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Abstract—We construct a graphical framework for repre-
senting seven well-known anonymity metrics, including the one
based on Shannon entropy, and show that all of these metrics
sometimes err, as they base their anonymity level measurements
on just some small piece of information contained in a proba-
bility distribution, while ignoring other useful information. We
thereby make a case for taking all information into consider-
ation in arriving at the degree of anonymity associated with a
probability distribution. Such a comprehensive approach shows
more promise of always resulting in correct measurement.
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I. INTRODUCTION

Suppose an attack attempts to determine the sender of
a message M going via an anonymity system with users
u1, u2, . . . , un. Let D = 〈d1, d2, . . . , dn〉 be the distribution
resulting from the attack, where each di is the probability of
ui being the sender of M . All values in D are real numbers
in the closed interval [0, 1], and their sum is 1. Let ∆n be the
set of all distributions of length n. Two special distributions
in ∆n, namely

n̂ = 〈1, 0, 0, . . . , 0〉, and n = 〈 1n ,
1
n , . . . ,

1
n 〉,

are of interest. The distribution n̂ corresponds to no remain-
ing anonymity, and n corresponds to full anonymity.

Structures at the core of our graphical framework are two
related profiles, namely the base-profile of D, BD : R→ R,
and the norm-profile of D, ND : R→ R, defined as:

BD(x) =
∑n
i=1 d

x
i , and ND(x) = (BD(x))

1/x
.

These profiles arise from a generalization of the concept of
distance between points in the space Rn, and are described
in detail in Bagai and Jiang [2]. Figure 1 shows some
properties of Nn̂(x), Bn̂(x), Bn(x), and profiles BD(x) and
ND(x), for an arbitrary D ∈ ∆n. It also depicts that the
slopes of BD(x) and ND(x) are identical at x = 1.

Our main observation of the profiles of any distribution
D ∈ ∆n is the following:

Observation A: BD(x) = Bn̂(x) corresponds to no
anonymity, and BD(x) = Bn(x) corresponds to full
anonymity. As the anonymity level underlying D in-
creases, the base-profile BD(x) moves from Bn̂(x) to
Bn(x). Similarly, for norm-profile ND(x).
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Figure 1. Profiles Nn̂(x), Bn̂(x), Bn(x), along with profiles BD(x) and
ND(x), for an arbitrary D ∈ ∆n.

In order to accurately measure the anonymity level under-
lying D, it is essential to measure how “close” the entire
curve BD(x) is to that of Bn(x), i.e. over all values x ≥ 1.

II. EXISTING ANONYMITY METRICS

Well-known anonymity metrics, for a given distribution
D, essentially attempt to measure the closeness of the curves
BD(x) and Bn(x) by just looking at some local portions
of BD(x). This can be seen by representing each of these
metrics in our graphical framework, as summarized below:

Anonymity set size metric of Chaum [3]: Number of users
in the system, n, in our framework, is BD(0).

Reduced anonymity set size metric of Kesdogan, Eg-
ner and Büschkes [7]: Number of users in the system
with a nonzero probability in D, in our framework, is
limx→0 BD(x).

Shannon entropy based metric of Serjantov and Danezis
[8]: This metric can be shown to be the negation of the
slope of profiles BD(x) and ND(x), at x = 1, as follows:
S(D) = −

∑n
i=1 di log di = −B′D(1) = −N′D(1).

Normalized Shannon entropy based metric of Diaz et
al. [6]: This metric can be shown to be the ratio of slope
of profiles of D and n, at x = 1, as follows: d(D) =
S(D) / log n = B′D(1) /B′n(1) = N′D(1) /N′n(1).

Maximal probability metric of Tóth, Hornák and Vajda
[9]: Largest probability in D, namely maxni=1 di, can be
shown in our framework to be limx→∞ ND(x).



Rényi entropies based metric family of Clauß and
Schiffner [5]: This parametric family of metrics, given by
Rα(D) = 1

1−α log
∑n
i=1 d

α
i , where α ∈ [0, 1) ∪ (1,∞)

is a real-valued parameter of the family, has as its max-
imum value R0(D) = log n = −B′n(1) = −N′n(1). Its
minimum value is limα→∞Rα(D) = −B′

1/MAX (D)
(1) =

−N′
1/MAX (D)

(1), where for any real value µ > 0, we define
Bµ(x) = 1/µx−1, and Nµ(x) = (Bµ(x))1/x.

Euclidean distance metric of Andersson and
Lundin [1]: The Euclidean distance between D and
n, given by

√∑n
i=1

(
di − 1

n

)2
, can be shown to be√

BD(2)− limx→∞ Nn(x).

III. SHORTCOMINGS OF EXISTING METRICS

By placing the existing metrics in our graphical frame-
work, Section II showed that each of these metrics attempts,
in its own approximate way, to essentially measure the
closeness of BD(x) and Bn(x), as required by Observation
A. For example, the metrics based on Shannon entropy look
at the slope of BD(x) at x = 1, while the Euclidean distance
metric looks at the value of BD(x) at x = 2, etc. Such
approximate ways usually work, except when profiles of two
distributions intersect.

As a simple example, consider the distributions D =
〈 7
16 ,

7
16 ,

1
8 〉, and E = 〈 1324 ,

11
48 ,

11
48 〉. Then, as shown in

Figure 2, BD(x) and BE(x) intersect at x = 2, i.e. BD(2) =

BE(2), because:
(

7
16

)2
+
(

7
16

)2
+
(
1
8

)2
=
(
13
24

)2
+
(
11
48

)2
+(

11
48

)2
. Entropy-based metrics declare E as the distribu-
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Figure 2. Base-profiles intersecting at x = 2.

tion with higher anonymity because B′E(1) is closer to
B′n(1), while the Euclidean distance metric assigns the same
anonymity level to D and E. But it is clear that the attack
resulting in E is stronger than the one resulting in D,
because the most suspicious user in E is in a class by itself
and is exposed more than the two most suspicious users in
D. Thus, D should be assigned a higher anonymity.

In general, if D, E ∈ ∆n are distinct distributions, neither
of which is any of the extreme distributions, n̂ or n, then
their base-profiles, BD(x) and BE(x), may intersect an
arbitrary number of times. Which of these two intersecting
profiles is closer to Bn(x) changes at each intersection.

IV. A NEW, GLOBAL ANONYMITY METRIC

We believe a global metric that takes entire profiles
into account, rather than just some of their local aspects,
will result in more accurate anonymity measurement in all
situations. One such metric, based on the area swept under
the entire base-profile curves, was proposed by Bagai and
Jiang [2]: R(D) = 1 /

∫∞
1

BD(x) dx, which simplifies to:
R(D) = 1 / (

∑n
i=1 di / (− log di)). This metric possesses

an intriguing duality with the Shannon entropy based metric,
S(D) =

∑n
i=1 di(− log di) of Serjantov and Danezis [8]. If

each di value is interpreted as the weight of its correspond-
ing − log di value, then S(D) is the weighted arithmetic
mean of all the − log di values, whereas R(D) is their
weighted harmonic mean. It is well-known that in many
situations, harmonic mean is the truer measure of average
(see, for example, Chou [4]). Perhaps also for the task of
anonymity measurement?
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