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Compressed Sensing on the Web

Discovery and Initial Papers

8 Froranuel Candés, Justin Rotmberg and Terence Tao, Robust Uncertainty Principles: Exact Signal Reconstruction fromn d - d / C S /
Highly Incomplete Frequency Information. (IEEE Trans. on Information Theoty, 52(2) pp. 489 - 509, Feh. 2006) WWW . S p . ece . rl Ce . e u
B Emmmatiiel Candés and Justin Romberg, Quantitative Robust Uncertainty Principles and Optimally Sparse

Decompositions. {To appear in Foundations of Computational IMathermatics) I I t 6 O
8 Emmanuel Candés and Terence Tao, Near Optimal Signal Recovery From Random Projections: Universal Encoding I S S Ove r p a p e rS
Strategies? (To appear in IEEE Trans. on Information Theory)

B Dayid Donoho, Compressed Sensing. (IEEE Trans. on Information Theory, 5204), pp. 1289-1306, April 2006) O n b C O m p reSS ed

Compressed Sensing in Practice

- th
Practical Signal Recovery Se nS I ng "

= Fromanuel Candés and Justin Fomberg, Practical Signal Recovery from Random Projections. (Preprint, Jan. 2005)

= Diayid Donoho and Yaakov Tsalg, Extensions of Compressed Sensing, (Signal Processing, 86(3), pp. 533-548, March 20068.)

® Joel Tropp and Anna Gilbert, Signal Recovery From Partial Information Via Orthegonal Matching Pursuit. (Preprint,
2005)

& Narco Duarte, IWichael Wakin and Richard Baraniul, Fast Eeconstiuction of Piecewise Smooth Signals from Random
Projections. (Proc. SPARS Workshop, Nov. 2005)

= Chinh La and Minh Do, Sienal Reconstruction using Sparse Tree Representations. (Proc. SPIE Wawelets X1, Sep. 2005)

® (3abriel Peyré, Best Basis Compressed Sensing. (Preprint, 20067 [See also related conference publication: NewroCornp 2006]

® Nichael Flad, Optimized Projections for Cowmpressed Sensing. (Preprint, 20063

Compressed Sensing in Noise

B Jaryizs Haupt and Fob Nowalk, Sional Reconstiuction from Noisy Random Projections. (IEEE Trans. on Information Theory,
520, pp. 4036-4048, Sep. 2006}

8 Fromanuel Candés, Justin Romberg and Terence Tao, Stable Signal Recovery from Incomplete and Inaccurate
Measurements. (Communications on Pure and Applied IWathematics, 59(8), pp. 1207-1223, Aug. 2006)

8 Fromaniel Candés and Terence Tao, The Dantzig Selector: Statistical Estimation When p is Much Larger Thann (To
appear in Annals of Statistics)

® Shriram Sarvotham, Dror Baron and Richard Baraniul, Measurements vs. Bits: Compressed Sensing Meets Informnation
Theory. (Proc. Forty-Fourth Anmual Allerton Conference on Commmunication, Control, and Computing, MWonticello, IL, Sep.
2006}

= Nartin J. Watnwright, Shaip Thresholds for High-Dimensional and Noisy Recovery of Sparsity (Froc. Forty-Fourth Antnaal
Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sep. 2006)

Foundations and Connections

Coding and Information Theory

= Fromanuel Candés and Terence Tao, Decoding by Linear Programaning. ([FEE Tranz. on Information Theory, 310123), pp.
4203-4215, Dec. 2005)

m Frarmarmisl Mandée and Terence Tan Frone Corraction 11a Tanaar Pracramnming (Prenvint 005N
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So... what is Compressed Sensing?

Will introduce the CS problem and initial results

Outline the (pre)history of Compressed Sensing
Algorithmic/Combinatorial perspectives and new results
Whither Compressed Sensing?



Signal Processing Background

m Digital Signal Processing / Capture:

Digitize signal:

capture n >

samples

{7

Quantize coefficients,
encode and store

!

Losslessly
transform into
appropriate basis
(eg FFT, DCT)

Pick k < n
coefficients to
represent signal
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DSP Simplified

[ !
Discrete signal A
of dimension n

Select k <« n coefficients
to represent signal

m Observation: we make n measurements, but only end up
storing k pieces of information

m What if measurements are very costly,
— E.g. each one requires a separate hardware sensor
- E.g. Medical imaging, patient is moved through scanner

m (Also, why do whole transform?, sometimes expensive)
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The Compressed Sensing Credo

\{I,
A
¥ A = Compressed |A| = |y
sensing

m Only measure (approximately) as much as is stored

m Measurement cost model:
— Each measurement is a vector y; of dimension n
— Given y; and signal (vector) A, measurement =y, - A=y,
— Only access to signal is by measuring
— Cost is number of measurements
m Trivial solution: y; = 1 at location i, 0 elsewhere
— (Gives exact recovery but needs n measurements



L1
Error Meltric

m Let R* be a representation of A with k coefficients

m Define “error” of representation Rxas sum squared
difference between Rk and A: ||R* - A||,2

m Picking k largest values minimizes error
— Hence, goal is to find the “top-k”
m Denote this by R¥,, and aim for error ||[R¥,, — A||,2
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“The” Compressed Sensing Result

Recover A “well” if A is “sparse” in few measurements
— “well” and “sparse” to be defined later

Only need O(k log n/k) measurements

m Each y[j] is drawn randomly from iid Gaussian
m Set of solutions is all x such that yx =y
m QOutput A’ = argmin ||x||, such that yx =y

— Can solve by linear programming
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Why does it work?

[Donoho 04, Candes-Tao 04, Rudelson-Vershynin 04...]
m Short answer: randomly chosen values ensure a set of
properties of measurements y will work

— The unexpected part: working in the L, metric optimizes
error under L,? with small support (“L, metric”).

— y works for any vector A (with high probability)
— Other measurement regimes (eg Bernoulli 1)

m Long answer: read the papers for in-depth proofs that v
has required properties (whp) and why they suffice

— E.g. bounds on minimal singular value of each submatrix
of v up to certain size

10
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Sparse signals

m How to model signals well-represented by k terms?

— p-compressible: sorted coefficients have
a power-law like decay: [0 = O(i""’P). II
So [|R*pAll,* = O(k'#P) = ||CkoP!||,2

- a=exponentially decaying:
even faster decay |6,| = O(2°%).

- general: no assumptions on ||R*  — A||,.

m (After an appropriate transform) many real signals
are p-compressible or exponentially decaying.
k-support is a simplification of this model.

— k-support: signals that have k non-zero
coefficients under ¥. So ||R*,; — All,*=0

11
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Sparse Signals

Original CS results apply principally to k-support and p-
compressible signals.

m [hey guarantee exact recovery of k-support signals

m [hey guarantee “class-optimal” error on p-compressible
- ”Rkopt_A”22 - O(k1-2/p) = ”CkOpt”Z2
- May not relate to the best possible error for that signal
— (Algorithm does not take p as a parameter)

i -

k-support p-compressible

12
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Prehistory of Compressed Sensing

Related ideas have been around for longer than 2 years...

m Main results evolved through a series of papers on “a
generalized uncertainty theorem” (Donoho/Candes-Tao...)

m Mansour 1992: “Randomized approximation and interpolation
of sparse polynomials” by few evaluations of polynomial.
— Evaluating a polynomial is dual of making a measurement

— Algorithmic ldea: divide and conquer for the largest
coefficient, remove it and recurse on new polynomial .\.

— Can be thought of as ‘adaptive group testing’,
but scheme is actually non-adaptive

13



More Prehistory

14

Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss (and
subsets thereof) worked on various fourier and wavelet
representation problems in data streams

Underlying problems closely related to Compressed
Sensing: with restricted access to data, recover k out of
n representatives to accurately recover signal (under L,)

Results are stronger (guarantees are instance-optimal)
but also weaker (probabilistic guarantee per signal)

Underlying technique is (non-adaptive) group testing.



]
Group Testing

Given 9 coins, one
heavier than rest,
find in 2 weighings

m Break items (signal values) into groups
m Measure information on groups using binary vectors
— Interpret results as positive or negative
m Recover identity of “heavy” items, and their values
m Continue (somehow) until all coefficients are found
— General benefit: decoding tends to be much faster than LP

15
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Trivial Group Testing

m Suppose A is 1-support signal (i.e. zero but for one place)

m Adaptive group testing: measure first half and second half,
recurse on whichever is non-zero

m Non-adaptive: do in one pass using Hamming matrix H
— log 2n x n matrix: log 2n measurements (17111111 1

— The iI'th column encodes i in binary 11110000

— Measure A with H, read off location 11001100
10101010

of the non-zero position, and its value

m Hamming matrix often used in group testing for CS

— If a group has one large value and the rest “noise”,
using H on the group recovers item

16
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Group Testing

¢ ) (] ) ’

From [C, Muthukrishnan 05], which specifically applies group
testing to Compressed Sensing:

m From O(c k/e? log® n) measurements, with probability at
least 1 - n¢, and in time O(c? k/e? log® n) we find a
representation R* of A so ||R* — A||,2 < (T1+g) [|R*,p — Alf2?
(instance optimal) and R has support k.

m Randomly break into groups so not too many items fall in
each group, encode as binary measurements using H

m Show good probability for recovering k largest values
m Repeat independently several times to improve probability

17
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More Group Testing Results

m [Gilbert, Strauss, Tropp, Vershynin 06] develop new
approaches with iterative recovery from measurements

— Aiming for stronger “one set of measurements for all”
— Must restate bounds on quality of representation
— See next talk for full details!
m [Savotham, Baron, Baraniuk 06] use a more heuristic group
testing approach, “sudocodes”
— Make groups based on random divisions, no H
— Use a greedy inference algorithm to recover

— Seems to work pretty well in practice, needs strong
assumptions on non-adversarial signals to analyze

18



]
Combinatorial Approaches

m A natural TCS question: if measurement sets exist which
are good for all signals, can we construct them explicitly?

m Randomized Gaussian approach are expensive to verify —
check complex spectral properties of all (N,) submatrices

m Do there exist combinatorial construction algorithms that
explicitly generate measurement matrices for CS?

— In n poly(log n,k) time, with efficient decoding algs.

19
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K-support algorithms

m Achieve O(k? poly(log n)) measurements for k-support
based on defining groups using residues modulo k log n
primes > k [Muthukrishnan, Gasieniec 05]

— Chinese remainder theorem ensures each non-zero value
Isolated in some group

— Decode using Hamming matrix

m Apply k-set structure [Ganguly, Majumdar 06]
— Leads to O(k? poly(log n)) measurements
— Use matrix operations to recover
— Decoding cost somewhat high, O(k3)

20
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More k-support algorithms

m Using “k-strongly separating sets” (from explicit
constructions of expanders) [C, Muthukrishnan 06]

— Similar isolation guarantees yield O(k? log? n)
measurements

m [Indyk'06] More directly uses expanders to get
O(k20(oglog n)®) = OQ(kn®) for oe>0 measurements

— Bug Piotr to write up the full details...

Open question: seems closely related to coding theory on
non-binary vectors, how can one area help the other

— Problem seems easier if restricted to non-negative signals

21
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p-Compressible Signals

Explicit construction for p-compressible signals based on
group testing [C, Muthukrishnan 06]

Approach: use two parallel rounds of group testing to find
K’ > k large coefficients, and separate these to allow
accurate estimation.

m Make use of K-strongly separating sets:

- S={S,...S,} m=0(k?log?n)
For X C[n], [ X| <k, VxeX. 35 €S.S NX={x}

— Any subset of k items has each member isolated from k-1
others in some set

22
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First Round

m Use K’ strongly separating sets to identify superset of
K" largest coefficients.

m k' chosen based on p to ensure total “weight” of tail is
so small that we can identify the k largest

m Combine groups with matrix H to find candidates

L. . 0. 0@ Lﬁﬂ @ top-kitem (k=3)
@ top-k’ item (k’=6)

Lﬁ' A&Lj’ o  K-tail item

% At most poly(k’, log n) candidates @

23
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Second Round

L° N “.jz.._LJ_.L!L @ Atmost C = poly(k’, log n)
b candidates

.|e ﬂ o

.. @@ E. AR

m Use more strongly separating sets to separate out the
candidates. (only need to know bound on C in advance)

m Get a good estimate for each coefficient: find a group it
IS Isolated in, and use measurement of that group

— can bound error in terms of ¢, k, ||C,°FY||,2

24
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Picking k largest

m Pick approximate k largest, and argue that coefficients
we pick are good enough even if not the true k largest.

m Set up a bijection between the true top-k and the approx
top-k, argue that the error cannot be too large.

z ? ? z ? True top-k
Approx top-k
o o O PP P
(bounded error)

m Careful choice of k and k™ gives error that is
IR = Allp? < [[R¥op — All* + €] CkoP|[?
m Thus, explicit construction using O((kelO)‘““'If>)2Iog4 n)
(poly(k,log n) for constant O < p < 1) measurements.

Open problem: Improve bounds, remove dependency on p

25
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New Directions

Universality

Error Resilience

Distributed Compressed Sensing
Continuous Distributed CS
Functional Compressed Sensing
Links to Dimensionality Reduction
Lower Bounds

26
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Universality

Often want to first transform the signal with T
So we compute (yT)A = y(TA)
What if we don’t know T till after measuring?

If v is all Gaussians, we can write y = y'T, where v’ is
also distributed Gaussian

We can solve to find " and hence decode (probably)
m Only works for LP-based methods with Gaussians.

Open question: is there any way to use the group testing
approach and obtain (weaker) universality?

27
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Error Resilience

m Various models of (random) errors:
— signal is distorted by additive noise 4+ AN
— certain measurements distorted by noise

— certain measurements lost (erased) entirely

m P techniques and group testing techniques both
naturally and easily incorporate various error models

Open problem: extend to other models of error.
More explicitly link CS with Coding theory.

28
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Distributed Compressed Sensing

m Slepian-Wolf theorem: two correlated sources can be
coded to use a total bandwidth proportional to their joint
entropy without direct communication between two

m Apply to CS: consider correlated signals seen by multiple
observers, they send measurements to a referee
— Aim for communication proportional to CS bound

— Different correlations: sparse common signal plus
sparse/dense variations, etc Initial results in [Baraniuk+ 05]

Open Problem: other arbitrary network graphs?
29
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Continuous Distributed CS

m Different setting: each site sees part of a signal, want to
compute on sum of the signals

m [hese signals vary “smoothly” over time, efficiently
approximate the signal at coordinator site

m Statement and initial result in [Muthukrishnan 06]

Track A +...+A

local signal(s)
seen at each
site

e = A
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Functional Compressed Sensing

Wi = (W)

m |n “traditional” CS, goal is accurate reconstruction of A
m Often, this is then used for other purposes

m Remember CS credo: measure for final goal

— E.g. suppose we want to compute equidepth histograms,
why represent A then compute histogram?

- Instead, design measurements to directly compute function
m |nitial results: quantiles on A[i]? [Muthukrishnan 06]

— Different to previous sublinear work: need “for all” properties

— Results in [Ganguly, Majumder 06] also apply here

31
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Links to dimensionality reduction

AR S

m Johnson-Lindenstrauss lemma [JL 84]: Given a set of m
points in n-dimensional Euclidean space, project to O(log
m) dimensions and approximately preserve distances

— Projections often via Gaussian random vectors
— Intuitively related to CS somehow?

m [Baraniak et al 06] use JL-lemma to prove the “Restricted

Isometry Property” needed to show existence of CS
measurements

Open problem: further simplify CS proofs, use tools such as
., JL lemma and other embedding-like results



L1
Lower Bounds

m Upper bounds are based on precise measurements
m But real measurements are discrete (encoded in bits)

Open Problems:
m What is true bit complexity needed by these algorithms?
m What is a lower bound on measurements needed?
- Q(k) or Q(k log k/n)?
m How to relate to DSP-lower bounds: Nyquist bound etc.?

m LP formulation is over-constrained, can it be solved
faster?
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Conclusions

A simple problem with a deep mathematical foundation
Many variations and extensions to study
Touches on Computer Science, Mathematics, EE, DSP...

May have practical implications soon (according to the
press)
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