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Epidemic models: the role of data

Why work with data?
Basic aim is to describe real patterns, solve real problems.
Test assumptions!
Get more attention for your work
-> jobs, fame, fortune, etc
- influence public health policy

Challenges of working with data

Hard to get good data sets.

The real world is messy! And sometimes hard to understand.
Statistical methods for non-linear models can be complicated.

What about pure theory?

Valuable for clarifying concepts, developing methods, integrating ideas.

(My opinion) The world (and Africa) needs a few brilliant theorists, and
many strong applied modellers.

The SEIR framework for microparasite dynamics
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A “Force of infection”
= 1 under density-dependent transmission

= B 1IN under frequency-dependent transmission

v Rate of progression to infectious state
= 1/latent period

y  Rate of recovery
= 1/infectious period

Why do we model infectious diseases?
Following Heesterbeek & Roberts (1995)

1.

Gain insight into mechanisms influencing disease spread, and link
individual scale ‘clinical’ knowledge with population-scale patterns.

. Focus thinking: model formulation forces clear statement of

assumptions, hypotheses.

. Derive new insights and hypotheses from mathematical analysis or

simulation.

. Establish relative importance of different processes and parameters,

to focus research or management effort.

. Thought experiments and “what if” questions, since real experiments

are often logistically or ethically impossible.

. Explore management options.

Note the absence of predicting future trends. Models are highly

simplified representations of very complex systems, and parameter
values are difficult to estimate.
-> quantitative predictions are virtually impossible.

The SEIR framework for microparasite dynamics
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Susceptible: naive individuals, susceptible to disease
Exposed: infected by parasite but not yet infectious
Infectious: able to transmit parasite to others

Removed: immune (or dead) individuals that don’t contribute to
further transmission

The SEIR framework for microparasite dynamics

as _ pgst

dt N
d£ — ﬂSI —VE Ordinary differential equations
dt N are just one approach to
dl VE — modelling SEIR systems.
dt

drR
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Adapt model framework to disease biology and to your problem!

No need to restrict to SEIR categories, if biology suggests otherwise.

e.g. leptospirosis has chronic shedding state > SICR

Depending on time-scale of disease process (and your questions),
add host demographic processes.

deaths

TB treatment model
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Residence times Data from

SARS
How to make the model fit the data better?

. “Box-car model” is one modelling trick

@ A ‘vln ‘v/n vin

Divide compartment into n sub-compartments, each with constant
leaving rate of v/n.

Residence time is now gamma- e
distributed, with same mean and

flexible variance depending on the =10
number of sub-compartments.

n=3 np=1

t
See Wearing et al (2005) PLoS Med 2: e174

Disease with environmental reservoir (e.g. anthrax)

Death of pathogen in
environment

Vector-borne disease

-

birth M Vectors

Residence times

. )
How long does an individual spend in the E compartment?
Ignoring further input from new infections:
dE -
E:—VE = E(t):E(O)e t
For a constant per capita rate of leaving compartment, the

residence time in the compartment is exponentially distributed.

ODE model Data from

SARS

Basic reproductive number, R,

Expected number of cases caused by a typical infectious individual
in a susceptible population.

Ro<1 Ro>1
1 . i

disease dies out disease can invade

Outbreak dynamics Disease control

« probability of fade-out « threshold targets

« epidemic growth rate * vaccination levels



Calculating R, — Intuitive approach

R, = Per capita rate % Duration of
of infecting others infectiousness

... in a completely susceptible population.
Under frequency-dependent transmission:

Rate of infecting others = S S/IN
= S in wholly susceptible pop’n

Duration of infectiousness = 1/recovery rate
=1ly

2> Re=p8/y

Refrective @Nd herd immunity
Reffec(ive = Ro x SIN

If a sufficiently high proportion of the population is immune, then
Refeciive Will be below 1 and the disease cannot circulate.

The remaining susceptibles are protected by herd immunity.

The critical proportion of the population that needs to be immune is

determined by a simple calculation:
* For Ry <1, we need SIN < 1/R,

* Therefore we need a proportion 1-1/R,, to be immune.

The basic framework for macroparasite dynamics

For macroparasites the intensity of infection matters!
Basic model for a directly-transmitted macroparasite:

death death

State variables

N(t) = Size of host population

M(t) = Mean number of sexually mature worms in host population

L(t) = Number of infective larvae in the habitat

Effective reproductive number

Expected number of cases caused by a typical infectious individual
in a population that is not wholly susceptible.

Reffective = RO x SIN

Endemic disease: At equilibrium R4 = 1, so that S*/N = 1/R,

Epidemic disease: R, changes as epidemic progresses, as
susceptible pool is depleted.

Note: Sometimes “effective
reproductive number” is
used to describe
transmission in the
presence of disease
control measures.

This is also called R,

No. new cases

Time

control*

What does R, tell you?

Epidemic threshold
NOTE: not every epidemic threshold parameter is R,!
Probability of successful invasion
Initial rate of epidemic growth
Prevalence at peak of epidemic
Final size of epidemic (or the proportion of susceptibles
remaining after a simple epidemic)
Mean age of infection for endemic infection
Critical vaccination threshold for eradication
Threshold values for other control measures

The basic framework for macroparasite dynamics

am
dt

d—lt_zsdz/lNM(t—rz)—yzL—ﬂl\lL

=dL(t-7)~ (u+ )M

B infection rate

u  death rate of hosts

4, death rate of adult worms within hosts

4, death rate of larvae in environment

d, proportion of ingested larvae that survive to adulthood

d, proportion of eggs shed that survive to become infective larvae
7, time delay for maturation to reproductive maturity

7,  time delay for maturation from egg to infective larva

proportion of offspring that are female

Further complexities: parasite aggregation within hosts and

density-dependent effects on parasite reproduction.



R, for macroparasites

For macroparasites,

R, is the average number of
female offspring (or just
offspring in the case of
hermaphroditic species)
produced throughout the
lifetime of a mature female
parasite, which themselves
achieve reproductive maturity
in the absence of density-
dependent constraints on the
parasite establishment,
survival or reproduction.

Major decisions in designing a model

Even after compartmental framework is chosen, still need to
decide:

= Deterministic vs stochastic

= Discrete vs continuous time

= Discrete vs continuous state variables

= Random mixing vs structured population
= Homogeneous vs heterogeneous

(and which heterogeneities to include?)

Important classes of stochastic epidemic models

Monte Carlo simulation

- Any model can be made stochastic by using a pseudo-random
number generator to “roll the dice” on whether events occur.

Branching process
- Model of invasion in a large susceptible population

- Allows flexibility in distribution of secondary infections, but
does not account for depletion of susceptibles.

Effective R, for macroparasites

For macroparasites, R is the average number of female offspring

produced in a host population within which density dependent
constraints limit parasite population growth.

For microparasites, R is the reproductive number in the presence

of competition for hosts at the population scale.

For macroparasites, R is the reproductive number in the
presence of competition at the within-host scale.

For both, under conditions of stable endemic infection, Rg;=1.

Deterministic vs stochastic models

Deterministic models

« Given model structure, parameter values, and initial
conditions, there is no variation in output.

Stochastic models incorporate chance.

« Stochastic effects are important when numbers are small,
e.g. during invasion of a new disease

« Demographic stochasticity: variation arising because individual
outcomes are not certain

« Environmental stochasticity: variation arising from fluctuations in
the environment (i.e. factors not explicitly included in the
model)

Important classes of stochastic epidemic models

Chain binomial
- Model of an epidemic in a finite population.

- For each generation of transmission, calculates new infected
individuals as a binomial random draw from the remaining
susceptibles.

Diffusion
- Model of an endemic disease in a large population.

- Number of infectious individuals does a random walk around its
equilibrium value - quasi-stationary distribution



Continuous vs discrete time
dN

Continuous-time models (ODEs, PDEs) T
t

« Well suited for mathematical analysis

AN

» Real events occur in continuous time

« Allow arbitrary flexibility in durations and residence times

Discrete-time models N(t+1)=AN(t)
« Data often recorded in discrete time intervals

« Can match natural timescale of system, e.g. generation
time or length of a season

« Easy to code (simple loop) and intuitive

» Note: can yield unexpected behaviour which may or may
not be biologically relevant (e.g. chaos).

Models for population structure

Random mixing Multi-group Spatial mixing

Network Individual-based model

SIR output: the epidemic curve

1 Susceptible
%Z—% 5 Removed
di sl E)
d N 5|
R _
dt s

Continuous vs discrete state variables

Continuous state variables arise naturally in differential
equation models.

« Mathematically tractable, but biological interpretation is
vague (sometimes called ‘density’ to avoid problem
of fractional individuals).

« Ignoring discreteness of individuals can yield artefactual
model results (e.g. the “atto-fox” problem).

* Quasi-extinction threshold: assume that population goes
extinct if continuous variable drops below a small value

Discrete state variables arise naturally in many stochastic
models, which treat individuals (and individual
outcomes) explicitly.

Population heterogeneities

In real populations, almost everything is heterogeneous — no two
individuals are completely alike.

R,

Which heterogeneities are important for the question at hand?

Do they affect epidemiological rates or mixing? Can parameters

be estimated to describe their effect?

« often modelled using multi-group models, but networks, IBMs,
PDEs also useful.

SIR output: the epidemic curve

1.
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Basic model analyses (Anderson & May 1991):
Exponential growth rate, r = (R,— 1)/D
Peak prevalence, |, = 1 = (1+In Ry)/R,
Final proportion susceptible, f = exp(— Ry[1-f]) = exp(-R,)



SIR output: stochastic effects
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SIR with host demographics: epidemic cycles

births
deaths §
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Time
Cycle period T = 2n (A D)"2
where A = mean age of infection
D = disease generation interval
or can solve T in terms of SIR model parameters by linearization.

Summary of simple epidemic patterns

« Absence of recovery: logistic epidemic
* No susceptible recruitment (birth or loss of immunity): simple epidemics
«  Susceptible recruitment through birth (or loss of immunity): recurrent

epidemics
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SIR output: stochastic effects

6 stochastic epidemics Probability of disease

with R,=3. _ extinction following
introduction of 1 case.
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Herd immunity and epidemic cycling

Herd immunity prevents further outbreaks

until S/N rises enough that R ¢ > 1.

Proportion of population

Time

The classic example:
measles in London

Caea (1107
8



Herd immunity and epidemic cycling

Measles in London Grenfell et al. (2001)
10 . ; - - y - :
Vaccine era
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Cycle period depends on the effective birth rate.

Intrinsic vs extrinsic forcing — what determines outbreak timing?

Untangling the relative roles of
intrinsic forcing (population dynamics and herd immunity)
and
extrinsic forcing (environmental factors and exogenous inputs)
is a central problem in population ecology.

This is particularly true for ‘outbreak’ phenomena such as
infectious diseases or insect pests, where dramatic population
events often prompt a search for environmental causes.
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Data needs I. What's needed to build a model?

Individual “clinical” data
. Latent period: time from infection to transmissibility

. Infectious period: duration (and intensity) of shedding
infectious stages

. Immunity: how effective, and for how long?

Population data

. Population size and structure

. Birth and death rates, survival, immigration and emigration
. Rates of contact within and between population groups

Epidemiological data
. Transmissibility (R)
- density dependence, seasonality

Persistence and fadeouts
"1 UK ~ 60M people
Measles again... 2

Note that measles dies out
between major outbreaks in
Iceland, but not in the UK or
Denmark.

Denmark ~ 5M people

1

What determines
persistence of an acute
infection?

. . . *1 Iceland ~ 0.3M people
NB: Questions like this are

where “atto-foxes” can

cause problems. | l

Intrinsic vs extrinsic forcing — what determines outbreak timing?

Example: leptospirosis in California sea lions

Intrinsic factors
Host population size and structure, recruitment rates and herd immunity

Extrinsic factors

Pathogen introduction: contact with reservoirs, invasive species, range shifts
Climate: ENSO events, warming temperatures

Malnutrition: from climate, fisheries or increasing N
Pollution: immunosuppressive chemicals, toxic algae blooms
Human interactions: Harvesting, protection, disturbance

Data needs Il. What's needed to validate a model?

Time series
. Incidence: number of new cases
. Prevalence: proportion of population with disease

Seroprevalence / sero-incidence: shows individuals’ history of
exposure.

Age/sex/spatial structure, if present.
e.g. mean age of infection - can estimate R,

Cross-sectional data

Seroprevalence survey (or prevalence of chronic disease)
endemic disease at steady state > insight into mixing
epidemic disease -> outbreak size, attack rate, and risk groups



Contact tracin
SARS transmission chain, Singapore 2003

Morbidity & Mortality Weekly Report (2003)

Long-term time series
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Historical mortality records provide data:
London Bills of mortality for a week of 1665

http://www.who.int/research/en/

B it gem Hgory fookewin Tok e
- [ 2 B e s esmanteny.
1 Cumme L | Wi Warhesgoce || Wekoes Wt bt b | foee ot | a1 ot Foud | Wi

Household studies

Observed time intervals between two cases of measles in families of two
children. Data from Cirencester, England, 1946-1952 (Hope-Simpson 1952)
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Days
Presumed double Presumed within-family
primaries transmission
Measles:

Latent period 6-9 d, Infectious period 6-7 d, Average serial interval: 10.9 d

Table 3.2 Notifiable infections in the United States (1954) Today: several infections
Acquired Tmmunodeficiency Syndrome (AIDS) are ‘notifiable’
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Outbreak time series
« Journal articles

Weekly epidemiological record
Relevé épidémiologique hebdomadaire
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http://lwww.cdc.gov/mmwr/ Age-incidence

http://www.eurosurveillance.org
Grenfell & Anderson’s (1989) study of whooping cough
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- indicating past exposure to pathogen.
Increased transmission leaves signatures in seroprevalence profiles Two books full of data on important global health problems

- PDF versions free to download.
e.g. measles in small (grey) and large (black) families
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Other fields of disease modelling
Within-host models

« pathogen population dynamics and immune response
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Other fields of disease modelling

Phylodynamics

* how epidemic dynamics interact with pathogen molecular evolution

Wronn

Other fields of disease modelling

Pathogen evolution

« adaptation to new host species, or evolution of drug resistance
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Community dynamics of disease

Co-infections
What happens when multiple parasites are present in the same host?

How do they interact? Resource competition? Immune-mediated
indirect competition? Facilitation via immune suppression

Multiple host species
Many pathogens infect multiple species
- when can we focus on one species?
- how can we estimate importance of multi-species effects?

Zoonotic pathogens — many infections of humans have animal
reservoirs, e.g. flu, bovine TB, yellow fever, Rift valley fever

Reservoir and spillover species

Host jumps and pathogen emergence
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