in teaching them
- · Evaluate the influence of VCTAL materials on diverse students' awareness of computational thinking opportunities and interest in related technical fields
- · Widely disseminate the materials we create for broad impact
- · Help to broaden participation in CT and computing by providing examples from daily life that make them relevant and accessible

VCTAL is developing a set of instructional modules and mini-modules for use in high school classrooms to help cultivate a facility with computational thinking in students across different grade levels and subject areas

Module Fast Facts:

- Provide 4-6 days of classroom activities
- · Student-centered, activity-driven, problembased
- · Active, not passive
- Drawn from everyday life
- Encourage hands-on experimentation with computers
- · Include "stand-alone" parts so that teachers do not have to commit to the full module

Fundamental CT Question: How do I solve this problem given that I can compute?

- Module Testing and Evaluation: Pilot Testing with students at
- Student Prototyping Workshop Field Testing at partner high
- schools in AK, MS, MT, PA, SC
- Evaluation instruments to help assess student engagement, the CT/CS learning that occurs, CT skills transfer, etc.

Student comment following the Prototyping Workshop: I would like to come back next year and possibly major in this in college.

VCTAL Timeline

This material is based on work supported by the National Science Foundation under grant number DRL-1020201

Module Titles

- It's an Electrifying Idea: Buying and Driving an Electric Car
- · Heart Transplants and the NFL Draft
- Network Capacity Expansion and Utilization
- Privacy: Do you know what they know about vou?
- Fair and Stable Matching
- Tomography and 3-D Reconstruction
- Polynomiography and Art
- · Foolproof Codes and Ciphers
- · Connect Four and Games That Can Be More Than Just Fun
- Tragedy of the Commons Or Is It?

VCTAL Partners

- **DIMACS, Rutgers University** Overall project management
- Hobart and William Smith Colleges Student Prototyping Workshops
- **Consortium for Mathematics and its Applications (COMAP)** Module production
- Colorado State University Evaluation and research
- Partner High Schools and CSTA Module field testing

Contacts

Midge Cozzens (PI): midge6930@comcast.net Tamra Carpenter: tcar@dimacs.rutgers.edu Paul Kehle: kehle@hws.edu Andrea Weinberg: andrea.weinberg@colostate.edu Rebecca Wright (co-PI): rebecca.wright@rutgers.edu

