Semi-supervised Learning

Anil K. Jain

(with Rong Jin, Pavan Mallapragada and Yi Liu) Department of Computer Science and Engineering Michigan State University

Semi-supervised Learning

Why Semi-supervised Learning?

- Data labeling is expensive and difficult
 - Remote sensing
 - Labeling large images at pixel level
- Labeling is often unreliable
 - Disagreement among experts
- Unlabeled examples
 - Easy to obtain in large numbers
 - e.g. webpage classification, bioinformatics, nondestructive inspection, image classification

Problem

- Classification
 - Use unlabeled data to improve classifier performance (SemiBoost)
- Clustering
 - Use labeled points or pairwise constraints to find natural groupings (BoostCluster)

No. of labeled points << no. of unlabeled points

Chapelle, Scholkopf and Zien (eds.), Semi-Supervised Learning, 2006

Is unlabeled data useful?

- In general yes, but not always
- Classification error reduces
 - Exponentially with labeled examples
 - Linearly with unlabeled examples (Castelli and Cover, IEEE Inf. Th., 1996)
- Capacity of labeled samples
 - How many unlabeled points can a given labeled set accommodate?
- Several specialized semi-supervised learning algorithms are available

SemiBoost

- Improve the performance of any supervised classifier using unlabeled data
- Graph based approach defines consistency between similarity matrix and assigned labels
- Boosting allows us to incorporate the given classifier in minimizing the objective function

Boosting

Improve the performance of a supervised classifier

 Train successive component classifiers with a subset of unlabeled samples that is "most informative"; use the ensemble classifier

AdaBoost

Use true labels to select the subset

SemiBoost

Define "consistency" of unlabeled samples to select the subset and to assign class labels

Objective Function

Unlabeled samples close to each other have similar labels; unlabeled samples near labeled samples share the same label; S= similarity matrix

Unlabeled sample energy

$$F_u(\mathbf{y}_u, S) = \sum_{ij} S_{i,j} \exp(y_i^u - y_j^u) \quad \mathbf{k}$$

Labeled sample energy

"Exponential linear" in yu

$$F_l(\mathbf{y}, S) = \sum_{i=1}^{n_l} \sum_{j=1}^{n_u} S_{i,j} \exp(-2y_i^l y_j^u).$$

Minimize total energy

$$F(\mathbf{y}, S) = F_l(\mathbf{y}, S) + CF_u(\mathbf{y}_u, S).$$

C is the ratio of no. of labeled samples to no. of unlabeled samples

Solution

- Replace y^u in the energy function with an ensemble classifier prediction
- Form of component classifier is given (decision tree, SVM)
- Use boosting to learn component classifiers and weights
- Output is a classifier that learns from both labeled and unlabeled examples

SemiBoost Performance

Dataset	n	d	SVM	SB-SVM
Wdbc	569	14	75.5 (5.7)	91.0 (3.5)
Isolet	600	51	90.8 (3.7)	94.8 (3.3)
Optdigits	1143	42	87.8 (2.3)	95.9 (2.6)
Heart	270	9	68.4(6.7)	77.7 (3.5)
Same-300	199	20	68.3 (6.5)	70.4 (9.1)

SVM is trained on 5 labeled samples per class; two most populated classes only; standard deviation based on runs with 10 different training sets of 5 samples/class

SemiBoost: Inductive Performance

wdbc (UCI dataset): 569 samples; 14 features; 2 classes;

50% Training, 50% Testing; 5 labeled samples/class. Base classifier: SVM

BoostCluster

- A framework to improve any given clustering algorithm using pairwise constraints
- Basic Idea: Find a new data representation that encodes
 - the pairwise constraint information
 - the behavior of the underlying clustering algorithm.
- Boosting framework "BoostCluster"

Boost Cluster Data examples S-dim New data Rep Pairwise **Subspace** in subspace. **Constraints** Projection Kernel Clustering Algorithm Matrix (n x n) Clustering **Results** Clustering Algorithm New data representation is adapted to Final Results

clustering results and given constraints

Example

"Scale" data; 625 samples, 4 dimensions and 3 clusters

BoostCluster Performance

Basu, Bilenko and Mooney, A probabilistic framework for semi-supervised clustering, SIGKDD'04

BoostCluster Performance

Performance under noisy constraints (flip labels of 20% of randomly selected constraints)

- Semi-supervised learning is useful in situations where large amounts of data is readily available, but labeling the data is difficult
- Boosting-based framework is used to improve the performance of a classifier or clustering algorithm
- Experimental results show good performance improvement for a large variety of datasets
- Challenges: multiclass extension of SemiBoost; estimate the no. of clusters