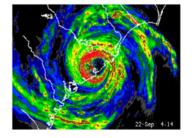
Compressive Sensing for High-Dimensional Data

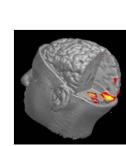
Richard Baraniuk

Rice University dsp.rice.edu/cs

DIMACS Workshop on Recent Advances in Mathematics and Information Sciences for Analysis and Understanding of Massive and Diverse Sources of Data







Pressure is on DSP

• Increasing pressure on signal/image processing hardware and algorithms to support

large numbers of sensors

» multi-view target data bases, camera arrays and networks, pattern recognition systems,

X increasing numbers of modalities

» acoustic, seismic, RF, visual, IR, SAR, ...

deluge of data

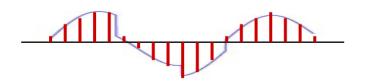
» how to acquire, store, fuse, process efficiently?

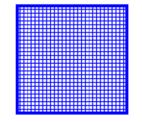
Data Acquisition

- Time: A/D converters, receivers, ...
- Space: cameras, imaging systems, ...

• Foundation: *Shannon sampling theorem*

 Nyquist rate: must sample at 2x highest frequency in signal



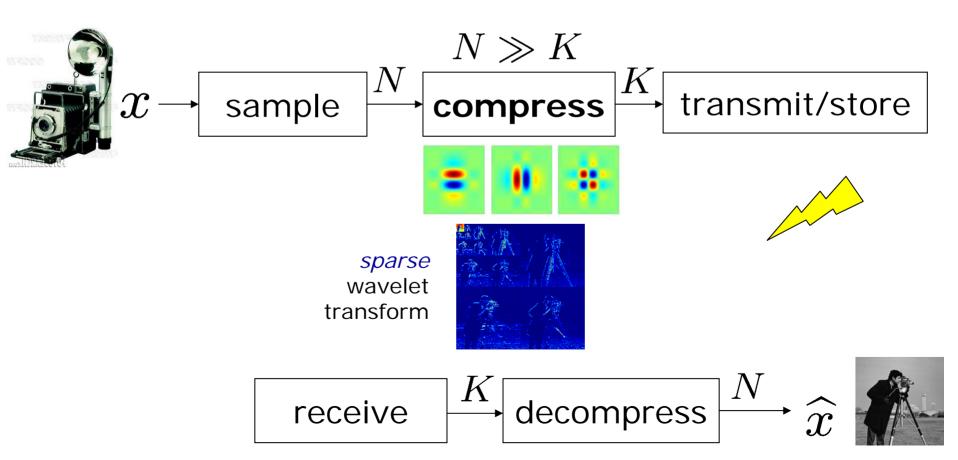


N periodic samples

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - *sample* data
 - *compress* data

(A-to-D converter, digital camera, ...) (signal-dependent, nonlinear)



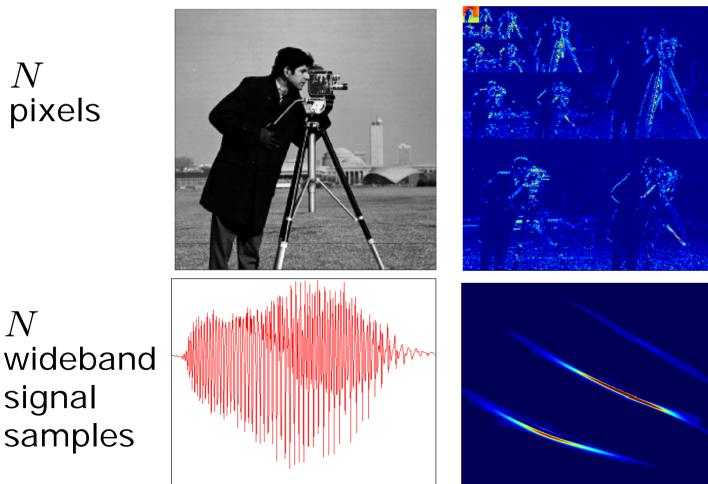
Sparsity / Compressibility

- Number of samples N often too large, so *compress*
 - transform coding: exploit data *sparsity/compressibility* in some representation (ex: orthonormal basis)

Npixels

 \mathcal{N}

signal

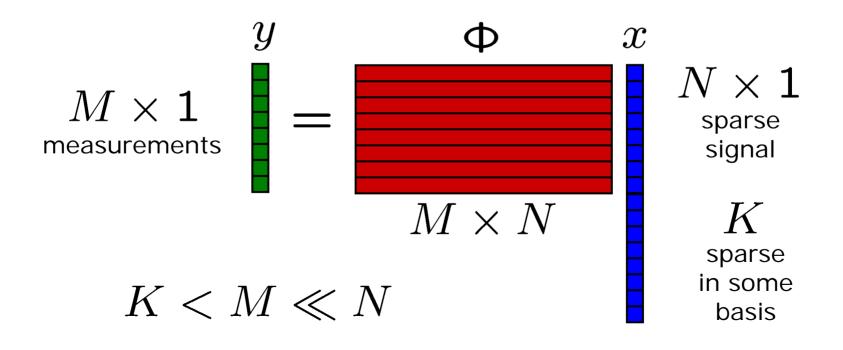


 $K \ll N$ large wavelet coefficients

 $K \ll N$ large Gabor coefficients

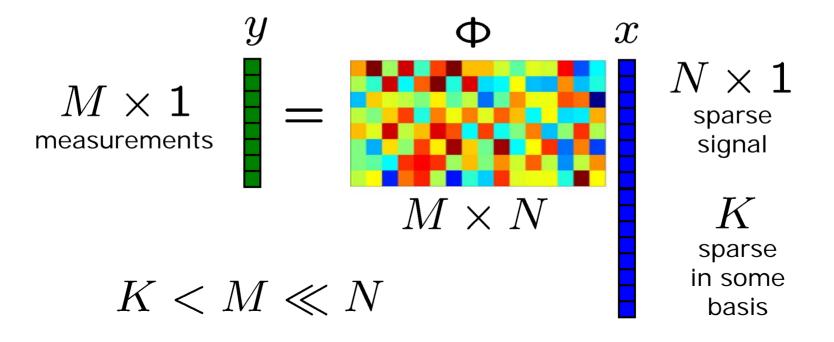
Compressive Data Acquisition

• When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss through *dimensionality reduction* $y = \Phi x$



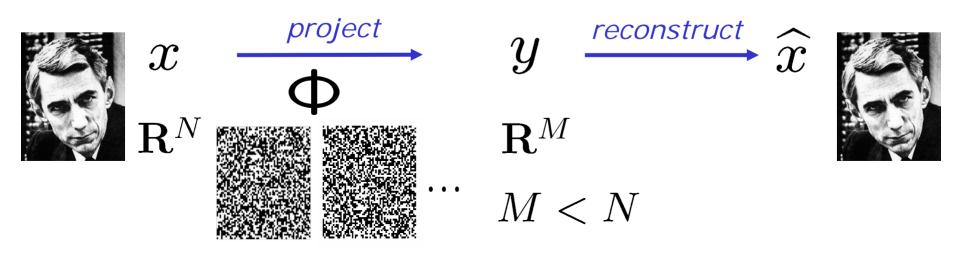
Compressive Data Acquisition

- When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss $u = \Phi x$
- Random projection will work



Compressive Data Acquisition

- When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss $u = \Phi x$
- Random projection preserves information
 - Johnson-Lindenstrauss Lemma (point clouds, 1984)
 - Compressive Sensing (CS) (sparse and compressible signals, Candes-Romberg-Tao, Donoho, 2004)



Why Does It Work (1)?

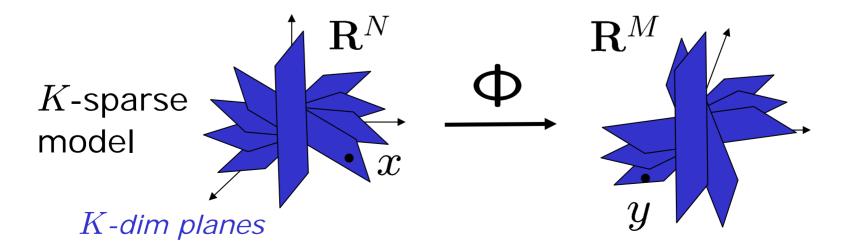
- Random projection not full rank, but stably embeds
 - sparse/compressible signal models (CS)
 - point clouds (JL)

into lower dimensional space with high probability

- Stable embedding: *preserves structure*
 - distances between points, angles between vectors, ...

provided *M* is large enough: Compressive Sensing

$$M = O(K \log(N/K))$$



Why Does It Work (2)?

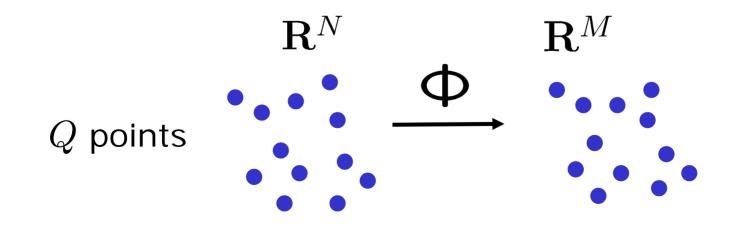
- Random projection not full rank, but stably embeds
 - sparse/compressible signal models (CS)
 - point clouds (JL)

into lower dimensional space with high probability

- Stable embedding: *preserves structure*
 - distances between points, angles between vectors, ...

provided *M* is large enough: <u>Johnson-Lindenstrauss</u>

$$M = O(\log Q)$$



CS Hallmarks

- CS changes the rules of the data acquisition game
 - exploits a priori signal *sparsity* information

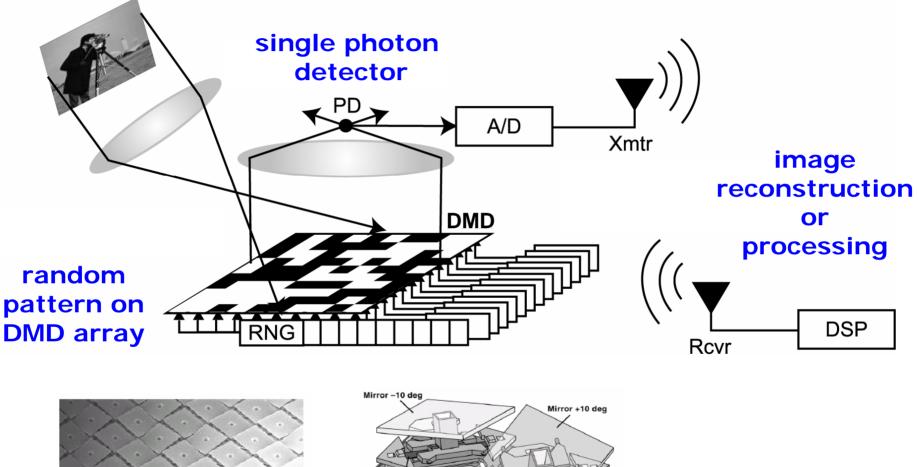
Universal

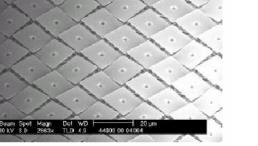
 same random projections / hardware can be used for any compressible signal class
 (generic)

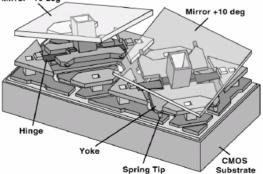
Democratic

- each measurement carries the same amount of information
- simple encoding
- robust to measurement loss and quantization
- Asymmetrical (most processing at decoder)
- Random projections weakly encrypted

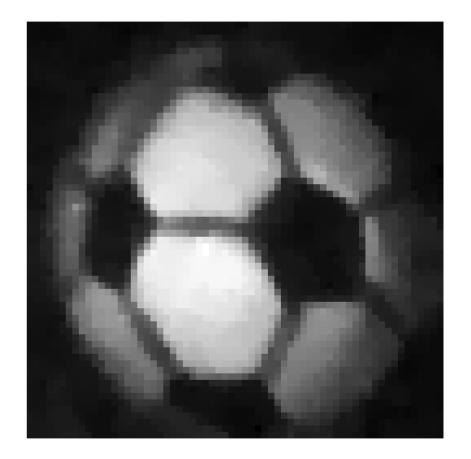
Example: "Single-Pixel" CS Camera







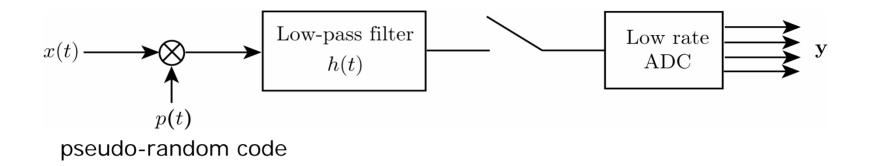
Example Image Acquisition



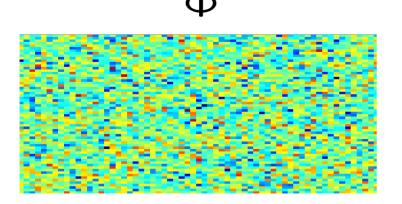
4096 pixels

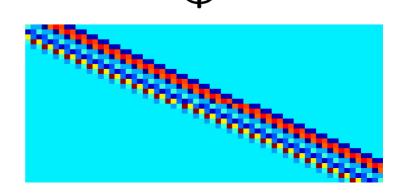
500 random measurements

Analog-to-Information Conversion

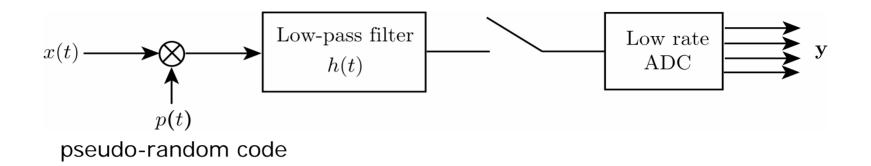


- For real-time, streaming use, Φ can have banded structure
- Can implement in analog hardware

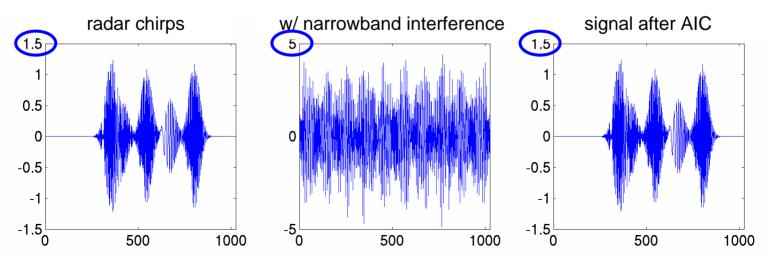




Analog-to-Information Conversion



- For real-time, streaming use, Φ can have banded structure
- Can implement in analog hardware



Information Scalability

- If we can *reconstruct* a signal from compressive measurements, then we should be able to perform other kinds of statistical signal processing:
 - detection
 - classification
 - estimation ...

Multiclass Likelihood Ratio Test

• Observe one of *P* known signals in noise

$$H_1 : x = s_1 + n$$
$$H_2 : x = s_2 + n$$
$$\vdots$$
$$H_P : x = s_P + n$$

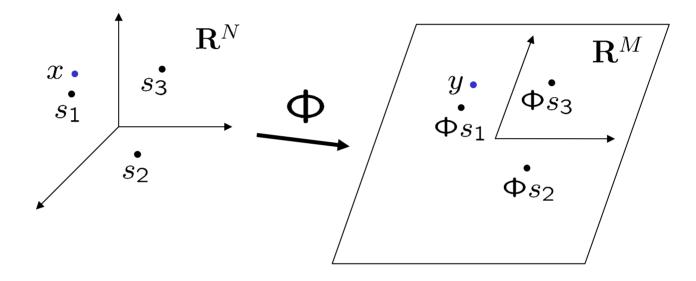
• Classify according to:

$$\underset{j=1,\ldots,P}{\operatorname{arg\,max}} p(x|H_j)$$

• AWGN: *nearest-neighbor* classification $\underset{j=1,...,P}{\operatorname{arg\,min}} \|x - s_j\|_2 \qquad \begin{array}{c} x \cdot \\ s_1 \\ s_1 \\ s_2 \end{array} \qquad \begin{array}{c} s_2 \\ s_2 \end{array}$

Compressive LRT

• Compressive observations: H_j : $y = \Phi(s_j + n)$



$$t_{1} = \|y - \Phi s_{1}\|_{2}$$

$$t_{2} = \|y - \Phi s_{2}\|_{2}$$

$$t_{3} = \|y - \Phi s_{3}\|_{2}$$

by the JL Lemma
these distances
are preserved (*)

[Waagen et al 05; RGB, Davenport et al 06; Haupt et al 06]

Matched Filter

• In many applications, signals are *transformed* with an unknown parameter; ex: translation

$$H_j$$
: $x = s_j(t - \theta_j) + n$

 Elegant solution: *matched filter* Compute

Challenge: Extend compressive LRT to accommodate *parameterized signal transformations*

Generalized Likelihood Ratio Test

Matched filter is a special case of the GLRT

$$\underset{j=1,\ldots,P}{\operatorname{arg\,max}} p(x|\widehat{\theta}_j,H_j)$$

$$\widehat{\theta}_j = \underset{\theta \in \Theta_j}{\operatorname{arg\,max}} p(x|\theta, H_j)$$

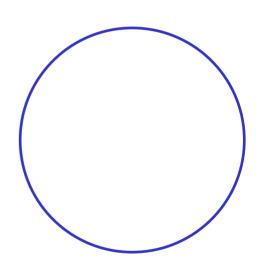
- GLRT approach extends to any case where each class can be *parameterized* with *K* parameters
- If mapping from parameters to signal is well-behaved, then each class forms a manifold in ${\bf R}^N$

What is a Manifold?

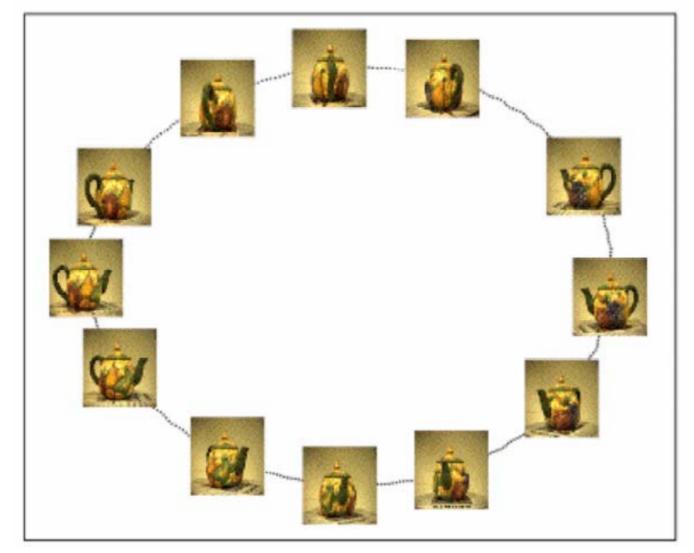
"Manifolds are a bit like pornography: hard to define, but you know one when you see one."

– S. Weinberger [Lee]

- Locally Euclidean topological space
- Roughly speaking:
 - a collection of mappings of open sets of R^{K} glued together ("coordinate charts")
 - can be an abstract space, not a subset of Euclidean space
 - e.g., SO3, Grassmannian
- Typically for signal processing:
 - nonlinear K-dimensional "surface" in signal space R^N

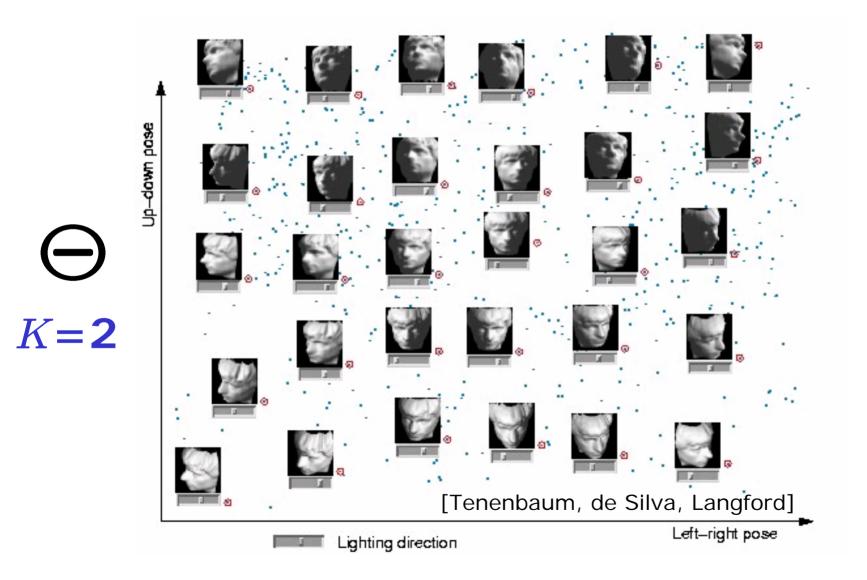


Object Rotation Manifold



⊖ *K*=1

Up/Down Left/Right Manifold



Manifold Classification

• Now suppose data is drawn from one of *P* possible manifolds:

$$H_j$$
 : $x = m_j + n, \quad m_j \in M_j$
 $m_j = f_j(\theta_j)$

M

x

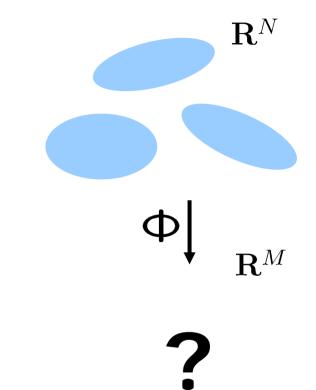
• AWGN: nearest manifold classification arg max $p(x|\hat{\theta}_j, H_j)$ j=1,...,P $= \underset{j=1,...,P}{\operatorname{arg min}} \|x - f_j(\hat{\theta}_j)\|_2$ M_3

$$\widehat{\theta}_j = \underset{\theta \in \Theta_j}{\operatorname{arg\,min}} \|x - f_j(\theta_j)\|_2$$

Compressive Manifold Classification

• Compressive observations:

$$H_j$$
: $x = \Phi(m_j + n)$
 $m_j \in M_j$



Compressive Manifold Classification

Compressive observations:

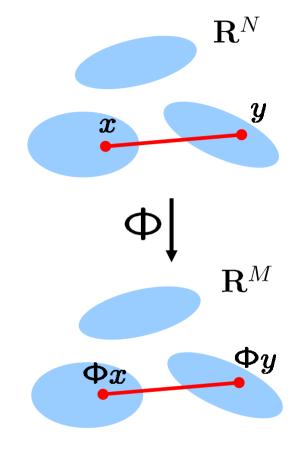
$$H_j$$
: $x = \Phi(m_j + n)$
 $m_j \in M_j$

 Good news: structure of smooth manifolds is preserved by random projection provided

$$M = O(K \log N)$$

- distances, geodesic distance, angles, ...

[RGB and Wakin, 06]



Stable Manifold Embedding

Theorem:

Let $F \subset \mathbb{R}^{N}$ be a compact <u>K-dimensional manifold</u> with

– condition number $1/\tau$ (curvature, self-avoiding)

- volume V

Let Φ be a random MxN orthoprojector with

$$\underline{M} = O\left(\frac{K\log(NV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right)$$

Then with probability at least $1-\rho$, the following statement holds:

For every pair x, $y \in F$,

$$(1-\epsilon) ||x-y||_2 \le ||\Phi x - \Phi y||_2 \le (1+\epsilon) ||x-y||_2.$$

[Wakin et al 06]

 \boldsymbol{x}

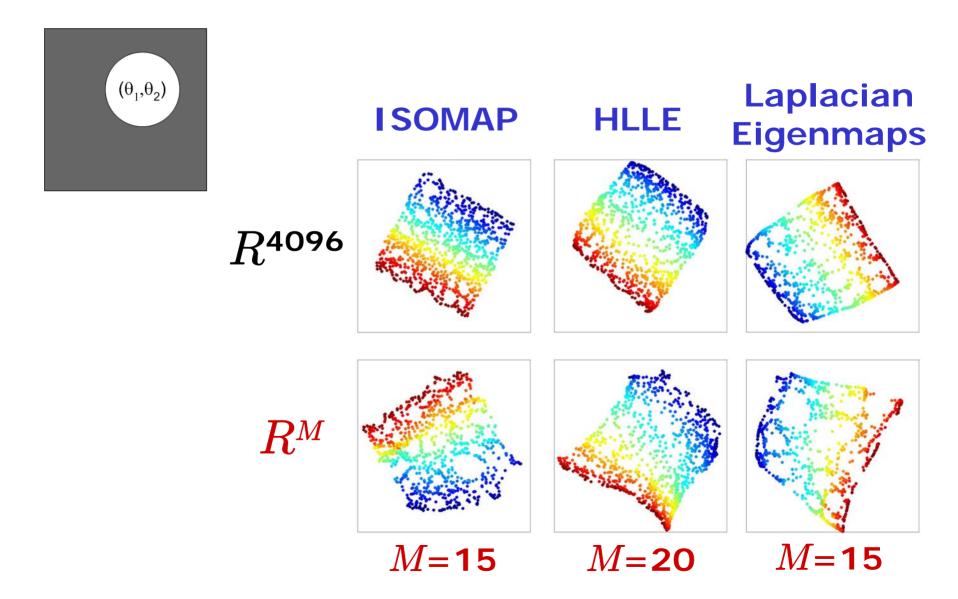
 Φx

 \mathbf{R}^N

 \mathbf{R}^{M}

 Φy

Manifold Learning from Compressive Measurements



The Smashed Filter

• Compressive manifold classification with GLRT

nearest-manifold classifier based on manifolds

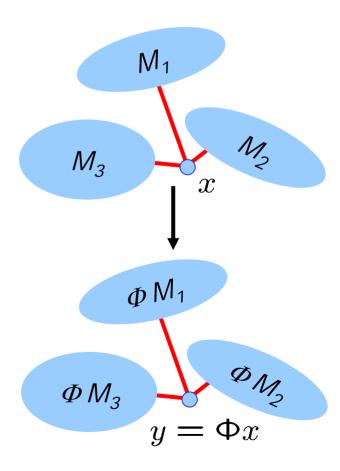
$$\Phi M_j = \{ \Phi f_j(\theta_j) : \theta_j \in \Theta_j \}$$

$$H_j$$
: $y = \Phi(m_j + n), \quad m_j \in M_j$
 $m_j = f_j(\theta_j)$

arg min
$$||y - \Phi f_j(\hat{\theta}_j)||_2$$

 $j=1,...,P$

$$\widehat{\theta}_j = \underset{\theta \in \Theta_j}{\operatorname{arg\,min}} \|y - \Phi f_j(\theta_j)\|_2$$



Multiple Manifold Embedding

 \mathbf{R}^N

Y

 \mathbf{R}^{M}

 Φy

 \boldsymbol{x}

 Φx

Corollary:

Let $M_1, ..., M_P \subset R^N$ be compact K-dimensional manifolds with

- condition number $1/\tau$ (curvature, self-avoiding)
- volume V
- min dist $(M_{j'}M_k) > \tau$ (can be relaxed)

Let Φ be a random MxN orthoprojector with

$$M = O\left(\frac{K\log(NPV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right)$$

Then with probability at least $1-\rho$, the following statement holds:

For every pair $x, y \in \bigcup M_{j'}$

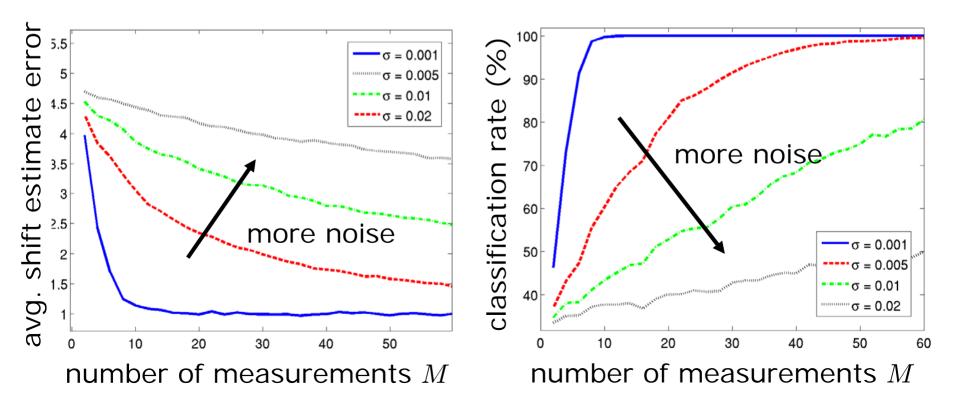
$$(1-\epsilon) ||x-y||_2 \le ||\Phi x - \Phi y||_2 \le (1+\epsilon) ||x-y||_2.$$

Smashed Filter - Experiments

- 3 image classes: tank, school bus, SUV
- N = 64K pixels
- Imaged using single-pixel CS camera with
 - unknown shift
 - unknown rotation

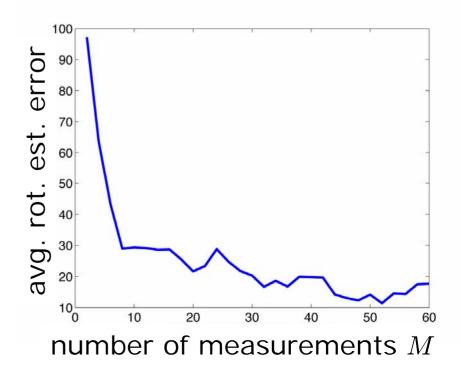
Smashed Filter – Unknown Position

- Image shifted at random (K=2 manifold)
- Noise added to measurements
 - identify most likely position for each image class
 - identify most likely class using nearest-neighbor test



Smashed Filter – Unknown Rotation

- Training set constructed for each class with compressive measurements
 - rotations at 10° , 20° , ..., 360° (K=1 manifold)
 - identify most likely rotation for each image class
 - identify most likely class using nearest-neighbor test
- *Perfect* classification with as few as 6 measurements
- Good estimates of the viewing angle with under 10 measurements



Conclusions

 Compressive measurements are information scalable

reconstruction > estimation > classification > detection

- Smashed filter: dimension-reduced GLRT for parametrically transformed signals
 - exploits compressive measurements and manifold structure
 - broadly applicable:

targets do not have to have sparse representation in any basis

- effective for image classification when combined with single-pixel camera
- Current work
 - efficient parameter estimation using multiscale Newton's method [Wakin, Donoho, Choi, RGB, 05]
 - linking continuous manifold models to discrete point cloud models [Wakin, DeVore, Davenport, RGB, 05]
 - noise analysis and tradeoffs (*M*/*N* SNR penalty)
 - compressive k-NN, SVMs, ...

dsp.rice.edu/cs