
The ODE labs are numbered 1, 4, 5, 7 and 8.
(written by Suzanne Lenhart and John Workman)
Lab 1: Introductory Example

For each problem, there is a user-friendly interface that will guide you
through. Each lab consists of two different programs, lab .m and code .m. For
example, there are two programs associated with Lab 1, lab1.m and code1.m.
The file code1.m is the Runge-Kutta based, forward-backward sweep solver.
It takes as input the values of the various parameters and outputs the solu-
tion. The file lab1.m is the user-friendly interface. It will ask you to enter
the values of the parameters one by one, compile code1.m with these values,
and plot the resulting solutions.

To open the interface for Lab 1, simply type lab1 at the prompt and
press enter. Any time you wish to stop what it is doing, simply hit Ctrl-

c. The command Ctrl-c may be useful when you enter certain parameters.
Ill-conditioned problems or problems with invalid parameter values will not
necessarily converge. All the data provided in the labs is taken from the
research, so convergence always occurs. However, when you supply your own
data, you have no such guarantee. Unless otherwise specified in the lab,
convergence should take no longer than 30 seconds. If it has failed to do so
by then, stop the application and try different numbers.

Our first lab will solve the following optimal control problem.

max
u

∫ 1

0

Ax(t) − Bu2(t) dt

subject to x′(t) = −
1

2
x2(t) + Cu(t)

x(0) = x0 fixed, x(1) free,

A ≥ 0, B > 0, and x0 > −2.

Think of this problem as modeling a decaying population with the control
as an input. The goal is to keep the population high but keep the cost of
the control input low (taken here to be a quadratic cost). To begin the
program, open MATLAB. At the prompt, type lab1 and press enter. To
become acquainted with the program, perform a few test runs. Enter values
for the constants A, B, C, and x0. At first, do not vary any parameters. The
graphs of the resulting optimal solutions, i.e., the adjoint and the optimal
control and state, will automatically appear. Run the program again, enter
different values, and vary one of the parameters. Once you feel comfortable
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with the structure of the program, begin working through the lab exercises
below.

This lab will focus on using the program to characterize the optimal
control and resulting state and to ascertain how each parameter affects the
solution. First, let us consider the goal of the problem. We want to use
the control u to maximize the total value of x. However, we also want to
maximize the negative squared value of u. This, of course, is equivalent to
minimizing the squared value of u. Thus, we must find the right balance
of increasing x and keeping u as small as possible. Enter the values A =
B = x0 = 1, C = 4 and do not vary any parameters, then look at the
solutions. We see u begins strongly, pushing x up but steadily decreasing
to 0. This makes logical sense when we consider the differential equation of
x. Undisturbed by u, x will decrease monotonically. So, we want to push x

up early, so that the natural decay will be less significant. As it is irrelevant
when we use u, this is exactly what the optimal solution is. Also, note that x

begins to decrease at the end of the interval, as the control approaches zero.
Now try A = B = x0 = 1, C = 4, and then vary the initial condition

with x0 = 2. As the second state begins higher, less control is needed to
achieve a similar effect. Notice that the second control begins lower than the
first, they quickly approach each other and are almost identical by t = 0.6.
This causes the two states to move towards each other as well, although they
never actually meet. Now use x0 = −1. This time, x begins below zero, so a
greater control is needed to push the state up more quickly. Notice, however,
we see the same effect as before, where the two controls eventually merge,
although, much later than in the previous simulation. We mention here why
the requirement x0 > −2 is imposed. If you were to solve the state equation
without u (i.e., C = 0), you would find x0 > −2 is required, or division by
0 will occur and the state will blow-up in finite time. However, we know u

will be used to increase x, so this condition is sufficient to give a finite state
solution with the control.

Use the values A = B = x0 = 1, C = 4 varying C with C = 1. We have
decreased the effect u has on the growth of the state. The optimal control
in the second system is less than in the first. It is worth using a greater
control in the first system, as it is more effective. Also, the second state,
unlike the others we have seen, is decreasing over the whole interval. What
little control is used does not increase the state, but only neutralizes some
of the natural decay. It would now take far too much control to increase the
state. Now, enter the same parameter values, this time varying with C = 8.
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The results are as you might expect. The second optimal control, now more
effective, is greater than than the first. The second state increases far more
than the first, but still decreases as its control approaches zero. Finally, note
that when C is varied, we do not have the two controls merging together.

Enter A = B = x0 = 1, C = 4 and vary with C = −4. The control now
has the opposite effect on the growth of the state. We see the control for the
second state is merely the first control reflected across the x-axis, while the
state and adjoint are the same. Try C = 0. Here, the control has no effect
on x, so the optimal control is u ≡ 0, regardless of A, B, or x0.

Re-enter the values A = B = x0 = 1, C = 4. Choose to vary A.
Specifically, try A = 4 as your second value. In the second system, A = 4B,
so maximizing x(t) is four times as important as minimizing u2(t). We see
this playing out in the solutions. A greater u is used so that x can be
increased appropriately. Conversely, enter A = B = x0 = 1, C = 4 varying
with B = 4. In this case, minimizing u2(t) is more important. We see on the
graph, u(t) is pulled closer to zero, even though this causes x(t) to increase
much less at the beginning.

If you were to compare the graphs of the optimal solutions when A = 1,
B = 2, for example, to the solutions when A = 2, B = 4, you would notice
they were exactly the same. This is because the systems is only influenced by
the ratio of the constants A and B, not the actual values. We know B 6= 0,
so we could divide it out of the integral. This would make our objective
function B

∫ 1

0
A
B
x(t) − u2(t) dt. Of course, the constant B in front of the

integral is irrelevant, so we ignore it. Thus, the only constant of significance
in the integrand is A

B
. In all future labs, one term of the integrand will have

no weight parameter, as it has been divided out.
Before finishing, we look at a few special cases. Try A = 0. This will

also cause the trivial solution u∗ ≡ 0 regardless of B, C, and x0. If we no
longer care about maximizing x, then we clearly should simply pick u ≡ 0
and ignore x. We cannot choose B = 0, because we divide by B in the
optimality system. However, a similar situation occurs when B → 0. Try
A = 1 and B = 0.01. Then, compare the graphs to A = 1 and B = 0.00001.
A very large u (or large negative u, if C < 0) is used to push x up as quickly
as possibly, because almost no importance is placed on keeping u2 small.

Lab 4: Introductory Example Continued: Bounded Case

In this lab, we reexamine the first lab, this time imposing bounds on the
control. Also notice that the weight parameter B has been removed from the
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problem, and only one weight parameter is used, as discussed in Lab 1.

max
u

∫ 1

0

Ax(t) − u2(t) dt

subject to x′(t) = −
1

2
x2(t) + Cu(t), x(0) = x0 > −2,

M1 ≤ u(t) ≤ M2, A ≥ 0.

Open MATLAB and begin lab4. In Lab 1, we first examined the optimal
control for the parameters values A = x0 = 1 and C = 4 (with B = 1). There,
the optimal control lies between 0 and 2 (it appears the control is bounded
by 1, but in fact it has a maximum value slight above 1). You may want to
run this simulation in lab1 again to refresh your memory. Now, running lab4,
enter the values A = x0 = 1, C = 4, M1 = −1, and M2 = 2. Now try M1 = 0
and M2 = 1.5. In both cases, the optimal control is unchanged from Lab
1. If the problem has a solution without bounds, and bounds which contain
that solution are added, then the solution will be unchanged, as expected.

Enter A = x0 = 1, C = 4, M1 = 0, and M2 = 2, varying with M2 = 0.5.
Clearly, this set of bounds will affect the original solution. The bounded
control is very similar to the first control if it were truncated at 0.5. However,
if you look closely enough, you will see the second control remains at its upper
bound for a short time after the first control passes the bound. You may need
to use the zoom tool at the top of the figure window, or expand the figure
to full screen, in order to see this. Also, the adjoints from the two problems
are different, particularly near the beginning of the interval. The effect of
the different controls is seen in the states, as the first control, which is not
inhibited by the bound, increases the state more.

For another example, try the values A = 20, C = 1, and x0 = 0. With
no bounds, the resulting optimal control would lie between 0 and 6. Enter
the bounds M1 = 0 and M2 = 6, and then vary with M2 = 3. Again, the
resulting control is similar to a truncation of the original, but not exactly.
The difference should be easier to see than in the last simulation. Now run a
similar experiment on the lower bound. Enter the same values again, A = 20,
C = 1, x0 = 0, M1 = 0, and M2 = 6, this time varying with M1 = 5. Here,
the two controls have less similarity than in the previous experiments. As
the second control is forced to stay at the, relatively high, upper bound for
the majority of the interval, it begins slightly lower than the first control to
compensate.
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This time, we will begin with stringent upper and lower bounds. Enter
the values A = 20, C = 1, x0 = 0, M1 = 1, and M2 = 5. The optimal
control will now be affected by both bounds. Vary with M1 = 4. Here, not
only does the second control reach its lower bound before the first control,
but it also decreases from the mutual upper bound first. Interestingly, if we
instead vary with M2 = 2, we find that the second control remains at its
upper bound after the first control passes it, as before, but the two controls
reach their mutual lower bound at much closer times than in the previous
simulation.

Enter the values A = 1, C = 4, x0 = 1, M1 = 2, and M2 = 3. The
original control lies entirely outside these bounds, and the resulting control
lies entirely at the lower bound. Now try M1 = −2 and M2 = −1. Here, the
control is identically the upper bound. As a special case, enter M1 = M2 = 0.
Of course, the optimal control is u∗ ≡ 0, as this is the only solution which
satisfies the bounds.

Finally, even with the addition of the bounds, the parameters A, C, and
x0 have the same effect as before. For example, enter A = x0 = 1, C = 4,
M1 = 0.25, and M2 = 0.75, varying with A = 3. The second system,
with more emphasis placed on maximizing x, uses a greater control, where
possible, in order to decrease the state more. Vary C and x0 to see they also
affect the solution as before.

Lab 5: Cancer

Optimal control techniques are of great use in developing optimal strate-
gies for chemotherapy. Specifically, a treatment regimen, treated as the
control, which will minimize the tumor density and drug side-effects over
a given time interval, can be found. This technique was employed by Fis-
ter and Panetta in [1]. There, the tumor is assumed to have Gompertzian
growth. Several models of chemotheraputic kill-cell (killing of tumore cells)
exist. Three different models are treated in [1]. Here, we examine only one,
namely, Skipper’s log-kill hypothesis, which states cell-kill due to chemother-
apeutic drugs is proportional to tumor population. Thus, if N(t) is the
normalized density of the tumor at time t, we have the model

N ′(t) = rN ln(
1

N
) − uδN,

where r is the growth rate of the tumor, δ is the magnitude of the dose,
and u(t) describes the time dependent pharmacokinetics of the drug, i.e.,
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u(t) = 0 implies no drug effect and u(t) > 0 is the strength of the drug
effect. The initial condition is taken to be N(0) = N0, where 0 < N0 < 1,
as the tumor cells have been normalized. The objective functional used is
quadratic, where the cost of the control, representing possible side-effects,
and the tumor density N are minimized over a time interval. Finally, we
require u(t) ≥ 0 for all t. So, our problem is

min
u

∫ T

0

aN(t)2 + u2(t) dt

subject to N ′(t) = rN(t) ln

(

1

N(t)

)

− u(t)δN(t),

N(0) = N0, 0 ≤ u(t).

Here, a is a positive weight parameter. Enter MATLAB and begin lab5.
First, try these values: r = 0.3, a = 3, δ = 0.45, N0 = 0.975, and T =
20. We see the tumor density is not forced to 0, but minimized over the
interval. Notice that the optimal treatment strategy is one of high drug
strength early followed by a slow reduction to no drug treatment on day 20.
This is consistent with most medical practices today. However, we see the
lowered drug strength allows for a slight increase in tumor density after day
12.

Now, enter the same values, varying a. Use a much higher second a value,
say a = 10. Notice we are able to push the tumor density to a much lower
level when minimizing side-effects has less importance. You will also notice
the strength of the drug is much higher, particularly at the beginning of the
treatment period. However, what is perhaps most interesting is that with less
significance placed on side-effects, the same general strategy of chemotherapy
should be employed, namely, a very high initial strength followed by a gradual
reduction to no drug treatment.

Run the program with the same parameters, this time varying with a = 1.
We have two systems, one where minimizing tumor density is three times as
important as minimizing drug side-effects, and the second where they are of
equal importance. The results are as we would expect. In the first system, a
stronger drug regimen is used, reducing the tumor density to lower levels.

The previous simulations were run with initial tumor density near car-
rying capacity. Try varying N0 now to something smaller, say N0 = 0.5.
Notice how the two tumor densities and drug strengths converge. By day 8,
the two systems are nearly identical. It seems only the early stages of optimal
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treatment are affected by initial tumor density. Afterwards, treatment and
results become uniform. Now try the two initial densities of N0 = 0.975 and
N0 = 0.3. Even in this more extreme case, virtually the same thing happens,
at almost the same rate. Next, use the same two N0 values with T = 40.
Again, the same convergence occurs. However, instead of being scaled to the
new interval, uniformity still occurs in approximately 8 days.

Moving to the growth rate of the tumor, enter r = 0.3, a = 3, δ = 0.45,
N0 = 0.6, and T = 20. Vary the growth rate using the second value r = 0.5.
As expected, the higher growth rate in the second system causes the tumor
density to decrease more slowly. Also, the overall pharmokenitics in the
second system must be greater to compensate. However, note that the drug
strength in the first system begins at a higher level, before falling below the
second control. With a slower growth rate, the initial blitz of drug is even
more effective, so more is used.

Let us now consider the magnitude of the dosage δ. Enter the values
r = 0.2, a = 3, δ = 0.2, N0 = 0.8, and T = 20. Vary the magnitude
using the second value δ = 0.5. Even with a higher dose magnitude, the
second system has an optimal drug strength which begins higher than the
first. It then experiences a much faster reduction. The difference in tumor
densities is fairly dramatic compared to our earlier simulations. This is the
strongest evidence we have seen of the disproportional importance of drug
effect in the first few days. In this example, the drug strength in the second
system is slightly higher early, which, along with a higher dosage magnitude,
drives the tumor density down. By day 6, both drug regimens have been
lowered enough so that tumor density is being held approximately constant.
However, over the 20 day period, the tumor density in the second system is
much lower, almost half during much of the time. This difference is created
almost entirely in the first 4 days.

Finally, examine the effect of the number of days on the optimal treat-
ment. Enter r = 0.2, a = 1.5, δ = 0.5, N0 = 0.7 and T = 20. Vary the
number of days using the second value T = 40. We see the second system
uses the same basic strategy as the first system, stretched over the longer
interval. In fact, the strategies are almost identical for the first 10 days. The
second system holds the mid-level drug strength for the next 20 days before
dropping down, just as the first system did in days 10 through 20.

Run your own simulations and experiment with each parameter. Are the
results as you expected?

You may have noticed that in each simulation, the bound on u seemed
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unnecessary. The optimal control in each case was smooth and everywhere
non-negative. It never appeared to be “cut-off” at zero. In fact, using some
analysis, one can prove that the bound is superfluous; the optimal control
will be non-negative without the bound, for accepted parameter values. How-
ever, it is standard practice in most research to include any relevant bounds,
whether they are actually required or not. As you will see, the next lab
contains a non-negativity bound that is necessary.

1. K. R. Fister and J. C. Panetta, Optimal control applied to competing
chemotherapeutic cell-kill strategies, SIAM J. Applied Math. 63 (2003),
1954-1971.

Lab 7: Epidemic Model

In this lab, we use optimal control techniques to find a vaccination sched-
ule for an epidemic disease. A microparasitic infectious disease is considered.
Permanent immunity to the disease can be acheived through natural recovery
or immunization. Immunity is not passed on during birth, so that everyone
is born susceptible. Our goal is to minimize the number of infectious persons
and the overall cost of the vaccine during a fixed time period.

To model the dynamics of the disease in a population, we use a stan-
dard SEIR (or SEIRN) model. Let S(t), I(t), and R(t) represent number of
susceptible, infectious, and recovered (immune) individuals at time t. The
model allows for an incubation period for the disease inside its host, where
an infected person remains latent for some time before becoming infectious,
creating an exposed class. Let E(t) be the number of exposed or latent indi-
viduals at time t. Let N(t) be the total number of people in the population,
so that N(t) = S(t) + E(t) + I(t) + R(t).

Let u(t), our control, be the percentage of susceptible individuals being
vaccinated per unit of time. As vaccination of the entire susceptible popu-
lation is impossible, we bound the control with 0 ≤ u(t) ≤ 0.9. Let b be
the natural exponential birth rate of the population and d the natural ex-
ponential death rate. The incidence of the disease is described by the term
cS(i)I(i). The parameter e is the rate at which the exposed individuals be-
come infectious, and g is the rate at which infectious individuals recover.
Therefore, 1

e
is the mean latent period and 1

g
is the mean infectious period

before recovery, if recovery occurs. The death rate due to the disease in
infectious individuals is a. The optimal control problem is as follows,
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min
u

∫ T

0

AI(t) + u2(t) dt

subject to S ′(t) = bN(t) − dS(t) − cS(t)I(t) − u(t)S(t)

E ′(t) = cS(t)I(t) − (e + d)E(t)

I ′(t) = eE(t) − (g + a + d)I(t)

R′(t) = gI(t) − dR(i) + u(t)S(t)

N ′(t) = (b − d)N(t) − aI(t)

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, N(0) = N0,

0 ≤ u(t) ≤ 0.9.

Notice the left-hand side of the differential equations gives us the name
of the type of model (SEIR). Also, observe the variable R appears only in
the R′ differential equation. So, the other variables do not depend on R,
and we can ignore R when we solve the optimality system. Specifically, as
you see in the code, only S, E, I, and N are solved forward in time, and
the four associated adjoints are solved backward in time. Once convergence
has been achieved, R∗ is solved using its differential equation. Refer back to
Example ??

Type lab7 at the prompt and press enter. Start with the values b =
0.525, d = 0.5, c = 0.0001, e = 0.5, g = 0.1, a = 0.2, S0 = 1000, E0 =
100, I0 = 50, R0 = 15, A = 0.1, and T = 20. This is a simulation of
a disease with a low incidence measure. The optimal vaccination schedule
is one of containment. A early round of vaccinations is used to shield the
susceptible population from the initially significant exposed and infectious
populations. This, combined with the low incidence level, results in the
virtual end of disease spread. Exposed and infectious populations quickly
disappear (through death and recovery). By year 5, the disease is essentially
wiped out and vaccination ends. The small number of people who do carry
the disease pose little threat of spreading it. The recovered group increases
rapidly at first due to vaccinations, but slowly disappears when vaccination
ends. By the end of the time period, susceptible people make up almost the
entire population. Notice the susceptible population decreases slightly at the
beginning of the time interval. Here, the vaccination rate is greater than the
overall growth.

Now, vary with c = 0.001, a much higher, and more realistic, incidence
level. Here, the threat of disease spread is much more serious, and a more
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aggressive plan is needed. Maximum vaccination is used initially, followed
by a reduction, but a slower reduction than in the first system. With a low
incidence, there was no need to vaccinate once the exposed and infectious
populations were reduced, as almost no one would contract the disease. In
the system with c = 0.001, though, we see it is advantageous to continue
vaccinating almost 40% of the population, even after exposed and infectious
populations are reduced. The susceptible population is reduced by half in
the first two years, as the great majority are being vaccinated and many of
the others are exposed. The infectious population even sees a slight initial
increase. However, after the first several years, the same dynamic of the other
simulation returns. Susceptible begins to steadily climb, almost reaching the
levels of those in the first system. Exposed and infectious almost disappear,
and vaccination levels do eventually reach 0. Total population is hardly
affected by the increase in incidence. It is worth noting in the second system,
at the end of the period, the recovered group is still a significant portion of
the total population.

This time, enter the same values, with c = 0.001, and vary A, say A = 0.1
and A = 2. With a higher cost parameter, we can vaccinate at the maxi-
mum level for a longer period of time. This change greatly decreases the
susceptible population and increases the recovered population. However, the
exposed and infectious populations are reduced, but the change is marginal.
Total population seems unaffected in any way, which seems to suggest early
vaccinations are the key to disease management. Later vaccinations, while
effective and helpful, become increasingly less efficient as time passes. To
verify this, vary A = 0.1 versus A = 200. Here, with such a high A value,
vaccination cost is of virtually no importance. As such, maximum vaccina-
tion is used almost exclusively. The effects on the susceptible and recovered
populations are pronounced, but the change in the number of exposed and
infectious people is small.

Enter b = 0.525, d = 0.5, c = 0.001, e = 0.5, g = 0.1, a = 0.2, S0 = 1000,
E0 = 100, I0 = 50, R0 = 15, A = 0.1, and T = 20, varying with g = 0.
The second system represents a disease where no recovery can occur. A
higher vaccination rate must be used, as immunity is no longer achieved nat-
urally. The second system has a higher infectious population throughout.
This makes sense, as no one is recovering. The reduction in infectious people
in the second system is due only to death. Now try g = 0.1 versus g = 0.4.
Here, one stands a much better chance of recovering from the disease. The
infectious population reduces more rapidly, meaning a less aggressive vacci-
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nation routine can be used. Note, even though natural recovery is occurring
more often in the second system, there are fewer recovered people. The shift
in vaccination outweighs the shift in recovery rate.

We might suspect a higher disease-related mortality would necessitate a
greater immunization rate. However, the opposite is actually true. Enter
the original value from the last paragraph, this time varying with a = 0.4.
In the second system, a slightly less powerful, but still aggressive initial im-
munization strategy is used. The infectious population reduces more rapidly
due to the greater mortality rate, and fewer vaccinations are needed. Notice,
however, that the total population in the second system is lowered slightly.
If you try a disease mortality rate as high as a = 1.5, you will see very little
vaccination is used, as the infectious population rapidly declines. The effect
on total population also becomes more severe. Recall our objective functional
minimizes the number of infectious people only. This simulation suggests we
might also consider the total population in our goals.

Vary the latency of the disease, using e = 0.5 and e = 0.1. In the second
system, the disease has an incubation period five times as long. So, a large
initial round of immunizations is not needed. The longer incubation period
allows the immunizations to be spread out over the first several years. Also,
the infectious population receives no initial boost and reduces at a greater
speed. The recovery and death rates of infectious individuals are now larger
than the rate at which susceptible people become exposed, then infectious.

Consider the relationship between the management of the disease and
the effective growth of the population as a whole. In all the previous sim-
ulations, we considered a population with moderate growth. We now turn
our attention to a simulation with rapid growth. Enter the same values as
before, varying with b = 0.55. Here, we have doubled the effective growth
rate (b − d). With so many more susceptible people, the disease can spread
more easily. Thus, a more stringent schedule of immunizations must be used
to balance out the population growth. Infectious and exposed populations
are similar in both systems for the majority of the time interval. However,
as immunization is decreased, both begin to rise at approximately 15 years.
At this point, there are so many susceptible people, even a few infectious
individuals are enough to restart the epidemic if immunizations are not con-
tinued. Conversely, consider a population with small or no effective growth,
i.e., b = d. Enter the same values as before, this time varying d to d = 0.525.
The initial immunization blitz reduces the number of susceptible people as
normal, but as the growth rate is zero, the susceptible population will have
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a slower increase. Thus, fewer vaccinations are needed after the first few
years. The exposed and infectious populations are reduced in the usual way.
However, the total population, without disease, is naturally static as b = d.
Thus, the disease-caused deaths cause the total population to reduce in size.

To this point, we have examined populations where susceptible people
were in the majority. Now, let us consider a case where the infection has
been spreading unchecked for some time before intervention occurs. Enter
the values b = 0.525, d = 0.5, c = 0.001, e = 0.5, g = 0.1, a = 0.2,
S0 = 1000, E0 = 1000, I0 = 2000, R0 = 500, A = 0.1, and T = 20.
Here, maximum vaccination is almost the entire period. The number of
exposed and infectious people are reduced by the end of the period, but
not nearly to the levels we have been observing. The number of exposed
people actually begins to increase again in the last year. Most troublesome,
the total population drastically falls in the first five years, before stabilizing
and then increasing. Now try S0 = 1000, E0 = 2000, I0 = 5000, and
R0 = 1000. Here, vaccination has begun too late. Even with maximum
vaccination for more than 19 of the 20 years, total population steadily falls.
This again establishes the importance of early vaccinations. Treatment must
begin before the infection gets out-of-hand. Try to create a set of parameters
where the population has moderate growth but eventually dies out, despite
the immunization tactics.

On your own, examine a few special cases of the initial conditions. Run a
simulation where immunization begins before the disease becomes infectious,
namely I0 = R0 = 0. Consider a closed environment, such as a cruise
ship, where a few infectious individuals enter an uncontaminated populations,
specifically, E0 = R0 = 0. Also, try E0 = I0 = R0 = 0.

Vary each of the initial conditions one by one to see their effect on the
optimal immunization treatment. How does shortening the time interval
alter the execution and efficiency of the immunization schedule?

Lab 8: HIV Treatment

In the following lab, optimal control is used to find an optimal chemother-
apy strategy in the treatment of the human immunodeficiency virus (HIV).
Unlike the last lab, where the dynamics of a population affected by an epi-
demic were considered, this problem studies the immune system of an indi-
vidual.

A great deal of research has been conducted on the effect of chemotherapy
on the HIV virus. One can study the effects of chemotherapy on reducing vi-
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ral production, which is most applicable to drugs such as protease inhibitors.
Here, we consider the chemotherapy of reverse transcription inhibitors, such
as AZT, which affects the “infectivity” of the virus. These drugs interrupt
key stages of the infection process during the life cycle of HIV within a host
cell. Butler, Kirschner, and Lenhart developed a model for this type of inter-
action and used optimal control to develop treatment strategies in [2]. This
lab is based on their work.

It is assumed the treatment acts to reduce the infectivity of the virus
for a finite time, until drug resistance occurs. The measure of benefit of
chemotherapy treatment is based solely on the increase of the CD4+T cell
count. Thus, the model used describes the interaction of the immune system
with HIV. Let T (t) and Ti(t) be the concentration of uninfected and infected
CD4+T cells, respectively, and let V (t) be the concentration of free virus
particles. In this instance, concentration refers to the population count per
unit volume. Let s

1+V (t)
be the source term from the thymus, representing

the rate of generation of new CD4+T cells. Let r be the growth rate of T

cells per day. This growth is assumed to be logistic, with a maximum level
of Tmax. Let kV (t)T (t) be the rate free virus cells infect T cells. Let m1,
m2, m3 be the natural death rates of uninfected CD4+T cells (T ), infected
CD4+T cells (Ti), and free virus particles (V ), respectively. Once infection
of a T cell occurs, replication of the virus is initiated and an average of N

virus particles are produced before the host cell dies.
The control, u(t), is the strength of the chemotherapy, where u(t) = 0 is

maximum therapy and u(t) = 1 is no therapy. We note that maximum ther-
apy u = 0 is probably unrealistic to achieve; a more realistic positive lower
bound would be better. We leave the problem as originally stated, though.
We wish to maximize the number of uninfected T cells while simultaneously
minimizing the “cost” of the chemotherapy to the body. This is done over a
fixed, finite period of time, simulating the period before drug resistance oc-
curs. It is assumed the relationship between the benefit and cost functionals
is not linear. Therefore, a quadratic term is used. Letting A ≥ 0 be the cost,
or weight, parameter, the problem is

max
u

∫ tfinal

0

AT (t) − (1 − u(t))2 dt
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T ′(t) =
s

1 + V (t)
− m1T (t) + rT (t)

[

1 −
T (t) + Ti(t)

Tmax

]

− u(t)kV (t)T (t)

T ′

i (t) = u(t)kV (t)T (t) − m2Ti(t),

V ′(t) = Nm2Ti(t) − m3V (t),

T (0) = T0, Ti(0) = Ti0, V (0) = V0,

0 ≤ u(t) ≤ 1.

Enter MATLAB and begin lab8. Begin with the values s = 10, m1 = 0.02,
m2 = 0.5, m3 = 4.4, r = 0.03, Tmax = 1500, k = 0.000024, N = 300,
T0 = 800, Ti0 = 0.04, V0 = 1.5, A = 0.05, and tfinal = 20. We see the optimal
chemotherapy treatment is a dynamic one, beginning with the strongest dose,
followed by a decreasing of treatment. (Remember u = 0 is the maximum
therapy and u = 1 is no therapy). This has the effect of steadily increasing
the T cell concentration, even though treatment is not 100% effective 100% of
the time. This behavior is seen in drugs such as AZT and DDT. Also, infected
T cell count and viral concentration initially decrease and then increase as
treatment lessens, but only to a fraction of original levels.

Let us begin with an evaluation of the weight A. Enter the same values
as before, varying A, say A = 0.025 as our second value. As expected, the
system with higher cost parameter has a control where maximum treatment is
continued longer. Subsequently, the T cell count is driven higher, and infected
T cell and viral concentration are pushed lower. However, the increase in
healthy T cells is marginal, while the infected T cell and viral concentrations
are approximately halved. This is somewhat surprising, considering that
only healthy T cell count is explicitly considered in the objective functional.
Notice that both systems exhibit the same basic behavior. Optimal treatment
for both begins with a period of maximum strength, then reduces in strength
until reaching no treatment, both before the 20 day period is actually over.

Enter the original values again, this time varying the number of virus
produced by infected cells, say N = 250 as the second value. Here, the con-
centration of uninfected and infected T cells is approximately the same for
both systems and the viral concentration is only slightly altered. However,
the treatment regimen in the first system sustains maximum strength for
a full day longer to achieve virtually the same results. Now, try N = 300
versus N = 50. Notice the dramatic difference. In the second system, the T

cell count is driven a little higher, but with a much less strenuous treatment
regimen. In fact, maximum strength treatment is never used, and treatment
effectively ends after only ten days. Further, with N = 50, after the popu-
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lation is driven sufficiently low enough with drugs, the virus actually fades
because it is not reproducing enough to sustain itself.

Now, enter the original values, varying T cell growth rate to r = 0.045.
Because of the higher natural growth rate of the T cells in second system,
we are able to drive the T cell count higher, with virtually the same treat-
ment regimen. It is worth pointing out the fundamental differences in this
simulation and the last. When N was advantageously adjusted, the optimal
treatment was to reduce drug strength in order to achieve the same T cell
count. Conversely, when T cell growth rate was increased, the optimal ac-
tion was to instead maintain a similar treatment schedule in order to gain a
better T cell count. This is a direct result of the objective functional, which
considers only healthy T cell count. An increased growth rate directly affects
T , whereas a lower N value hinders viral production, altering T cells only
indirectly.

Vary the infection rate, using the original k = 0.000024 and k = 0.000032.
Increasing the infectivity of the virus has somewhat expected results. Viral
and infected T concentrations are higher at the end of the time period, when
drug treatment is greatly reduced. Also, uninfected T cell concentration re-
mains approximately the same, while a longer period of maximum treatment
is needed to achieve this. Again, notice the interesting duality, as, in this
case, the optimal strategy is to increase overall drug strength in order to
achieve the same healthy T cell count.

We now turn our attention to the generation of new CD4+T cells, repre-
sented by s. Enter the original values, and vary s, with the second value of
s = 9. Then, try s = 8 as the second value. Then s = 7. The behavior is
unlike what we saw with N , k, and r. Here, as s varies, the optimal control
and uninfected T cell count both change. A weaker drug regimen is used
and the healthy T cell count decreases. When s is reduced, the production
of T cells is slowed, so it is logical that the T cell count would be less in the
second system. Notice the viral and infected T cell concentrations remain
essentially unchanged through these variations of s. With fewer T cells, a
weaker drug treatment is needed to keep the same levels of infection.

Try varying the maximum concentration of T cells, using Tmax = 1200 as
the second value. One might suspect that since neither 1500 nor 1200 are
particularly close to our initial condition of 800, this variation will cause little
change in the outcome. However, you will see from the graphs that this is not
true. The T cell count in the second system, which begins at 67% carrying
capacity, actually decreases initially, before finishing at a level only slightly
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above the initial number. The first system T cell count, which begins at only
53% carrying capacity, increases steadily after the first two days. This occurs
despite the two systems using very similar treatment regimens.

Now consider the length of the time interval. Vary the final time using
tfinal = 20 and tfinal = 10. In the shortened time interval, the treatment
makes far less progress. The final T cell count in the second system is lower
than the first system on day 10. The treatment is even less effective in
reducing the infected T cell and viral concentrations. Notice, however, that
the maximum drug strength is held for a shorter interval and overall drug
strength is less. The way the problem is cast, we are requiring drug side-
effects to be minimized over a 10 day period. By comparing to a 20 day
regimen, we are, in some sense, unfairly capping the allowed side-effects. If
days 11 - 20 are drug-free, then we should allow for twice as many side-
effects in days 1 - 10. Hence, run the simulation with tfinal = 10 and A =
0.1, twice the original value. Here, we see the dynamic we are used to.
However, the final number, although better than the first 10 day schedule,
are not comparable to the 20 day period. The length over which a drug is
administered seems to be an integral part of its effectiveness. Thus, it is
important to develop strong reverse transcription inhibitors which also have
long resistance times.

The effect of varying each of the death rates m1, m2, and m3 is predictable.
Also, we have already examined the effect of initial conditions on systems
such as this. So, the study of these parameters is left as an exercise for
the reader. It may be of interest to ascertain which death rate and initial
condition have the most impact.

2. S. Butler, D. Kirschner, and S. Lenhart, Optimal control of chemother-
apy affecting the infectivity of HIV, in Advances in Mathematical Population
Dynamics - Molecules, Cells and Man, 1997, 557-569.

16


