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Pressure is on DSP

• Increasing pressure on signal/image processing 
hardware and algorithms to support

higher resolution / denser sampling
» ADCs, cameras, imaging systems, …

X
large numbers of sensors

» multi-view target data bases, camera arrays 
and networks, pattern recognition systems, 

X
increasing numbers of modalities

» acoustic, seismic, RF, visual, IR, SAR, …

=
deluge of datadeluge of data

» how to acquire, store, fuse, process efficiently?



Data Acquisition

• Time: A/D converters, receivers, …
• Space: cameras, imaging systems, …

• Foundation:  Shannon sampling theorem
– Nyquist rate: must sample at 2x highest frequency 

in signal

N periodic
samples



Sensing by Sampling

• Long-established paradigm for digital data acquisition
– sample data (A-to-D converter, digital camera, …) 
– compress data (signal-dependent, nonlinear)
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Sparsity / Compressibility

pixels large
wavelet
coefficients

wideband
signal
samples

large
Gabor
coefficients

• Number of samples N often too large, so compress
– transform coding: exploit data sparsity/compressibility

in some representation (ex: orthonormal basis)



Compressive Data Acquisition

• When data is sparse/compressible, can directly 
acquire a condensed representation with 
no/little information loss
through dimensionality reduction

measurements
sparse
signal

sparse
in some

basis



Compressive Data Acquisition

• When data is sparse/compressible, can directly 
acquire a condensed representation with 
no/little information loss

• Random projection will work
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Compressive Data Acquisition

• When data is sparse/compressible, can directly 
acquire a condensed representation with 
no/little information loss

• Random projection preserves information
– Johnson-Lindenstrauss Lemma (point clouds, 1984)
– Compressive Sensing (CS) (sparse and compressible signals, 

Candes-Romberg-Tao, Donoho, 2004)

reconstructproject

…



Why Does It Work (1)?
• Random projection not full rank, but stably embeds

– sparse/compressible signal models (CS) 
– point clouds (JL)

into lower dimensional space with high probability
• Stable embedding: preserves structure

– distances between points, angles between vectors, …

provided M is large enough:  Compressive Sensing

K-dim planes
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Why Does It Work (2)?
• Random projection not full rank, but stably embeds

– sparse/compressible signal models (CS) 
– point clouds (JL)

into lower dimensional space with high probability
• Stable embedding: preserves structure

– distances between points, angles between vectors, …

provided M is large enough:  Johnson-Lindenstrauss

Q points



CS Hallmarks

• CS changes the rules of the data acquisition game
– exploits a priori signal sparsity information 

• Universal
– same random projections / hardware can be used for

any compressible signal class                     (generic)

• Democratic
– each measurement carries the same amount of information
– simple encoding
– robust to measurement loss and quantization

• Asymmetrical (most processing at decoder)

• Random projections weakly encrypted



Example: “Single-Pixel” CS Camera
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Example Image Acquisition

500 
random measurements

4096 
pixels



• For real-time, streaming use,     can have 
banded structure

• Can implement in analog hardware

pseudo-random code

Analog-to-Information Conversion



pseudo-random code

Analog-to-Information Conversion

radar chirps w/ narrowband interference signal after AIC

• For real-time, streaming use,     can have 
banded structure

• Can implement in analog hardware



Information Scalability

• If we can reconstruct a signal from compressive 
measurements, then we should be able to perform 
other kinds of statistical signal processing:

– detection
– classification
– estimation …



Multiclass Likelihood Ratio Test

• Observe one of P known signals in noise

• Classify according to:

• AWGN: nearest-neighbor classification



Compressive LRT

• Compressive observations:

by the JL Lemma 
these distances 
are preserved (*)

[Waagen et al 05; RGB, Davenport et al 06; Haupt et al 06]



Matched Filter

• In many applications, signals are transformed
with an unknown parameter; ex: translation

• Elegant solution: matched filter
Compute

for all

Challenge: Extend compressive LRT 
to accommodate parameterized signal 
transformations



Generalized Likelihood Ratio Test

• Matched filter is a special case of the GLRT

• GLRT approach extends to any case where 
each class can be parameterized with 
K   parameters

• If mapping from parameters to signal is 
well-behaved, then each class forms a 
manifold in



What is a Manifold?

“Manifolds are a bit like pornography: hard to define,   
but you know one when you see one.”

– S. Weinberger [Lee]

• Locally Euclidean topological space

• Roughly speaking:
– a collection of mappings of open sets of 
RK glued together (“coordinate charts”)

– can be an abstract space, not a subset 
of Euclidean space

e.g., SO3, Grassmannian

• Typically for signal processing: 
– nonlinear K-dimensional “surface” in signal space RN



Object Rotation Manifold

K=1



Up/Down Left/Right Manifold

[Tenenbaum, de Silva, Langford]

K=2



Manifold Classification

• Now suppose data is drawn from 
one of P possible manifolds:

• AWGN: nearest manifold classification

M1

M
2M3



Compressive Manifold Classification

• Compressive observations:

?



Compressive Manifold Classification

• Compressive observations:

• Good news:  structure of smooth
manifolds is preserved by random
projection provided

– distances, geodesic distance, angles, … [RGB and Wakin, 06]



Stable Manifold Embedding
Theorem:
Let F ⊂ RN be a compact K-dimensional manifold with

– condition number 1/τ (curvature, self-avoiding)

– volume V

Then with probability at least 1-ρ, the following
statement holds: 

For every pair x,y ∈ F,

Let Φ be a random MxN orthoprojector with

[Wakin et al 06]



Manifold Learning
from Compressive Measurements
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The Smashed Filter

• Compressive manifold classification with GLRT
– nearest-manifold classifier based on manifolds

M1

M
2M3
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Φ M
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Let Φ be a random MxN orthoprojector with

Multiple Manifold Embedding
Corollary:
Let M1, … ,MP ⊂ RN be compact K-dimensional manifolds with

– condition number 1/τ (curvature, self-avoiding)

– volume V
– min dist(Mj,Mk) > τ (can be relaxed)

Then with probability at least 1-ρ, the following
statement holds: 

For every pair x,y ∈  U Mj,



Smashed Filter - Experiments

• 3 image classes:    tank, school bus, SUV

• N = 64K pixels

• Imaged using single-pixel CS camera with
– unknown shift
– unknown rotation



Smashed Filter – Unknown Position

• Image shifted at random (K=2 manifold)
• Noise added to measurements

– identify most likely position for each image class
– identify most likely class using nearest-neighbor test
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Smashed Filter – Unknown Rotation

• Training set constructed for each class with 
compressive measurements 
– rotations at 10o, 20o, … , 360o      (K=1 manifold)
– identify most likely rotation for each image class
– identify most likely class using nearest-neighbor test

• Perfect classification with
as few as 6 measurements

• Good estimates of the
viewing angle with under
10 measurements
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Conclusions
• Compressive measurements are 

information scalable
reconstruction > estimation > classification > detection

• Smashed filter:  dimension-reduced GLRT for 
parametrically transformed signals
– exploits compressive measurements and manifold structure
– broadly applicable: targets do not have to have sparse 

representation in any basis
– effective for image classification when combined with 

single-pixel camera

• Current work
– efficient parameter estimation using multiscale Newton’s method

[Wakin, Donoho, Choi, RGB, 05]
– linking continuous manifold models to discrete point cloud models

[Wakin, DeVore, Davenport, RGB, 05]
– noise analysis and tradeoffs (M/N SNR penalty)
– compressive k-NN, SVMs, ...
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