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Abstract. Combinatorial auctions have attracted the attention of many
researchers in recent years, due to their potential to significantly increase
the economic efficiency of auctions. Unfortunately, the implementation
of this type of auctions poses several challenges, including efficient com-
putation of the optimal allocation of goods, and efficient communication
of the bidders’ preferences to the auctioneer. It is known that both these
problems are hard to solve, unless some restrictions on the space of the
possible bidders’ preferences (also called valuations) are imposed.

In this paper, we analyze the computational and communication com-
plexity of combinatorial auctions from a new perspective: the degree
of mutual interdependency between the items on sale in the bidders’
preferences. More specifically, denoting with G the class of valuations
displaying up to k-wise dependencies, we consider the hierarchy Gi1 C
G2 C -+ C Gm, where m is the number of items on sale. We show that
the minimum non-trivial degree of interdependency (2-wise dependency)
is sufficient to render hard the problem of computing the optimal allo-
cation. On the other hand, bidders’ preferences can be communicated
efficiently (i.e., exchanging a polynomial amount of information) as long
as the interdependencies between items are limited to sets of cardinality
up to k, where k is an arbitrary constant. The amount of communication
required to transmit the bidders’ preferences becomes super-polynomial
(under the assumption that only value queries are allowed) when inter-
dependencies occur between sets of cardinality g(m), where g(m) is an
arbitrary function such that g(m) — oo as m — co.

Besides proving these results, in this paper we analyze in detail the
class of 2-wise dependent valuations. We prove that there exist restricted
cases of such valuations for which computing the optimal allocation is
easy. Furthermore, we consider the problem of approximate elicitation,
in which the auctioneer learns, asking polynomially many value queries,
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an approximation of the bidders’ actual preferences. Most of the results
on 2-wise dependent valuations are generalized to the case of k-wise de-
pendent preferences, where k is an arbitrary constant.

1 Introduction

Background. Combinatorial auctions (CAs) have recently emerged as a mech-
anism to improve economic efficiency when many items are on sale. CAs can be
used, for instance, to sell spectrum licenses, pollution permits, land lots, and so
on [5]. In a CA, bidders can present bids on bundles of items, and thus may
easily express complementarities (i.e., the bidder values two items together more
than the sum of the valuations of the single items), and substitutabilities (i.e.,
the two items together are worth less than the sum of the valuations of the
single items) between the objects on sale®*. The function that, given a bundle,
returns the bidder’s value for that bundle is called valuation function, or simply
valuation.

The implementation of CAs poses several challenges, including computing
the optimal allocation of the items (also known as the winner determination
problem), and efficiently communicating the bidders’ preferences (valuation func-
tions) to the auctioneer.

Historically, the first problem that has been addressed in the literature is
winner determination. In [11], it is shown that solving the winner determination
problem is NP-hard, and in [13] it is proved that even computing a good approx-
imation of the optimal allocation is NP-hard (unless NP=ZPP). The communi-
cation complexity of CAs has been addressed only more recently. In particular,
preference elicitation, where the auctioneer is enhanced by elicitor software that
incrementally elicits the bidders’ preferences using queries, has recently been pro-
posed to reduce the communication burden [3]. Several elicitation algorithms,
based on different type of queries (e.g., rank, order, or value queries), have been
proposed [3,4,6]. Unfortunately, a recent result by Nisan and Segal [9] shows
that elicitation algorithms have no hope of considerably reducing the communi-
cation complexity in the worst case. In fact, obtaining a better approximation
of the optimal allocation than that generated by auctioning off all objects as a
bundle requires the exchange of an exponential amount of information. Thus,
the communication burden produced by any combinatorial auction design that
aims at producing a non-trivial approximation of the optimal allocation is over-
whelming, unless the bidders’ valuation functions display some structure.

Given these computational and communication difficulties, several authors
have presented restricted CA settings, in which solving either the winner deter-
mination problem, or eliciting bidders’ preferences, or both, are easy [1,2,7,8,
10-15]. The challenge here is to identify classes of valuations which are both suf-
ficiently general (in the sense that they allow to express super-, or sub-additivity,
or both, between items) and realistic.

% In this paper, we will use also the terms super- and sub-additivity to refer comple-
mentarities and substitutabilities, respectively.



Motivation. In this paper, we analyze the complexity of winner determination
and preference elicitation in CAs from a new perspective: the degree of mutual
interdependency between the items on sale. In general, a set of items displays
some form of interdependency when their value as a bundle is different from the
sum of their values as single items, resulting in complementarity or substitutabil-
ity between the objects. Although this can be thought of as the distinguishing
feature of CAs, to the best of our knowledge no research has studied the effect
of the degree of this interdependency on the computational or communication
complexity.

The degree of mutual interdependency between objects is clearly related to
the computational and communication efficiency of CAs. If the items marginal
values are independent of each other (or, if independence holds between items),
then the bidders’ preferences are linear (i.e., the valuation of a bundle is the
sum of the values of the items it contains); in this situation, computing the opti-
mal allocation is straightforward, and communication complexity is not an issue.
However, this case does not require a CA setting, since the items could be auc-
tioned sequentially with the same economic efficiency. On the other hand, when
the degree of mutual interdependency is maximal (i.e., up to m-wise dependen-
cies are displayed in the bidders’ valuations, where m is the number of items on
sale), we have fully general valuations, and both winner determination and pref-
erence elicitation are hard. So far, to our best knowledge, nothing is known about
the complexity of the winner determination and preference elicitation when the
degree of interdependency is somewhere between 1 and m.

In this paper, we consider CA settings in which the bidders’ preferences
display up to k-wise dependency between items, where 1 < k < m. We believe
that this type of valuation is likely to arise in many economic scenarios. For
instance, when the items on sale are related to a geometric or geographic property
(e.g., spectrum frequencies, railroad tracks, land slots,...), it is reasonable to
assume that only items that are geometrically /geographically close display some
form of interdependency. Another consideration that motivates our interest in
k-wise dependent valuations is that, due to cognitive limitations, it might be
difficult for a bidder to understand the inter-relationships between large group
of objects.

Summary of results. In this paper, we show that the minimum non-trivial
degree of interdependency between items (2-wise dependency) is sufficient to
render the winner determination problem hard to solve. On the other hand,
bidders’ preferences remain easy to elicit as long as k is an arbitrary constant.
The preference elicitation problem becomes hard as soon as g(m)-wise depen-
dencies between objects are allowed, where g(m) is an arbitrary function such
that g(m) — oo as m — oc.

Besides proving the results stated above, in this paper we analyze in details
the class of 2-wise dependent valuations. This class is rich enough to express both
complementarities and substitutabilities between items, and even costly disposal
of items. Under this respect, 2-wise dependent valuations are more expressive
than the classes of easy to elicit valuations introduced so far [1,9, 15], which are



based on the free disposal assumption. First, we consider the situation in which
the preferences are “almost 2-wise dependent”, and we prove that in this case
the auctioneer can learn a valuation function that is “close” to the original one
asking polynomially many queries. Even better, we prove that if the valuation
function is strongly super-modular (see Section 4 for a formal definition of this
property), then the approximation error that we have if we ask only W out
of all the 2™ possible queries can be bounded in a non-trivial way. This result
is interesting, because strongly super-modular valuations are hard to elicit. So,
our result proves that by asking a negligible fraction of queries, we can learn
a valuation function that is close to the original valuation. Then, we consider
the complexity of allocation, proving that there exists a restricted class of 2-
wise dependent valuations for which solving the winner determination problem
is easy. This restricted class is still powerful enough to express costly disposal,
and it is easy to allocate and elicit. To the best of our knowledge, this is the first
non-trivial CA setting with these features. Most of the results holding for 2-wise
dependent valuations are generalized to the case of k-wise dependent valuations,
where k is an arbitrary constant.

Remark. Before ending this section we want to remark that in this paper we
focus our attention on a restricted case of preference elicitation, in which the
elicitor can ask only value queries (what is the value of a particular bundle?)
to the bidders. Our interest in value queries is due to the fact that, from the
bidders’ point of view, these queries are very intuitive and easy to understand.

2 2-wise dependent valuations

Let I denote the set of items on sale (also called the grand bundle), with |I| = m.
A wvaluation function on I (valuation for short) is a function v : 27 — Rt that
assigns to any bundle S C I its valuation. To make the notation less cumbersome,
in this paper we will use notation a,b,... to denote singletons, ab,bc,... to
denote two-item bundles, and so on.

Let us consider a bidder (agent) participating in the auction, issuing bids on
bundle of items. In the following, we will focus on the valuation function of an
arbitrary bidder, denoted A.

In general, the agent A will be interested in a subset of the items on sale,
denoted I4. Denoting with v(a) the valuation of the singleton item, for every
a € Iy, in general we might have v(a) = 0 for some of them. These items, called
zero value items, do not have a value in themselves, but they can be used to
form valuable bundles with other items.

Let us consider an arbitrary pair a,b of items in 4. We classify every such
pair as independent (or additive), super-additive or sub-additive depending on
how the valuation of the bundle ab relates to v(a) + v(b). In particular, we have:

= v(a) + v(b) then a and b are independent items;
— if v(ab) > v(a) + v(b) then a and b are super-additive items;
< v(a) + v(b) then a and b are sub-additive items;



A: rust sweater

B: olive green sweater
13 60 10
C: dark green trousers

8 D: dark brown shoes

7 0

Fig. 1. 2-wise dependency graph representing the bidder’s valuation in the auction of
fashion clothing.

Given the dependencies between any pair of items in I4, the 2-wise dependency
graph G2 can be constructed as follows:

— let there be a node for every item in I4;

— label node a with v(a);*

— if @ and b are super- or sub-additive, put an (undirected) edge (a,b) in the
graph, and label the edge with v(ab) — (v(a) + v(b))-

Under the assumption that there exist only 2-wise item dependencies in the
valuation function of agent A, the G, graph can be used to calculate the valuation
of any possible subset S of I 4 as follows: consider the subgraph G° of G induced
by node set S; sum up all the node and edge labels in G*.

An example of a 2-wise dependent valuation could be the following. Consider
an auction of fashion clothing. In this scenario, it seems reasonable to assume
that items display super- of sub-additivity depending on how good they look
together. In Figure 1, there are four items on sale: a rust sweater, an olive
green sweater, dark green trousers, and a pair of dark brown shoes. The items
have values as singletons (e.g., the rust sweater is worth $80), and show 2-wise
dependencies when bundled together. For instance, the bundle composed by the
olive green sweater, dark green trousers and dark brown shoes has a super-
additive valuation ($223 instead of $200), because these items together form a
nice outfit. Conversely, the rust sweater and the dark green trousers clash, so
their value as a bundle is sub-additive ($125 instead of $140). Note that the
sum of the values of the rust sweater, dark green trousers, and dark brown
shoes is higher than the sum of the values of the olive green sweater, dark green
trousers, and dark brown shoes bundle ($210 and $200, respectively). However,
when considered as a bundle, the valuation of the former combination is lower
than that of the second one ($213 and $223, respectively), due to the fact that
the items in this combination do not form a good outfit (the rust sweater and
the dark green trousers clash)®.

* Slightly abusing the notation, we use a to denote both the item and the corresponding
node in the graph.



3 Expressive power of G5 valuations

2-wise dependent valuations can be elicited by asking m(”;rl)
single item queries, and W queries for the two item bundles). On the other
hand, not all possible preferences can be expressed using G2 graphs. So, it is
interesting to compare the expressive power of 2-wise dependent valuations to
that of other classes of valuations, such as those presented in [15], which can
also be elicited asking a polynomial number of value queries.

Due to space limitations, most of the material contained in this section has

been moved to the Appendix.

value queries (m

Remark. Costly disposal can be easily expressed using 2-wise dependencies
graphs. Costly disposal models those situations in which the bidder incurs a
cost for disposing undesired items. Thus, the monotonicity assumption typical
of the free disposal setting, i.e. that v(S') > v(S) for any S’ O S, no longer holds.
For instance, the fact that the bidder values a at 2 and b at 5, wants at most
one of the items, and incurs a cost of 1 for disposing of an extra item, can be
represented using the Gy graph which assigns weight 2 to node a, 5 to node b,
and weight -3 to the edge (a,b). To the best of our knowledge, 2-wise dependent
valuations are the only known class of valuation functions that express costly
disposal and can be elicited asking a polynomial number of queries. In fact, the
classes of easy to elicit valuations defined in [1,9,15], as well as the preference
elicitation techniques proposed in [6] and referred therein, are based on the free
disposal assumption.

4 Learning almost 2-wise dependent valuations

In the following, we will denote with G the class of valuation functions that
can be expressed using a G2 graph. In this section, we consider the case in which
the valuation function does not belong to Gz, but it can be well approximated
by a 2-wise dependent valuation v'.

In the remainder of this paper, we will make extensive use of the following
representation of valuation functions. Given the set I of items on sale, we build
the undirected graph H; introducing a node for any subset of I (including the
empty set), and an edge between any two nodes Sy, Sy such that S; C Sy and
|S1]| = |S2] — 1 (or vice versa). It is immediate that Hy, which represents the
lattice of the inclusion relationship between subsets of I, is a binary hypercube
of dimension m. Nodes in H; can be partitioned into levels according to the
cardinality of the corresponding subset: level 0 contains the empty set, level 1

the m singletons, level 2 the mm=1) subsets of two items, and so on.

5 The fact the two sweaters have additive valuation is for the purpose of illustration
only. In general, the two sweaters might display sub-additive valuation as well. How-
ever, in our example we want to emphasize that some of the items on sale might
have additive valuation when bundled together. The independence is reasonable if
the agent has to buy two sweaters (from some source) anyway, because winter is
coming.



The valuation function v can be represented using H; by assigning a weight
to each node of H; as follows. We assign weight 0 to the empty set, and weight
v(a) to any singleton a. Let us now consider a node at level 2, say node ab®. The
weight of the node is v(ab) — (v(a) + v(b)). At the general step i, we assign to
node Sy, with |Si| = 4, the weight v(S1) — 3 g, w(S), where w(S) denotes the
weight of the node corresponding to subset S. We call this representation of v
the hypercube representation of v, denoted H;(v).

Given the hypercube representation H;(v) of v, the valuation of any bundle
S can be obtained by summing up the weights of all the nodes S’ in H;(f) such
that S’ C S. These are the only weights contained in the sub-hypercube of H;(v)
“rooted” at S. We denote this sub-hypercube with H7 (v).

Proposition 1 Any valuation function f admits a hypercube representation,
and this representation is unique.

In the following, we will use the concept of distance of a valuation function
from a class, which is formally defined as follows.

Definition 1 Let v be an arbitrary valuation function, and C be an arbitrary
class of valuation functions. Given a function v' € C, we say that v' is a J-
approzimation of v if |v(S)—v'(S)| < & for every bundle S. The distance between
v and C, denoted d(v,C), is defined as the min{é|3v’ € C such that v’ is a -
approzimation of v}.

Assume that the valuation function v to be elicited is a J-approximation of

a 2-wise dependency function v'. The following theorem shows that a O(m?2§)-
m(m+1)
2

approximation of v can be learned asking value queries.

Theorem 1 Assume that the valuation function v is a §-approzimation of v',
for some v' € Ga. Then, a function g € Ga can be learned asking M
queries, such that for any bundle of items S,

ISI(ISI—I))

value

0(5) = 9(5) <6 (1+ 2105

Proof. Due to space limitations, the proof of this theorem, as well as the proofs
of all the theorems presented in this paper, is reported in the Appendix.

The bound stated in Theorem 1 is tight for the elicitation technique used in
the proof, in the sense that, for any value of m, there exist valuation functions
v,v', with v € Gg such that v’ is a d-approximation of v, and the function

g learned in polynomial time is a § (1 + W)—approximation of v. This is

proved in the following theorem.

% Slightly abusing the notation, we denote with ab both the bundle composed by the
two items a and b, and the corresponding node in H;.



Theorem 2 The bound on the approximation factor of the learned function g
stated in Theorem 1 is tight.

Let us consider valuations such that all the weights in the corresponding H;
graph are non-negative. We call these valuations strongly super-modular valua-
tions”. It is not hard to see that strongly super-modular valuations are hard to
elicit with value queries, because they require exponentially many values to spec-
ify. The following theorem gives an upper bound to distance between strongly
super-modular valuations and the G class, which contains easy to elicit valua-
tions.

Theorem 3 Let v be an arbitrary strongly super-modular valuation, and let vs
be the unique valuation function in Geo that coincides with v on the singletons
and two-item bundles. Let c;(v) = maxg s/—i{v(S) — v2(S)}, and let M(v) =

max;—3, ..m f(cz’_g)) Then, there exists a function v' € Gg such that |v(S) —

v'(9)] < @ . w for any bundle S.

Corollary 1 Let v be an arbitrary strongly super-modular valuation. Then, we
have d(v,Gz) < @ . M

The following theorem shows that the bound stated in Theorem 3 is tight.

Theorem 4 There exists a strongly super-modular valuation v such that d(v, Gz)
M)  m(m+1)
2 2 -

The results stated in theorems 1 and 3 can be combined into the following
theorem, which gives an upper bound on the error that we have when an arbitrary
strongly super-modular valuation v is approximated using a function in Gs.

Theorem 5 Let v be an arbitrary strongly super-modular valuation. Then, a
function g € Gz can be learned asking W

M@) (ISIGS1+ 1Y (, . 181081 =)
() - g(8) < 25 (B (14 B

value queries such that:

for any bundle S, where M (v) is defined as in the statement of Theorem 3.

Although the bound on the approximation error stated in Theorem 5 is con-
siderable, it is interesting that if v has a certain property (which is not sufficient
to make it easy to elicit), then the approximation error that we have if we ask
only w out of the 2™ — 1 possible value queries can be bounded in a non-
trivial way.

" The reason for this name is the following. If a valuation has the property that all the
weights in the correspondent H; graph are non-negative, then it is super-modular. On
the other hand, there exist super-modular valuations such that some of the weights
in the corresponding hypercube are strictly negative. Super-modular valuations are
valuations with increasing marginal utility.



The approximation bound of Theorem 5 is composed of two terms: the first

term @ . w, is due to the fact that v in general is this far away from

G2 valuations; the second term, (1 + W), derives from the fact that the

elicitor does not know which is the function v’ € Gy that best approximates v.
Thus, the elicitor can only guess a function g € Gz, and guessing the function

costs at most an (1 + W) error. While the first term in the approximation

error in general cannot be improved, since it derives from the fact that v ¢ Go,
a natural question is whether the elicitor might do a better guess than function
g (which, we recall, corresponds to function vy as defined in the statement of
Theorem 3). We believe that answering this question is not trivial, and we leave
this as an open problem.

5 Allocation with G, valuations

In this section, we investigate the computational complexity of the winner de-
termination problem when all the bidders participating in the auction have G
valuation functions.

Theorem 6 Computing the optimal allocation in a CA where all the bidders
have 2-wise dependent valuation functions is NP-hard, even when each bidder
places only values of 0 on individual items, and places nonzero values on only
two (adjacent) edges (in fact, a value of 1 on each of these edges).

However, if the graph obtained merging the G5 graphs of the bidders displays
some structure, then the auction can be cleared in polynomial time.

Theorem 7 Consider the graph of all vertices (items), and all edges between
items such that at least one bidder places a nonzero value on the edge. Suppose
this graph has mo cycles (it is a forest). Then the optimal allocation can be
computed in O(nm) time, where n is the number of bidders.

Note that Theorem 7 defines a non-trivial class of costly disposal valuation
functions which can be elicited using a polynomial number of value queries,
and for which the winner determination problem can be solved in polynomial
time. To the best of our knowledge, this is the first class of computational and
communication efficient costly disposal valuations which has been defined in the
literature.

6 Generalization: k-wise dependency

The 2-wise dependency model can be easily extended to the case of k-wise de-
pendency, for some k < m, by adding to the graph j-multiedges between subsets
of the items of cardinality j, for any j=3,..., k. These multiedges account for
up to k-wise dependencies between items. Given the k-wise dependency graph
G, the valuation of a bundle S is obtained by considering the subgraph G*°
induced by nodes in S, and summing up the weights of the nodes and of the



I,={a,b,c,d}
v(a)=3
v(b)=1
v(c)=0
wd)=2
v(ab) =17
v(ac)=3
v(ad)=3
v(be)=1
v(bd) =3
vied) =3
v(abc) =17
v(abd) =9
v(bed) =4
v(acd) =4
v(abed) =9

Fig. 2. Example of 4-wise dependence graph, and the corresponding valuation function
v. Multiedges are represented with dashed lines.

edges (including all multiedges) in G*. An example of G4 graph, along with the
corresponding valuation function, is shown in Figure 2. The class of valuations
that can be expressed using a Gy, graph is denoted Gy.

The following theorem shows that if a valuation function is included in Gy,
for some constant k < m, then it can be elicited in polynomial time.

Theorem 8 Let k be an arbitrary constant, and assume that there exist only
up to k-dependencies between items in the valuation function v. Then, v can be
elicited asking O(m*) value queries.

The following theorems generalize some of the results presented in the pre-
vious sections to the case of k-wise dependent valuations.

Theorem 9 Assume that the valuation function v is a d-approzimation of v',
for some v’ € Gy, with k an arbitrary positive constant. Then, a function g € Gk
can be learned asking O(mF) value queries, such that v(S) = g(S) for any bundle

S with |S| <k, and
lv(S) —g(S)| <6 (1 n <|i|>)

for any bundle S with |S| > k.

Theorem 10 Let v be an arbitrary strongly super modular valuation, and let
v be the unique valuation function in Gy that coincides with v on the bun-
dles of cardinality at most k. Let c;(v) = maxg g=i{v(S) — vk (S)}, and let

M (v) = maxXi=g+1,...,m ELM() Then, there exists a function v’ € Gy such
j=1...k 4

that [v(S) —v'(S)| < Mév) DI (l‘j.l) for any bundle S.

Corollary 2 Let v be an arbitrary strongly super modular valuation. Then, we
have d(v, Gy) < ) ek (7))

2 J




Apparently, the bound stated in Theorem 10 seems to be looser than the one
reported in Theorem 3, which would be counterintuitive. However, we have to
consider that, denoting with M (v) and My, (v) the value of M as in the statement
of theorems 3 and 10, respectively, it is very likely to be Ms(v) > My(v) in
practice. In any case, denoting with ds,ds,...,d; the distance between v and
the Gz, Gg, ..., Gk classes, respectively, we have do > d3 > ...dy because the
classes subsume each other.

7 The Gy hierarchy

Let G denotes the class of k-wise dependent valuations. It is clear that these
classes define a hierarchy, where G; C G;4+1 and every inclusion is strict. The
bottom class of the hierarchy is the G class, which corresponds to the class
of linear valuations (i.e., the valuation of any bundle is simply the sum of the
valuations of the singletons). These valuations are easy to elicit and to allocate,
but are of no interest in the CA setting. Let us consider the second element of the
hierarchy, Gz. Theorem 6 shows that valuations in this class are hard to allocate.
This means that even the most limited form of interdependency between items
(2-wise dependency), is sufficient to render the problem of finding the optimal
allocation hard. On the other hand, valuations that display this limited form of
item dependency remain easy to elicit. Indeed, Theorem 8 shows that elicitation
remains easy as long as the interdependencies between items are limited to sets
of cardinality k, where k is an arbitrary constant. What happens when the
interdependencies are between sets of g(m) objects, where g(m) is an arbitrary
function such that g(m) — oo as m — 0o? The following theorem shows that in
this scenario preference elicitation with value queries becomes hard.

Theorem 11 Let v be an arbitrary valuation in Gg(m), where g(m) is an ar-
bitrary function such that g(m) — co as m — oo. Then v is hard to elicit with
value queries.

Finally, the theorem below shows that the class at the top of this hierarchy,
G,,, is fully expressive, i.e., it can express any valuation function.

Theorem 12 FEvery valuation function can be represented using the G, model.
Moreover, the representation of any valuation function is unique.

Thus, we can end this section with the following theorem:

Theorem 13 We can define a hierarchy on valuations with respect to the mazx-
imal interdependencies between the items: valuations which display up to k-wise
dependencies belong to the Gk class. We have:

G1CG2C"'CGm,

where every inclusion is strict. The bottom class of the hierarchy, Gi, corre-
sponds to linear valuations, which are easy to elicit and allocate. Valuations in



Gy, where k > 2 is an arbitrary constant, are easy to elicit and hard to allocate.
Valuations in Gg(m), where g(m) is an arbitrary function such that g(m) — oo
as m — 00, are hard to elicit with value queries and hard to allocate. The class
at the top of the hierarchy, Gm, contains all possible valuations.
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A Appendix

A.1 Expressive power of G» valuations

In this section, we compare the expressive power of 2-wise dependent valuations
with the class of “easy to elicity” valuations presented in [15].

In [15], two types of valuation functions are considered: read-once formulas
and Toolbox DNF.

Let us first consider read-once formulas. A read-once formula is a function
that can be represented as a “reverse” tree, where the root is the output, the
leaves are the inputs (corresponding to items), and internal nodes are gates. The
leaf nodes are labeled with a real-valued multiplier. The gates can be of the
following type: SUM, MAX,, and ATLEAST.. The SUM operator simply sums
the values of its inputs; the MAX,. operator returns the sum of the ¢ highest
inputs; the ATLEAST. operator returns the sum of its inputs if at least ¢ of
them are non-zero, otherwise returns 0. As an example, the read-once formula
ATLEAST(2a, M AX (3b,¢),d) gives value 0 to a, value 3 to ad, and value 5 to
abc.

In [15], it is observed that read-once formulas can express both complemen-
tarities and substitutabilities. However, only “extreme” cases of super- and sub-
additivity can be expressed. In particular, the MAX, operator can be used to
express “c most valued” sub-additivity: the valuation of the bundle composed
by ¢’ of the inputs to the gate equals the sum of the ¢ items with highest value
in the bundle. If ¢’ > ¢, the resulting valuation is sub-additive. For instance, the
read-once formula MAX5(2a, 3b, ¢) gives value 2 to a, value 3 to b, and value 1
to ¢, but only value 5 to the bundle abe. A similar observation applies to the
super-addivity that can be expressed by read-once formulas. The super-additive
operator is ATLEAST .. However, only “c out of ¢'” super-additivity can be ex-
pressed: the valuation of a bundle is non-zero only if the bundle is composed by
at least ¢ of the ¢’ inputs of the gate. So, the items do not have value as single-
tons, but they have value only when they are bundled with at least other ¢ — 1
items. For instance, ATLEAST,(2a, 3b, c), gives value 0 to singleton bundles a,
b and ¢, and gives the super-additive value of 5 to the bundle ab.

From this discussion, it is clear that many natural sub- and super-additive
valuations cannot be expressed by read-once formulas, while they can be easily
expressed in the 2-wise dependency graph model. Intuitively, the super- and
sub-additivities that cannot be expressed by read-once formulas are “marginal
value” additivities, in which the items have a non zero value as singletons, and
when bundled together they generate a positive or negative marginal utility. For
instance, consider the valuation function v such that v(a) = 2, v(b) = 3, and
v(ab) = 6. Function v can be easily expressed in the G2 model (node a with label
2, node b with label 3, and edge (a, b) with label 1), while it cannot be expressed
using read-once formulas. Similarly, valuation functions with negative marginal
utilities, such as v'(a) = 2, v'(b) = 3 and v'(ab) = 4, can be easily expressed in
G5 but not with read-once formulas.



On the other hand, there exist valuation functions that can be expressed with
read-once formulas but not with the G5 model. In particular, formulas containing
MAX. or ATLEAST, operators with at least 3 inputs cannot be expressed using
G4 (this easily follows from the fact that three-wise dependencies cannot be
expressed in G2). Note that, even if all the gates in the read once formula have
at most two inputs, this is not sufficient for the resulting valuation function to
be representable using G2. For instance, the valuation function generated by the
formula ATLEAST2(MAX;(3a,b), 5¢) cannot be expressed using G'». Indeed, the
intersection between the class of read-once formula and 2-wise dependency graph
can be characterized as follows:

Theorem 14 A valuation function v generated by a read-once formula f can be
expressed using a 2-wise dependency graph if and only if the subtrees rooted at
any of the MAX,. and ATLEAST, gates have at most two inputs (items) amongst
their leaves.8

The immediate proof of this Theorem is omitted.

Let us now consider the other type of valuation functions considered in [15],
i.e., ToolboxDNF. This class corresponds to the valuation functions that can be
expressed as monotone polynomials. For instance, polynomial 3a +4ab+ 2bc+ cd
gives value 3 to item a, 0 to item b, value 9 to the bundle abc, and so on.
Contrary to read-once formulas, ToolboxDNF cannot express substitutabilities
between items, since only positive terms in the polynomial can be used. However,
ToolboxDNF allows the representation of “marginal utility” super-additivities.
For instance, function v such that v(a) = 2, v(b) = 3, and v(ab) = 6 can be
represented by the polynomial 2a + 3b + ab.

The intersection between the class of G» and ToolboxDNF valuation func-
tions is characterized in the following theorem, whose immediate proof is omit-
ted:

Theorem 15 A wvaluation function v generated by a ToolboxDNF polynomial p
can be expressed using a 2-wise dependency graph if and only if all the monomials
in p contain at most two variables (items).

Suppose that all the monomials in p contain at most two variables, and
that there are ¢t monomials. Then, the valuation function corresponding to p
can be elicited in O(m?) time using the G5 graph; this is an improvement over
the O(mt) = O(m?®) bound proved in [15] (which, however, holds for general
ToolboxDNF valuations).

8 The only if here is intended as follows. If the subtrees rooted at any of the MAX,
and ATLEAST, gates have at most two inputs (items) amongst their leaves, then
it is possible to choose the weight on the leaves in such a way that the resulting
valuation cannot be expressed using a 2-wise dependency graph.



A.2 Proofs

Proof (Proof of Theorem 1.). The learned function g is built as follows.
First, we ask the value of any bundle of at most two items. Then, we built the
G graph using these values, and we calculate g accordingly. It is immediate that
v(S) = g(S) for any bundle S of at most two items.

Let us now consider a bundle S with more than two items. Given a set .S with
|S| > 2, the value of v on S can be written as follows: v(S) = 3 g/ g |51<2 W(S)+
Ysics, s>z W(S") = v<2(S) + v52(5). On the other hand, we have g(S) =
9<2(8) + g>2(S). Since g € G2, g>2(S) = 0; furthermore, we have g<2(S) =
v<2(S), from which we get g(S) = v<2(S). Thus we can write |v(S) — g(5)| =
[us2(S)]-

Since v is a J-approximation of a 2-wise dependent valuation, we have |v(S) —
v'(S)| <4, for some v' € Gy. Thus, we can write |[v<y(S) +v52(S) —vL,(S)] <6,
which, assuming w.l.o.g. that v(S) > v'(S), gives v52(S) < d+ (vL5(S)—v<2(9)).
Thus, the problem is reduced to finding an upper bound to |[vL,(S) — v<2(S)|.
Let us consider an arbitrary bundle ab of two items. Since v is -approximated by
v', we have |v(ab) —v'(ab)| < 0. Since there are w distinct such pairsin S,
and each of them contributes with at most d error, we have |vL,(S) —v<2(S)| <

5%, and the theorem follows.

Proof (Proof of Theorem 2.). Let us consider the valuation function v which
gives value 0 to any singleton and two-items bundle, value ¢ @ to any bundle

composed by i items, with ¢ = 3,...,m — 1, and value § (W + 1) to the

grand bundle. The weights on H;(v) are 0 for the nodes at level 1 and 2, 5@
for nodes at level 7 with ¢ =2k +1,1 <k < [%] — 1, and —6@ for nodes
at level 4 with i = 2k, 2 <k <[] — 1. Finally, the weight of the grand bundle
is & W (with the appropriate sign depending on whether m is odd or even)
augmented by 4.

Let us consider the valuation function v’ € Gg such that the weights on the
corresponding H; graph are as follows: 0 on the first level nodes, ¢ on the second
level nodes, and 0 on nodes at level ¢, with ¢ > 3. It is easy to see that |v(S) —
v'(S)] < 6 for any bundle S. On the other hand, the learned function g coincides
with v on the singletons and two-item bundles, i.e., it is the constant function
that gives value 0 to any item. Thus, the approximation error of g is maximum

on the grand bundle, and it corresponds to the bound § (W + 1) stated in
Theorem 1.

Proof (Proof of Theorem 3.). W.lo.g., assume that v(S) = 0 for any S with
|S] < 2. This way, v2 = 0 on every bundle, and the presentation of the proof is
simplified.



The intuition behind the proof is the following. A function in G2 has non-zero
weights only on the levels 1 and 2 of H;, while the original function v has possibly
non-zero (positive) weights in every level greater than 2. The idea is to set the
weights on the nodes in levels 1 and 2 in Hy in such a way that the error the
we have on any possible bundle is minimum. This way, we will obtain a function
v' € G with the desired properties.

Let us consider an arbitrary bundle S; composed by i items, and let N, denote
the set composed by nodes in the levels 1 and 2 of HIS", the sub-hypercube of
dimension i rooted at S;. The cardinality of N%, is i(igl) , as it is the cardinality
of the node sets corresponding to any other bundle composed by i items. If we
would assign weight f(vl(f{)) to any node in N, in the function v’ € Gz, we would
get a zero error in the valuation of bundle S;. Of course, different bundles induce
different “desired weights” on the nodes in levels 1 and 2 of H;. Let us consider
an arbitrary node w in level 1 or 2 of Hj, and denote with min, and max,
the minimum and maximum values of these desired weights, calculated over the
weights induced by all possible bundles of cardinality at least 3 that contain w.
If we set the weight of u to MeZutminu e have that the contribution to the
approximation error on any possible bundle due to node u is at mos
The proof of the theorem then follows by observing that:

{ Mmazy —MiNy
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— since all the weights in the Hj(v) are non-negative, we have min, > 0 for
any node u in level 1 or 2;
— defining ¢;(v) and M (v) as in the statement of the theorem, we have max, <
M (v) for any node w in level 1 or 2;
— for any bundle S, there are exactly w nodes in levels 1 and 2 of the
sub-hypercube of dimension |S| rooted at S, each contributing with error at
M(v)

most —

Proof (Proof of Theorem 4.). Let v be defined as follows: v(S) = 0 for
any S such that |S| < m, and v(I) = ¢, for some constant ¢ > 0, where I
denotes the grand bundle. We have that v2(S) = 0 for every bundle S, and
the maximum value M (v) as in the statement of Theorem 3 equals ﬁ
Let v' € Go be the function that assigns weight m to every node in the
levels 1 and 2 of Hy, and weight zero everywhere else. By Theorem 3, we have
[v(S)—v"(S)] < @ . m for any bundle S, i.e., d(v, Gz) < @ : W
Furthermore, it is easy to see that the upper bound on |v(S) —v'(S)| is matched
for all bundles S, i.e., [v(S) —v'(S)| = @ : m for any S. This implies
that there does not exist a way of changing the weights on the nodes in the levels
1 and 2 of H; that results in a smaller approximation error. To see this, assume
the weight of, say, node u is augmented by € > 0, and let us denote with v the
resulting valuation function. The error on the grand bundle will be reduced by e.
On the other hand, the error on every bundle S of cardinality < m such that the
sub-hypercube of dimension |S| rooted at S includes u is increased by e. Since



the approximation bound was matched on every possible bundle S, it follows
that the overall approximation error of ¥ will be increased by €. It is easy to see
that the same argument applies if the weight of any of the nodes in the levels 1
and 2 of Hy is reduced by an arbitrary amount. This implies the theorem.

Proof (Proof of Theorem 6.). It is easy to see that (the decision variant of)
the problem is in NP: for any assignment of items to bidders, we can compute
the value of that assignment to each bidder in polynomial time, and sum these
values to get the assignment’s total value.

To show that the problem is NP-hard, we reduce an arbitrary instance of the
NP-complete EXACT-COVER-BY-3-SETS problem to an instance of the winner
determination problem as follows. Recall that in EXACT-COVER-BY-3-SETS,
we are given a set S with |S| = m, and subsets Si,Ss,...,S, with |S;| =3

for all 7, and are asked whether 7 of the subsets cover S. Then, in our clearing

problem let there be an item i, for every s € S, and, for every Sj = s}, 57, s
2

(where st e 52 ; 1s an arbitrary ordering of the elements of the subset), a bid bg;,
which places a value of 1 on edges (ZSI,ZSZ) and (zsz,zsa), and places a value of
0 on everything else (including all vertlces) We are asked whether it is possible
to obtain a value of 22 in this auction. We show the instances are equivalent.
First suppose there exists an exact cover by 3-sets. Then, for each S; in the

cover, give the bidder corresponding to bs, the items 4,1,4.2,4,3. This is a valid

S I’ S I’ S
allocation because none of these sets of items overlap (because none of the sets in
the cover overlap). Moreover, because each such bidder’s value in this allocation
is 2, and there are % such bidders, the total value of the allocation is 277” So
there exists an allocation that achieves the target value.
Now suppose there is an allocation that achieves the target value. Let n(b)
be the number of items allocated to the bidder corresponding to bid b, and let

v(b) be the value of the allocation to that bidder. Then the following must hold:
if this bidder receives at least one item, we must have Z%Ig; < é Moreover, the
inequality is strict unless the bidder receives exactly the three items that are
endpoints of his nonzero edges. The reason is the following: v(b) can be at most
2, and will be less unless the bidder receives at least the three items that are
endpoints of his nonzero edges, so this is certainly true for n(b) > 3. If n(b) = 2,
then v(b) can be at most 1 and the fraction can be at most § < 2; if n(b) = 1,

then v(b) = 0. Because the value of any allocation is > n(b ) Eb)) (where W is
beEW

the set of bids that win at least one item), it follows that the target value can
be achieved if and only if all items are allocated to bidders, and Eb)) = for
all b € W. But because this equality holds only if every bs; € W receives 1tems
is} , is?, iS?, it follows that the .S; corresponding to winning bids in an allocation
achieving the target value constitute an exact cover by 3-sets.



Proof (Proof of Theorem 7.). The algorithm solves each tree in the forest
separately. Fix a root 7 of the tree. For any vertex ¢ in the tree, let ¢(i,b) be the
highest value that can be obtained in the auction from item ¢ and its descendants
alone (that is, if we throw away all other items), under the constraint that the
bidder corresponding to bid b gets item i. Let A(¢,b) be the set of all allocations
of the descendants that achieve this value. Then, for any clearing that assigns i to
the bidder corresponding to b, without any loss we can change the allocation of
the items in the subtree to be consistent with any element of A(i,b) (assigning the
descendants of 7 in the exact same manner); this will achieve at least as large total
value from edges and vertices within the subtree; the value from all other vertices
and all other edges that are disjoint from the subtree is clearly unaffected; and
the only other edges that have one of the vertices of the subtree as an endpoint
have i as that endpoint—and because i is still assigned to the bidder correspond-
ing to b, they remain unaffected. Let ¢, ...,c¢p, be the children of i. Then, we

can conclude that #(i,b) = vy(i) + i max{vp (¢, cx) + t(ck, b), maxy 4 t(ck,b')}.
k=1

This allows us to set up a simple dynamic program that will compute the ¢(i, b)
from the leaves upwards, and thus will eventually compute t(r,b) for all b, and
the highest such ¢(r, b) is the optimal allocation value. We observe that for every
bidder, for every edge (i, j), the value v(i, j) is read exactly once; also, for any
b and ¢, the expression maxy » £(¢,b") takes only constant time to compute, be-
cause there are only two b'’s for which we ever (for any b) need to look at t(i,’):
one that maximizes ¢(i,b’) (call it b;1), and another one (b;2) which maximizes
t(i,b") over all the remaining b’ (which gives the second highest (¢, b"))—for the
case where b = b;1. It follows that the running time of the algorithm is O(mn).
The straightforward extension of the program to compute a best partial alloca-
tion a(i,b) (with the restriction that 7 is allocated to the bidder corresponding
to b) will also allow for computing an optimal allocation.

Proof (Proof of Theorem 8.). The elicitor asks the valuation of any bundle
of up to k items, i.e. O(m*) value queries. Then, the elicitor builds the Gy,
graph as follows: it first builds G2 as described in Section 2. Let vy be the
valuation function derived from G2. For any three items bundle abc, the elicitor
checks whether v(abc) = v2(abc). If not, a 3-edge between nodes a, b and ¢ is
inserted in the graph, with weight v(abc) — vo(abc). This way, graph G5 is built,
whose associated valuation function is denoted v3. The process described above
is repeated until Gy, and the associated valuation function vy, is built. Since
only up to k-wise dependencies occur in the original valuation function v, and
G, can express all such dependencies, it follows that vy = v, and the theorem is
proved.

Proof (Proof of Theorem 11.). Let us consider an arbitrary valuation v €
Gg(m), Where g(m) is an arbitrary function such that g(m) — co as m — oo.
We observe that the problem of learning v can be equivalently restated as the
problem of learning all the weights in Hj(v). Since the auctioneer knows that
the valuation is in Gg(m), it can immediately conclude that w(S) = 0 for every
bundle S such that |S| > g(m). Furthermore, let us assume that the auctioneer



(somewhat magically) already knows the value of all the weights w(S’), for every
bundle S’ such that |S’| < g(m). In other words, assume we are in the situation
in which the only task left to the auctioneer is to learn the weights w(S), where
|S| = g(m). We claim that in the worst case at least (g(fn)) (which is super-
polynomial in m) value queries are needed in order to accomplish this task.

In order to prove the claim, we first observe that the mere fact that the auc-
tioneer knows the weights in levels 1,...,g(m) — 1 and g(m) + 1,...,m of the
hypercube is not sufficient for it to infer the value of any of the weights at level
g(m). In fact, by the definition of weight, we have w(S) = v(S) — Y g cgw(S’),
where |S| = g(m); thus, the mere knowledge of ) ¢, 5 w(S') is not sufficient for
the auctioneer to learn anything about w(S). So, how could possibly the auc-
tioneer increase its knowledge? We recall that the only tool for the auctioneer
to increase its knowledge is by asking value queries. Observe that value queries
regarding bundles S with |S| < g(m) are useless, since the auctioneer already
knows the value of all the weights in levels 1,...,g(m) — 1 of the hypercube.
So, the auctioneer must ask queries on “large bundles”. If the auctioneer ask
the value of a certain bundle S, with |S| = g(m), this information reveals the
value of only one of the unkwown weights, w(S). Since there are (g& )) such bun-

dles S, this approach would require asking a super-polynomial amount of value
queries. So, the only possibility left for the auctioneer to reduce the communica-
tion burden is to ask the value of some bundle S, with [S| > g(m). Assume the

auctioneer asks the value of bundle S. Let us denote with Si,...,S. the subsets
of cardinality g(m) contained in S. We can write:

v(S) =w(S)+ Y w(S)+ > w(S') . (1)

1=1,...,c S'C8S,|8'|#g(m)

Since v(S5), w(S) and ZS,CS7‘S,‘¢g(m) w(S") are known, (1) defines an equation
with ¢ unknowns (the weights of the bundles S;). We observe that:

a) the answers to different queries define different equations;
b) there are ( () unknowns in total;

¢) all the equations are linearly independent.

Given ¢), a number of equations equal to the number of unknowns is necessary
to learn the entire valuation function. Since there are super-polynomially many
unknowns — b), and every value query defines a unique equation — a), it follows
that super-polynomially many queries are needed to fully elicit the valuation.
Note that even mixing value queries on bundles of cardinality g(m) and queries
on larger bundles would not change the situation, since the answer to a value
query on a bundle S of cardinality g(m) defines the unique simple equation

w(S) =v(S) = Xgcgw(S).

Proof (Proof of Theorem 12.). It is straightforward that the valuations of
individual items (1-wise dependencies) are uniquely defined. We proceed induc-
tively, supposing that all j-wise dependencies for 1 < j < k are uniquely defined.
Supposing for a moment that no larger dependencies were given, then for any



subset of size k + 1, the j-wise dependencies for 1 < j < k define a valuation for
this subset. If this is not the correct valuation, it can and must be adjusted with
a k + 1-wise dependency over these items that is exactly the difference between
the correct valuation and the valuation implied by the j-wise dependencies for
1 < j < k, because all other dependendencies that are still undefined do not
concern a subset of these k + 1 items.



