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Pressure I1s on DSP

e Increasing pressure on signal/image processing
hardware and algorithms to support

higher resolution / denser sampling
» ADCs, cameras, imaging systems, ...

X

large numbers of sensors

» multi-view target data bases, camera arrays
and networks, pattern recognition systems,

X

INncreasing numbers of modalities
» acoustic, seismic, RF, visual, IR, SAR, ...

deluge of data
» how to acquire, store, fuse, process efficiently?



Data Acquisition

e Time: A/D converters, receivers, ...
e Space: cameras, imaging systems, ...

e Foundation: Shannon sampling theorem

— Nyquist rate: must sample at 2x highest frequency
In signal

) l' N periodic
5 samples




Sensing by Sampling

e Long-established paradigm for digital data acquisition
— sample data (A-to-D converter, digital camera, ...)
— compress data (signal-dependent, nonlinear)

N> K

N K
sample » compress

y

transmit/store

sparse
wavelet
transform

y

receive decompress




Sparsity / Compressibility

e Number of samples N often too large, so compress

— transform coding: exploit data sparsity/compressibility
INn some representation (ex: orthonormal basis)

N K <KN
pixels large
wavelet
coefficients
N K KN
wideband large
signhal Gabor
samples coefficients




Compressive Data Acquisition

When data is sparse/compressible, can directly

acquire a condensed representation with
no/little information loss

through dimensionality reduction y = $w
N x 1
measurements signal
sparse
K < M << N In some

basis



Compressive Data Acquisition

When data is sparse/compressible, can directly

acquire a condensed representation with
no/little information loss

y = dx
- Random projection will work
y
M x 1 "'“"- = et
measurements .':EJ H;W signal
M >N e
K < M << N inpsome

basis



Compressive Data Acquisition

e When data is sparse/compressible, can directly
acquire a condensed representation with
no/little information loss y = br

e Random projection preserves information
— Johnson-Lindenstrauss Lemma (point clouds, 1984)

— Compressive Sensing (CS) (sparse and compressible signals,
Candes-Romberg-Tao, Donoho, 2004)

y reconstruct .~
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Why Does It Work (1)?

e Random projection not full rank, but stably embeds
— sparse/compressible signal models (CS)
— point clouds (JL)

Into lower dimensional space with high probability

e Stable embedding: preserves structure
— distances between points, angles between vectors, ...

provided M is large enough: Compressive Sensing
M = O(K log(N/K))
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Why Does It Work (2)?

e Random projection not full rank, but stably embeds
— sparse/compressible signal models (CS)
— point clouds (JL)

Into lower dimensional space with high probability

e Stable embedding: preserves structure
— distances between points, angles between vectors, ...

provided M is large enough: Johnson-Lindenstrauss

M = O(log Q)
RN RM
O ¢ CD ®
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CS Hallmarks

CS changes the rules of the data acquisition game
— exploits a priori signal sparsity information

Universal
— same random projections / hardware can be used for
any compressible signal class (generic)

Democratic

— each measurement carries the same amount of information
— simple encoding

— robust to measurement loss and quantization

Asymmetrical (most processing at decoder)

Random projections weakly encrypted



Example: “Single-Pixel” CS Camera

single photon
detector

PD

)

image
reconstruction
or

—H_UF <(( éessing

DSP

random
pattern on
DMD array




Example Image Acquisition

500
random measurements




Analog-to-Information Conversion

Low-pass

z(t) —»(%—) ht)

filter AN

Low rate

ADC

p(t)

pseudo-random code

e For real-time, streaming use, ® can have

banded structure

e Can implement in analog hardware
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Analog-to-Information Conversion

Low-pass filter AN Low rate | ——3
z(t) —>»RQ—> D

h(t) ADC |—>»
)

p(?)
pseudo-random code

e For real-time, streaming use, ® can have
banded structure

e Can implement in analog hardware

radar chirps narrowband interference signal after AIC
1 1t
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Information Scalability

e If we can reconstruct a signal from compressive
measurements, then we should be able to perform
other kinds of statistical signal processing:

— detection
— classification
— estimation ...



Multiclass Likelihood Ratio Test

e Observe one of P known signals in noise

Hi | =5s1+n

Hy | x=5s>+n

Hp | x=sp+mn
e Classify according to:

arg max p(x|H;)
j=1,....P 7

« AWGN: nearest-neighbor classification

. €I o °
argmin ||z — s;||o .| s3
j=1,...,P ’ 51




e Compressive observations:

€T e

51

Compressive LRT

A RN
53
P

[ ] \
52
t1 = |ly — Psy
to = |ly — Pso
t3 = ||ly — Ps3

H; . y=®(s; +n)

V' /s
Psq
CD.SQ

2 by the JL Lemma
~ »~ these distances

are preserved (*)

[Waagen et al 05; RGB, Davenport et al 06; Haupt et al 06]



Matched Filter

e In many applications, signals are transformed
with an unknown parameter; ex: translation

H; : x=s5;(t—0;)+n

e Elegant solution: matched filter

Compute
(z,s;(t —0;)) for all 0,
)
T * s;(—1)

Challenge: Extend compressive LRT
to accommodate parameterized signal
transformations



Generalized Likelihood Ratio Test

e Matched filter is a special case of the GLRT

arg max p(ml@ H)
j=1,..,P

é\] grD X p(CE|9,Hj)

ve2;

e GLRT approach extends to any case where
each class can be parameterized with
K parameters

e If mapping from parameters to signal is
well-behaved, then each class forms a
manifold in R



What 1s a Manifold?

“Manifolds are a bit like pornography: hard to define,
but you know one when you see one.”
— S. Weinberger [Lee]

Locally Euclidean topological space

Roughly speaking:
— a collection of mappings of open sets of
RX glued together (“coordinate charts™)

— can be an abstract space, not a subset
of Euclidean space

" e.g., SO3, Grassmannian

Typically for signal processing:
— nonlinear K-dimensional “surface” in signal space RN



Object Rotation Manifold




Up/Down Left/Right Manifold
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Manifold Classification

e Now suppose data is drawn from

one of P possible manifolds: o
'ﬁ“‘j‘ | g
H; : x=m;+n, m,;€ M, "; =,
Q o |
— gt 9

mj = f;(0;) Bgw

e AWGN: nearest manifold classification

arg max p(x|§j,Hj)
j=1,...,P

=argmin ||z — £;(0,)]l2
J=1,...,.F M, /142

0. = argmin ||z — £:(6.)]>
i=nn |z — f;(0;)]]



Compressive Manifold Classification

) ) RV
-« Compressive observations:
H; : x=®(m;+n)
m; & Mj Cl)l
RM



Compressive Manifold Classification

e Compressive observations:

H; : x=®(m;+n)

J
ijMj

e Good news: structure of smooth
manifolds is preserved by random
projection provided

M = O(KlogN)

— distances, geodesic distance, angles, ...

RN
x A‘y
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RM
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._—

[RGB and Wakin, 06]



Stable Manifold Embedding

Theorem:
Let ' c RN be a compact K -dimensional manifold with

N

— condition number 1/t (curvature, self-avoiding) ——R

— volume V
Let @ be a random Mx/N orthoprojector with B g

O log(NVr— e ) 1og(1/p) | Cbl

Then with probability at least 1-p, the following Cba: ‘.ch
statement holds: "' g

For every pair z,y € F,

/1 N\ | | AN A~ ] ~ 1 | N\ | I

\L—€)[|L — Yllo = [|FL — FY|lp X \1LTE) || — Yllo-

[Wakin et al 06]



Manifold Learning
from Compressive Measurements

Laplacian
ISOMAP HLLE Eigenmaps
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The Smashed Filter

e Compressive manifold classification with GLRT
— nearest-manifold classifier based on manifolds

H] : y=<|>(m]—|-n), mJEM] Wy

m; = f;(6;) ’ & M,

arg min — P10
argmin |ly — £;(6,)|l2 o

@
0 =argmin iy — f;(0))ll2 oM, lf ",

0cO; y = Px



Multiple Manifold Embedding

Corollary:
Let M4, ... ,M, C RN be compact K-dimensional manifolds with
N
— condition number 1/t (curvature, self-avoiding) R
— volume V
— min dist(M;,M,) >t (can be relaxed) T ‘.y
..—
Let @ be a random MxIV orthoprojector with
M=0 /KIog(NPVT_le_l) Iog(l/p)\ | l RM
— \" 2 )
. . . by
Then with probability at least 1-p, the following q’jj —0

statement holds:
For every pair z,y € U M;,

(1=e) [lz —yll2 < ||Pz — dyllz < (1+e€) llz —yll>-



Smashed Filter - Experiments

e 3 image classes: tank, school bus, SUV
e /N = 64K pixels

e Imaged using single-pixel CS camera with
— unknown shift
— unknown rotation




Smashed Filter — Unknown Position

e Image shifted at random (K=2 manifold)
e Noise added to measurements

avg. shift estimate error

— identify most likely position for each image class
— 1dentify most likely class using nearest-neighbor test
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Smashed Filter — Unknown Rotation

e Training set constructed for each class with
compressive measurements
— rotations at 10°, 20°, ..., 360° (K=1 manifold)
— 1dentify most likely rotation for each image class
— 1dentify most likely class using nearest-neighbor test

e Perfect classification with —

@) 90

as few as 6 measurements &£,

3 701

] gg 60

e Good estimates of the
]

viewing angle with under 2«

30

10 measurements %20_
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number of measurements M



Conclusions

1 Compressive measurements are
iInformation scalable
reconstruction > estimation > classification > detection

e Smashed filter: dimension-reduced GLRT for
parametrically transformed signals
— exploits compressive measurements and manifold structure

— broadly applicable: targets do not have to have sparse
representation in any basis

— effective for image classification when combined with
single-pixel camera

e Current work

— efficient parameter estimation using multiscale Newton’s method
[Wakin, Donoho, Choi, RGB, 05]

— linking continuous manifold models to discrete point cloud models
[Wakin, DeVore, Davenport, RGB, 05]

— noise analysis and tradeoffs (M/N SNR penalty)

— compressive k-NN, SVMs, ... ]
P dsp.rice.edu/cs
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