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16.1 Introduction 

 Hikers encountering a fallen tree blocking a trail can climb over it, cut a path 

through it, or walk around it.  In general, obstacles can be overcome, reduced, or avoided.  

Often, reducing the obstacle or avoiding it is a preferable choice.  The computational 

problems in combinatorial auctions are no different.  The previous four chapters have 

been largely devoted to describing ways of overcoming them.  While it is important to 

have the ability to overcome unavoidable computational difficulties, good combinatorial 

auction design will certainly want to take advantage of appropriate ways to reduce or 

avoid them.  That is the topic of this chapter. 

 This section of this chapter sets the context by reviewing briefly the 

computational issues in combinatorial auction design, the context of auction design 

including the information available to the designer, and properties that the auction 

designer must trade off in selecting the auction format and procedures.  The following 



four sections then look at mitigation opportunities prior to bid submission, at the time of 

bid submission, after bid submission but prior to announcing a tentative set of winning 

bids, and after the announcement of a tentative set of winning bids.1  A final section 

concludes with a discussion of the implications of these opportunities for auction design.  

 

16.1.1. Computational issues 

A distinguishing feature of combinatorial auctions is the computational 

complexity of tasks considered trivial and mundane in non-combinatorial auctions.  The 

central problem that has gathered considerable attention in recent years is that of winner 

determination to which first three chapters of part III of this book are devoted.  The 

winner determination problem is discussed in detail in Lehmann et al. (Chapter 12), as 

well as in Müller (Chapter 13) and in Sandholm (Chapter 14).  Here, we briefly note that 

the winner determination problem in its simplest form is equivalent to the set packing 

problem (as pointed out by Rothkopf et al. 1998).2 Thus, the winner determination 

problem is one of the basic NP-complete problems and the fundamental source of 

potential computational difficulties in combinatorial auctions.  

In this chapter, we focus on combinatorial bids that are “package bids” only, that 

is we will assume that all bids are simple “all or nothing” bids.  Our observations readily 

                                                 
1 There is no section on using aftermarkets to avoid computational problems.  If perfect aftermarkets were 
to exist, there would be no need for combinatorial auctions.  With imperfect aftermarkets, bidders’ values 
in the combinatorial auction should reflect the opportunities that do exist in these aftermarkets.  Given the 
results of a combinatorial auction, even imperfect aftermarkets may present opportunities to mitigate the 
effects of misallocations in the auction.  To the extent that this can happen, it can tip the balance in the 
combinatorial auction design tradeoff between efficient allocation and lower transaction costs towards 
lower transaction costs.  Note also that aftermarkets can not only deal with misallocations caused by the 
auction design, but also by misallocations caused by changed circumstances and by bidder errors. 
2 We refer the reader to Chapters 12-14 to learn more about variations of the winner determination problem. 
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generalize to the more general case of Boolean combinations of “package bids” (defined 

as “combinatorial bids” in this book).3  

While it is fundamental, the winner determination problem is not the only issue 

that could bring computational difficulties.  Among other problems that could be of 

computational concern is calculating how much more a losing bidder must bid in order 

for his bid to become a winning one, the problem of resolving ties, and determining 

minimum bid increments in an iterative auction.  However, most of these problems, 

regardless of the approach, are inherently related to the winner determination problem 

and its complexity.  For example, methods for determining bid increments have to 

revolve around calculations of the gap (see glossary) for each losing bid.  As shown in 

Rothkopf et al. (1998), the complexity of calculating gap for any losing bid is equivalent 

to the complexity of the winner determination problem.4  Similarly, resolving ties by 

random selection (e.g., FCC, 2002) is essentially equivalent to solving a winner 

determination problem.5  Thus, most of the potentially difficult computational problems 

in combinatorial auctions are equivalent or closely related to the winner determination 

problem.  Hence, without serious loss of generality, one can focus on addressing 

complexities of the winner determination problem. 

                                                 
3 The “all-or-nothing” feature that can be represented by the AND Boolean operation, and not other 
Boolean operators such as OR and XOR, is a fundamental generator of complexities. Suppose Boolean 
combinations using OR clauses of XOR clauses of single items are allowed (but AND clauses that could 
create “packages” are not allowed). Then “winner determination” becomes almost trivial computationally 
as the problem reduces to the max weight system of distinct representatives, i.e., max weight bipartite 
matching, which is an optimization problem solvable in polynomial time.  
4 Given the computational demands of calculating gap for all losing bids in a combinatorial auction in 
which solving the winner determination problem is not easy, several approximate approaches have been 
developed (e.g., see Hoffman et al., Chapter 17 and Kwasnica et al., 2004).  For example, Hoffman (2001), 
reported that in the simulations of one of the earlier versions of the FCC's combinatorial auction, more than 
99% of the computational time was spent on calculating the gap for all losing bids; this problem eventually 
resulted in the change of the auction rules (FCC, 2002). 
5 There are other approaches to resolving ties.  Several such approaches are discussed in Pekeč and 
Rothkopf (2003).  
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16.1.2 Context 

When designing an auction and dealing with computational complexity, an 

auction designer has to take into account the importance of various potentially desirable 

properties of an auction and, if necessary, make appropriate tradeoffs.  Some of desirable 

properties are:6  

  - allocative efficiency, i.e., maximizing the total value to the winners of the items 

being auctioned; 

- revenue maximization (or payment minimization);  

- low transaction costs  and auction speed as both the bidders and the bid taker care 

about their costs of participating in the auction; 

- fairness, that is, concern about equal treatment of competitors (and the appearance 

of it); 

- failure freeness, as failures should be minimized and their impact mitigated; 

- transparency; 

- scalability is important in design of auctions that will be used repeatedly. 

An important concern in government auctions doesn’t have to be one in commercial 

procurement auctions, and vice versa.  For example, a government auction might have to 

pay special attention to allocative efficiency, while cost minimization could be a primary 

goal in corporate procurement; a government might not be in position to appear unfair or 

afford settling for a suboptimal allocation (as it could face lengthy lawsuits), while 

corporate auctions could aim at speeding up the auction procedure at the price of possibly 

                                                 
6 Following Pekeč and Rothkopf (2003) 
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failing to find the optimal allocation.  Regardless of the goals of the particular situations, 

some non-computational auction design approaches discussed in this chapter could 

reduce the complexity burden while preserving (most of) the other desirable properties. 

Another concern to the auction designer is the potential informational burden.  

One aspect of such a burden is mere handling information that could be massive given 

that there are up to 2m-1 potential packages of m items that could be bid on.  Clearly, 

eliciting bidder valuations for all possible packages (or all possible allocations) could be 

even more informationally demanding.7  A different aspect of informational burden arises 

when the auction designer wants to or has to release comprehensive but aggregated 

information about the auction, such as the gap for all bids or minimum bid increments for 

all biddable combinations in every round of an iterative auction.8  Therefore, auction 

design choices on the auction format, including the information flow from bidders to the 

bid-taker and vice versa could affect the implementability of the auction from the 

information management point of view.  Some possibilities at the disposal of an auction 

designer are discussed in this chapter. 

 

16.2.  Mitigating Complexity Prior to Bid Submission 

 There are many tasks that need to be done before an auction begins.  This section 

discusses how these tasks can mitigate computational complexity.  The possibilities 

discussed below include the choice of definition of the items to be sold, the definition of 

a metric to make items comparable, and the definition of which combinations are to be 

biddable. 

                                                 
7 See Segal (Chapter 11). 
8 In fact, as reported by Hoffman (2001), the burden of calculating precisely the gap for all bids can be 
overwhelming in the context of the FCC combinatorial auction. 
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Sometimes the definition of an “item” is obvious.  Often, however, there is 

considerable discretion involved in defining the items to be auctioned.  For example, 

when the U.S. Federal Communications Commission decides to sell the rights to use 30 

MHz of radio spectrum, it could offer one 30 MHz license, two 15 MHz licenses, a 20 

MHz license and a 10 MHz license, three 10 MHz licenses, or 30 1 MHz licenses.  It can 

also divide the licenses geographically, and sell five regional licenses, 50 state licenses, 

or 500 local licenses.  Clearly, the way the assets to be sold are divided up into items can 

have a profound effect on the computational problems of winner determination.  An 

artless choice, for example selling 15,000 local 1 MHz licenses when economic use of the 

spectrum requires regional aggregations and at least 10 MHz, could lead unnecessarily to 

horrendous computational difficulties.  Sellers need to use their knowledge of the desires 

and the economic situation of their potential buyers to make sensible definitions of items.  

Sellers normally have much such knowledge and potential buyers often have incentive to 

provide or improve it.  Indeed, a seller who does not have and cannot get any knowledge 

of what his potential buyers want should probably sell his assets competitively in one lot 

to the potential resellers who best know the market.   

There is little that can be said in general about the decision about how to divide 

assets for sale into lots.  However, even though it depends upon the particulars of the 

situation, it is a critical auction design issue.  There are some possibilities that are of 

potential value that are worth mentioning.   

One of these is defining some sort of measure that can be used, perhaps with 

adjustments, to make items fungible.  When this can be done, it greatly simplifies the 

computational problem of selecting winners.  An example of this is daily electricity 
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supply auctions.  In the best of these, a megawatt of power injected into the electricity 

grid over a given hour at point A is equivalent to a megawatt injected into the grid that 

hour at point B except for an adjustment designed to take account appropriately of the 

costs of transmission congestion.  This is called “Locational Marginal Pricing.”  

Electricity auctions that ignored this congestion effect and assumed that congestion-free 

zones could be predefined have run into difficulties.  Recently, there has been a proposal 

to auction both energy and transmission rights simultaneously.9    

Another one is to predefine biddable combinations in a way that reflects the 

underlying economics and will simultaneously mitigate potential computational 

difficulties during the course of an auction.  For example, bids for take off and landing 

slots at an airport could be limited to pairs involving one landing slot and one take off 

slot.  This would meet the economic need of airlines to take off any plane that they land 

at an airport while leading to a computationally tractable auction.10  The next three 

subsections discuss these possibilities in more detail. 

 

16.2.1. Defining items for sale 

The issue of defining items for sale is not specific to combinatorial auctions.  For 

example, what has to be sold and how should it be sold depends on physical nature of the 

items for sale, (dis)synergetic valuations that the bidders have over potential items that 

could result in either bundling or unbundling of such items, as well as on the practical 

considerations of conducting an auction in a timely and efficient manner.  In many 

                                                 
9 For that proposal, see O’Neill et al. (2002).  For earlier discussions of alternative definitions of 
transmission rights see Hogan (1992), Chao and Peck (1996), Baldick and Kahn (1997) and Chao et al. 
(2000).   
10 See Rothkopf et al. (1998). Also note that one of the first papers on combinatorial auctions, Rassenti et 
al. (1982) focuses on this potential application. See also Ball et al. (Chapter 20). 

 7



situations, the basic physical units that cannot reasonably be further decomposed are 

clear.  For example, well-running used cars should not normally be sold as used car parts.  

However, there are many other important situations where such atoms do not exist such 

as radio frequencies, electricity contracts, and undeveloped land division.  As for possible 

synergies and dissynergies, if these occur naturally or are common to all bidders, a good 

auction design will define auction items by appropriately bundling or unbundling in order 

to accommodate such situations.  Thus, trying to bundle objects that are synergetic to 

every bidder into an auction item, and unbundling them into separate auction items when 

dissynergies are common, could be a general rule of thumb.  However, one has to 

consider possible budget constraints and differences in individual bidder valuations since 

in such situations forced bundling might be inefficient and revenue deficient.11  Similarly, 

even if bundling some objects is not synergetic, such “inefficient” bundling could make 

the total number of items to be auctioned small and the auction process fast and 

manageable.  For example, an auctioneer selling off the property of a bankrupt restaurant 

might well chose to lump together into a single lot all of the pots and pans rather than sell 

them separately reasoning that any possible lost revenue will be more than offset by 

savings in transaction costs. 

 In general, bidders might not agree on synergies and dissynergies.  Thus, perfect, 

noncontroversial bundling or unbundling in defining auction items might be difficult.  

One approach to such situations would be for all bidders to agree on the items that should 

                                                 
11  For example consider two objects a and b. where bidder 1 has values v1(a)=4, v1(b)=4, v1(ab)=9; bidder 
2 has v2(a)=1, v2(b)=5, v2(ab)=7, bidder 3 has v3(a)=5, v3(b)=1, v3(ab)=7.  Suppose also that each bidder 
has a budget constraint of 8.  If bidding on ab only is allowed, bidder 1 could win with bid 7+ε, while if 
bids on unbundled objects a and b are allowed, bidders 2 and 3 will win with bids of 4+ε on each of a and 
b.  
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not be further decomposed, and then to allow bids on any combination of such items.12  

This approach could be useful for defining items when there is no obvious physical 

description or limitation.  The drawback is that bidders might have infinite number of 

objects they would consider buying13 and, even in the finite case, the resulting number of 

items could be unmanageably huge.  Thus, perfect, noncontroversial item definitions may 

not be possible or practical. 

However items to be auctioned end up being defined, an auction designer has to 

decide whether to allow bids on combinations of items (provided that there is more than 

one item).  As many chapters of this book discuss (e.g.,  Nisan Chapter 9, Segal Chapter 

11, Lehmann et al. Chapter 12, and Leyton-Brown et al. Chapter 19) and as briefly 

discussed in the introduction, combinatorial bidding could introduce complexities and 

potentially insurmountable obstacles in conducting an auction.   

If many combinatorial bids are placed in an auction, this could mean (among 

other things) that bidders have serious conflicting synergetic valuations and/or that some 

items could have been bundled before being auctioned off.  Taking this observation to the 

extreme, the final pricing and allocation, if done prior to the auction, could eliminate the 

need for the auction itself and lead to optimal posted prices since it would eliminate any 

interest for bidding except exactly for the winning bidders submitting the winning bids.  

So, in addition to allocation and price discovery, combinatorial auctions are mechanisms 

for optimal bundling discovery.  The process of discovering the optimal bundling of 

items is the one that differentiates combinatorial from non-combinatorial auctions, and 

                                                 
12 These items would be atoms of the algebra generated by the union of all objects (each object is a set) that 
any of the bidders might be interested in bidding on.  For example, if each bidder provides a finite list of 
frequency ranges they would consider buying, one can define auction items to be all non-empty 
intersections of any collection of such frequency ranges  (possibly from different bidders).  
13 For example, a bidder could be interested in any 20MHz range in 600-700 MHz band. 
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the one that is responsible for inherent complexities of combinatorial auctions.  Thus, to 

the extent possible, auction designers should aim toward understanding likely optimal 

bundles.  This understanding could be more critical to the auction success than 

understanding likely auction prices and likely auction winners.  In turn, this suggests that 

an auction designer should put an effort into properly defining auction items in order to 

manage implementation complexities of combinatorial bidding.14  

For example, consider an auction of three items a, b, c, with highest valuations 

(all from different bidders) as follows: v(a)=3, v(b)=4, v(c)=5, v(ab)=10, v(bc)=10, 

v(ac)=10, v(abc)=13, and with second highest valuations being exactly one less (and 

placed by a completely different set of bidders).  Then, by posting the following prices, 

p(a)=p(b)=p(c)=5, p(ab)=10, p(bc)=p(ac)=11, p(abc)=14, the seller can bundle and 

allocate the items optimally by simple posted price mechanism, instead of running the 

combinatorial auction.  Of course, this assumes that seller has guessed these prices 

correctly or that he has some information on optimal bundles and prices, i.e., the type of 

information that is usually discovered by the auction mechanism.  Note that knowing 

high valuations without the knowledge of specific structure is not sufficient to find an 

optimal allocation; all two-item bundles are valued at 10 but the optimal pricing has to 

price-discriminate in order to clear the market in an optimal allocation that requires 

bundling a and b.  Also note that, with the assumed high valuations, the seller could 

simply decide to accept only bundled bids on ab and bids on c, and not lose anything by 

limiting bidding in this way.  Thus, discovering optimal bundling is valuable for market-

mechanisms that allow combinatorial bids. 

                                                 
14 As will be discussed in subsection 16.2.3, not all combinatorial bids are equally cumbersome during the 
course of an auction.  The informational burden on the auctioneer is also a factor (as discussed in 16.1.2). 
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It is worth mentioning that even when packages can be divided among bidders, 

how this is done can have a major impact on the effectiveness of the auction.  The 

original California day-ahead electricity auctions purchased 24 commodities, electricity 

in each of the hours of the next day.  No bids on combinations of hours were allowed, and 

fractions of bids could be accepted.  This is an awkward definition for a potential bidder 

with a generating plant that has start up costs, minimum run levels, and requires four 

hours to start or stop.  A better design proposed by Elmaghraby and Oren (1999) would 

have bidders offering electricity from hour A to hour B.  Note that the acceptance of a 

fraction of a bid in this auction would affect the allocation of start up costs but not the 

feasibility of starting and stopping the generating plant.  An even better approach, 

actually used by the New York system operator and the operator of the Pennsylvania-

New-Jersey-Maryland system considers bids involving start up costs and minimum run 

levels, solves a mixed integer program to find the optimum feasible dispatch for the day, 

uses hourly market clearing prices based on variable costs and then further compensates 

bidders whose fixed costs would not be covered so that they will not lose money at the 

optimum dispatch.15  

In summary, the way auction items are defined has direct impact on the level of 

complexities of a combinatorial auction.  Even if items seem to be naturally defined, 

choosing to bundle or unbundle some of such items could significantly aid the process of 

optimal bundle discovery.  Thus, if combinatorial bidding is to be allowed and if the 

computational complexity of running an auction is an issue, defining auction items 

                                                 
15 That such equilibrium market-clearing prices always exist to support the MIP solution is shown in 
O’Neill et al. (2004). The rules for the day-ahead and real-time energy auctions (as well as those for other 
products, such as operating reserves) are in an almost constant state of refinement.  For the latest rules in 
these electricity markets, see www.pjm.com and  www.nyiso.com.   
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should be looked at as an opportunity to mitigate effectively the potential for 

encountering computational nightmares while running the auction. 

 

16.2.2. Defining units 

Bids on different combinations are usually incomparable,16 and this 

incomparability is one of the core issues in combinatorial auctions.  One potential way to 

simplify this problem is to define an underlying measure on all possible biddable 

combinations and use this measure when solving the winner determination problem and 

other computational tasks such as determining minimum bid increments in multi-round 

action formats.   

For example, in the latest FCC combinatorial auction, the MHzPop measure, i.e., 

the bandwidth of the spectrum multiplied by the population covered by the geographical 

scope of the license, is used in calculating minimum bid increments.  The bid value is 

divided by the MhzPop value of the underlying combination and in this way all bids can 

be compared on the one-dimensional scale of $/MhzPop.  Electricity auctions use $/MWh 

(dollars per megawatt hour)—adjusted by location for transmission congestion in the 

better auction designs and within predefined zones in others—as a common measure.17 

In fact, many iterative combinatorial auction proposals suggest use of some 

underlying measure to define minimum bid increments.18  The use of an underlying 

measure can be exact or approximate.  If it is exact, then the items are truly fungible, as 

                                                 
16 Suppose b(ab)=5 and b(bc)=7.  While, in isolation, the bid on ab is smaller than the bid on bc, in the 
presence of other bids, say b(a)=2 and b(c)=5, one could argue that the bid on ab is “better” than bid on bc. 
17 There is a substantial literature on this.  See, for example Chao et al. (2000), Baldick and Kahn (1997), 
and especially O’Neill et al. (2002). 
18 For example, the RAD mechanism described in Kwasnica et al. (2004) and the FCC combinatorial 
auction mechanism (FCC, 2002). 
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with treasury bonds, and individual items need not be differentiated at all.  Use of an 

approximate simplification in determining minimum bid increments might not be viewed 

as too problematic, especially in iterative mechanisms where there are multiple chances 

to remedy the effects of any approximations.  However, even in iterative mechanisms, 

there may be exceptions such as when auction activity is coming to a close and the 

simplification proposes a minimum bid increment that is too high and that eliminates 

potential bidders who could drive up the price.  

The one-dimensionality that results from introducing an underlying measure to 

compare bids, can simplify the winner determination problem, too.19  For example, there 

is a proposal (Rothkopf and Bazelon 2003) for auctioning residual spectrum subject to 

the limited rights of existing licensees.  Since the existing rights holder has a strangle 

hold on the use of the residual rights, there will tend to be only one bidder for a given 

license’s residual rights.  The proposal is to take bids on many such licenses but sell only 

those getting the highest bid per MhzPop.  Since spectrum of high frequencies is 

considerably less valuable per MhzPop than spectrum of lower frequencies that can 

penetrate buildings, the proposal is to auction low and high frequencies separately. 

The key to introducing bidding units through an underlying measure on biddable 

combinations is that such measure is widely accepted and appropriate for the situation in 

hand as with KWhs adjusted for transmission congestion and MhzPops for spectrum with 

sufficiently similar frequencies and that everyone involved in the process, especially 

bidders and the auctioneer, is aware of the potential to reach a suboptimal outcome.  In 

that sense, choice of the underlying measure that is aligned with bidders’ values is critical 

                                                 
19  Some relevant theoretical analysis is Müller (Chapter 13). 
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for success of such approach.  Thus, situations in which a measure that is acceptable to all 

bidders exists, are prime candidates for this approach. 

  

16.2.3. Defining biddable combinations.  

Allowing bids on prespecified combinations of items can mitigate the difficulty of 

the winner determination problem, as well as that of other potentially computationally 

intractable issues that have to be resolved during the course of a combinatorial auction.  

Müller (Chapter 13) is devoted to structures of biddable combinations that ensure 

computational tractability for the winner determination problem.20   Two things are worth 

noting.  First, in most situations, it is not the size of the biddable combinations nor their 

number, but rather their structural properties (how they intersect, complement and 

supplement each other) that is the main determinant of the complexity of the winner 

determination problem.  Second, most other computational problems in combinatorial 

auctions involve solving some sort of a winner determination problem, so focusing on 

complexity of the winner determination is of primary importance.  

An important concern in limiting biddable combinations is that such limits could 

give an unfair advantage to bidders who are able to express their synergies using biddable 

combinations over bidders whose synergies lie across combinations that are not biddable.  

This again points out to the importance of properly defining auction items and of 

understanding bidders’ synergies, as careful choices there could allow for restricting 

combinatorial bids in a way that won’t be perceived as unduly limiting or unfair.  Keep in 

mind that if computational complexity is an issue, there may be no set of usable rules that 

                                                 
20 This is a well-defined and general combinatorial optimization question.  However, there is little practical 
reason to dwell on the analysis of structures that have little chance of being relevant to any auction.  Richer 
payoffs will be found in the exploration of structures of potential practical use. 
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is completely neutral.  In particular, allowing no combinations at all may greatly favor 

some bidders over others. 

It is also worth noting that decisions on limiting biddable combinations interact 

strongly with decisions on defining items.  It may be fairer and more efficient to have 

more items with bidding allowed on a limited but well chosen set of combinations than to 

lump the items into a few biddable “super-items” and allow bidding on any possible 

combination of these super-items. 

 

16.3  Mitigating complexity during bid submission 

One way for the bid taker to deal with the computational complexities of a 

combinatorial auction is to request that bidders submit bids together with information that 

will help in the computational process.  Two specific ideas of this type are discussed in 

this section.  One approach is to completely shift the computational burden from the 

auctioneer to the bidders.  In the other, the auctioneer is completely responsible for 

computation but allows bidders to guide the process; in this way, a heuristic can find a 

suboptimal solution that is aligned with bidders’ preferences that are expressed at the 

time of bid submission.  

 

16.3.1 Relegating complexity to bidders 

The auctioneer could choose to take a passive role and let bidders not only submit 

their bids, but also prove to the auctioneer that their bids ought to be winning ones. Some 

of the very first and successful combinatorial auction designs, such as AUSM  (Banks et 

al., 1989) have this feature.  Examples of such policies include standard auction designs 
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that relegate computational burden to bidders such as AUSM and PAUSE (see Land et 

al., Chapter 6).  The general idea here is that the auctioneer expects bidders to present a 

collection of (non-intersecting) bids that improves on the current best collection. 

(Usually, the measure is the revenue for the auctioneer.)  Thus, it is the bidders who have 

to solve the winner determination problem in such designs.  There are variants of such 

procedures that might generate better auction results.   Bidders could be allowed to 

submit bids without having to demonstrate that their bid could be combined with other 

bids into the best available collection of bids.  In this way, even bidders without any 

computational abilities could participate in an auction.  Then, the auctioneer (and perhaps 

other entities, e.g., those who have an interest in particular rivals not winning) could 

compute the best collection among available bids. 

Relegating computational burden to the bidders is an option that does not really 

mitigate the computational complexities of combinatorial auctions, but it does relieve the 

auctioneer at the expense of participating bidders.  The advantage of such a scheme is 

that the bidders know which combinations are of interest to them, while the auctioneer 

may be less well informed and have to be prepared to consider combinations that will not 

be bid.  When designing such auction procedures, one has to be careful about the possible 

burden of managing in timely manner what may turn out to be massive amounts of 

information.  Also, this approach assumes continuous bidding or multiple rounds of 

bidding as bidders have to be aware of all bids currently in the system when composing 

and submitting their proposals. 

  

16.3.2 Bidder prioritization of combinations 
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Park and Rothkopf (2004) proposed a fundamentally different approach.  They 

suggest that the bidders be allowed to bid on as many combinations of whatever kind 

they like but that they be required to prioritize their combinations.  They propose that the 

bid-taker evaluate the bids, starting with no combinations, then including each bidder’s 

top priority combination, then including each bidder’s two top priority combinations, etc. 

until either all combination have been included or the time for computation has expired.  

This approach takes advantage of the bidders’ knowledge of which combinations are 

important.  It assures a measure of fairness when computational considerations do not 

allow all desired combinations to be considered, and it takes advantage of the fact that 

integer programming algorithms often perform much better in practice than worst-case 

based bounds.  Note that the Park and Rothkopf approach need not be limited to giving 

equal number of allowable combinations to each bidder.  It could be generalized to 

accommodate any prespecified construction of the lists of combinations to be considered 

based on the bidders’ input preferences lists.  For example, in an iterative auction, 

bidders who are more active could be favored by being allowed to have more 

combinations considered.   

A potential concern with this method, as well as with any other limited search 

method (as discussed in section 16.4.1) is that bidders might have incentives to submit 

bids with a primary goal of complicating computational process in order to limit search 

and perhaps influence the final, possibly suboptimal, allocation that favors them. 

 

16.4 Mitigating complexity prior to allocation decisions 
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Sandholm (Chapter 14) discussed methods that do not guarantee finding an 

optimal solution to the winner determination problem or do not guarantee finding it in a 

reasonable time-frame.  The previous section discussed how the problem of solving the 

winner determination problem can be relegated to the bidders or how solving it could be 

guided based on bidder input.  This section focuses on possibilities of mitigating 

complexities after bids are submitted.  

  

16.4.1. Limited search 

A simple general method to deal with the complexity of solving winner 

determination problem or any other complex problem during the course of an auction is 

for the bid-taker to announce (prior to the auction start) an upper bound in terms of 

computational time and/or other resources to be devoted to solving any particular 

problem.  For example, in an iterative combinatorial auction, the time for solving the 

winner determination problem between two rounds could be limited, and the best 

available solution when the time expires could determine the provisional winners.  

This approach is almost uniformly used in determining minimum bid increments 

in iterative combinatorial auctions.  Instead of basing the increment value on the value of 

the gap (which would involve solving as many winner determination problems as there 

are biddable combinations), one could abandon any computational effort and prescribe a 

simple fixed increment amount (e.g., as in one of the first commercially implemented 

procurement combinatorial auctions; see Ledyard et al., 2002.) or could use the linear 
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programming relaxation of the winner determination problem in order to provide an 

approximation.21  

 Resorting to a limited search option opens up several issues: 

 - Should bidders know the details of the algorithm used to solve the winner 

determination problem (or another problem) under time/resource constraint and should 

bidders be able to replicate the procedure used by the bid-taker? 

- The very fact that a suboptimal solution could be selected potentially allows for 

a new gaming dimension.  At least in theory, bidders might submit bids aimed at 

slowing the algorithm down and potentially bringing it to settle for a suboptimal 

solution that favors them.  However, in order to implement such strategy in any limited 

search approach to the winner determination problem, one would have to know intricate 

details of the winner determination problem computation, have a very good idea about 

high bids on all relevant biddable combinations, and have considerable computing 

resources and expertise, likely beyond those available to the bid-taker.  Thus, except 

maybe in specific narrow situations,22 it is likely that such malicious bidding with a 

primary goal of hindering computation would not be a serious problem.  The following 

two observations explain why one might so conclude:  If a bid is close to being 

includable in an optimal solution, then its maker risks it being accepted.  Hence, it 

would be risky to make it if it were insincere.  However, if it is not close to being 

acceptable, it may well be eliminated easily in any branch and bound calculation of the 

winning bids.  Furthermore, outsourcing computation as suggested in section 16.4.2 

                                                 
21 See Hoffman et al. (Chapter 17). 

22 For example, government auctions with a dominant corporate bidder, could exhibit all such properties: 
government might have to be very open about the computational process while at the same time bidders 
could have overwhelming resources and have good ideas of rivals’ valuations. 
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could eliminate any computational advantage a bidder has over the bid taker making 

such an approach even more problematical.  

- Given limited resources, the auction designer can choose a heuristic or an 

approximation algorithm that doesn’t guarantee finding an optimal solution but does have 

some performance guarantees (e.g., that the solution found is not too far in some measure 

from the optimal one).  If such an algorithm finds its solution before all resources are 

exhausted, e.g. before time expires, should the remaining resources be used to attempt to 

improve on the proposed solution (if it is not provably optimal)?  

- What if several problems, e.g., the winner determination problem and the 

minimum bid increment problem, have to be solved within joint resource constraint? 

How should resources be allocated?23  

 - How should complaints of bidders who would be winners in an optimal solution 

but are not winners in the limited search solution, be handled? 

 

16.4.2. Outsourcing search 

A compromise approach between relegating complexity to bidders and the limited 

search option is to allow but not require bidders and, perhaps, other parties to participate 

in the computational effort.  This approach aims at separating computation from the 

allocation decision and was first proposed by Pekeč (2001).  An auction mechanism 

could treat computation as a transaction service that the auctioneer can outsource.  For 

                                                 
23 For example, suppose that the winner determination problem is solved by a suboptimal solution and, 
based on that solution, minimum bid increments get calculated optimally without exhausting all resources.  
Suppose further that not enough resources are left to recalculate the minimum bid increments in case the 
leftover resources are used for improving the solution to winner determination problem.  Should this further 
improvement be attempted? )  
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example, the auctioneer could find an initial solution of the winner determination 

problem and invite everyone (bidders and perhaps others) to submit alternative solutions.  

Note that this approach requires the public release of bids (but not necessarily 

identification of the bidders).  In some contexts, as when bidders’ bids could reveal 

sensitive commercial information, this might be a disadvantage.  (See Rothkopf et al. 

1990)  

There are several incentives issues that might complicate implementation of this 

approach.  First, the auction-designer could try to set some incentives for computation 

contributors.  Perhaps, the auctioneer could pay a fee to whoever finds the best solution 

to the winner determination problem by, e.g., awarding the party that first submits the 

best solution (hopefully, a provably optimal one) some combination of a fixed monetary 

award and a percentage of the improvement that the submitted solution made relative to 

the initial one.   Second, as discussed above participants interested in winning items in 

the auction might have incentives to submit bids that are aimed at complicating 

computation, while at the same time having no chance to become winning bids.  

Similarly, some concern might arise with respect to those interested in collecting 

computation fees.   

In summary, limiting resources for computation surely brushes away potential 

computational disasters, but it does raise incentive issues. 

 

16.5. Mitigating complexity after preliminary allocation decisions 

A key goal of auctions is often fairness.  Perfect efficiency, while desirable, is 

unlikely to be achieved in large, complicated combinatorial auctions.  Indeed, efficiency 
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may well be traded off against the transaction costs associated with conducting the 

auction.  While perfect efficiency may be unattainable, good efficiency and fairness can 

be obtained even if it proves impossible to get a provably optimal solution to the winner 

determination problem.  One way to do this is the “political” solution suggested in 

Rothkopf et al. (1998).  The essence of such a political solution to the winner 

determination problem is to give an opportunity to bidders (and, perhaps, other parties) to 

challenge and improve upon a proposed allocation before it is made final.  Not only will 

providing such an opportunity for challenges provide an opportunity to improve the 

solution to the winner determination problem, it assures fairness.  The essence of this is 

that it will be impossible for a bidder to challenge suboptimal auction results as unfair if 

the bidder himself has had a fair opportunity to suggest an improved solution.  The reason 

simple auctions are deemed fair is that a bidder who had a fair opportunity to bid cannot 

credibly complain about the price received by a rival whom he failed to outbid.  

Similarly, a bidder who has a fair opportunity to improve upon a proposed, but possibly 

suboptimal solution to the winner determination problem cannot credibly complain if, 

later, a better solution is found.  Since he had a fair chance to find it, it was clearly too 

difficult to find in the time and with the optimization technology available.   

It is worth noting that this “political” approach to solving the winner 

determination problem is likely to be highly effective.  It can be thought of as a 

decomposition approach in which each bidder is assigned the task of finding a way to 

have some of his tentatively excluded bids included in the final allocation.  If the values 

at stake matter, each of the bidders with tentatively excluded bids will be highly 
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motivated.  Bidders, of course, are free to retain optimization experts as auction 

consultants just as they now hire economists. 

While allowing bidders the chance to improve upon a potentially suboptimal 

solution to the winner determination problem will assure fairness, it is not necessary to 

limit the parties who may suggest improvements to bidders.  In particular, it may at times 

make sense for the bid taker to allow any party to suggest improvements.  As discussed 

above, it could motivate such participation by offering whoever supplies the best solution 

a portion of the improvement in the objective function achieved.  This can be thought of 

as an “economic” solution to the winner determination problem. 

 

16.6 Conclusions 

Combinatorial auction design, like many other design problems, is an art.  Its 

practitioners must make choices that affect conflicting design objectives, and its results 

must be evaluated in the context of the facts of the particular situation.  In this chapter, 

we have attempted to describe a variety of ways that combinatorial auction designers can 

achieve good auction results when computational issues are potentially intractable.  There 

are quite a few possibilities, and some of them have attractive features of potential use in 

important contexts.   

The items that serve as the underlying atoms of the auction can (and need to) be 

defined artfully so as to make computation and other aspect of the auction workable.  

Where bid takers have knowledge of bidders’ preferences, and they normally will, this 

needs to be taken into account in defining the items.  These preferences also need to be 

taken into account in deciding which combinations will be biddable, and the item 
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definition decision and the biddable combination decision need to be made together.  

When possible, one should take advantage of ways of making items fungible, either 

exactly or approximately. 

If computation is a problem, its burden can be left with the auctioneer or shifted to 

the bidders during the course of the auction.  If the auctioneer retains it, the bidders may 

be asked to prioritize bids on combinations so that if the computation cannot consider all 

of the combinations, it will have considered all of the most important ones.  The 

auctioneer can outsource post-bidding computation to computational experts or to the 

bidders themselves.  Further, the auctioneer can prevent potential problems that could 

arise from suboptimal allocations by allowing for challenges by third parties. 

The combination of the possibilities discussed in this chapter with the 

computational capabilities discussed in many of the others will allow much better designs 

for combinatorial auctions in a wide variety of challenging contexts. 
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