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Abstract

We consider a manufacturer using a Request For Quotes reverse auction in combination

with supplier qualification screening to determine which qualified supplier will be awarded a

contract. Supplier qualification screening is costly for the manufacturer, for example involving

reference checks, financial audits, and on-site visits. The manufacturer seeks to minimize its

total procurement costs, i.e. the contract payment plus qualification costs. While suppliers

can be qualified prior to the auction (pre-qualification), we allow the manufacturer to delay

all or part of the qualification until after the auction (post-qualification). Using an optimal

mechanism analysis we analytically explore the tradeoffs between varying levels of pre- and post-

qualification. While using post-qualification causes the expected contract payment to increase

(bids from unqualified suppliers are discarded) we find that standard industrial practices of pre-

qualification only can be improved upon by judicious use of post-qualification, particularly when

supplier qualification screening is moderately expensive relative to the value of the contract to

the buyer.

June 2006

1. Introduction

The average U.S. manufacturer spends 40-60% of its revenue income to purchase goods and services

(U.S. Department of Commerce 2005). Vital for most companies, the procurement function must

negotiate reasonable prices with suppliers and – equally important – it must make reasonable efforts

to ensure that contracts are made with qualified suppliers who are indeed able to fulfill the contract.

Contracting with unqualified suppliers can result in significant costs for the buyer. For example,

in the third quarter of 1997, parts shortages contributed to Boeing’s $696M loss (Biddle 1997).

In some cases, damage done to customers can be potentially irreversible, particularly in health
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care; for example, the production shutdown of vaccine supplier Chiron caused flu vaccine shortages

in 2004 (Whalen et al. 2004). Vulnerabilities to supplier non-performance deepen for lengthly

global supply chains, while price pressures and the myriad of global supply options compounds the

procurement manager’s challenge of sorting the able suppliers out from the charlatans.

To verify a supplier’s qualification, the procurement function must spend time and money

vetting suppliers with qualification screening. Screening often involves references checks, financial

status checks, surge capacity verification, and even site visits to supplier production facilities.

Typically, qualification screening precedes price negotiations with suppliers. This is particularly

common when buyers use qualification screening before a Request For Quotes (RFQ) auction for a

well-defined good or service, a prototypical procurement setting on which we focus this paper. (For

details on procurement auctions in practice, see, for example, Jap 2003.) To convince the suppliers

to bid aggressively, the buyer touts the fact that only the lowest price will win the contract when

all participants in the auction are absolutely qualified to win the contract.

Yet committing to award business to the lowest bidder requires the buyer to spend significant

time and resources screening all suppliers entering the auction. This paper analyzes how much

costly supplier qualification screening should be performed before the auction. At one extreme the

buyer uses pre-qualification only, in which he fully screens all suppliers entering the auction and

commits to awarding the contract directly to the lowest bidder, so suppliers in an open-descending

auction (were this the format used) would bid down to their true cost (but, they may not have to).

At the other extreme the buyer uses post-qualification only, in which he screens suppliers only after

seeing their bids in the auction; instead of screening all suppliers, the buyer homes in on the most

promising bidders and screens them in sequence until finding one who is qualified. But, this comes

with a tradeoff: suppliers (assumed strategic) no longer bid down to their true cost because they

can potentially win the contract without being the lowest bidder – the winner will be the lowest

qualified bidder, if any. In this paper we consider these two extremes, and mixtures of the two in

which suppliers are partially screened before the auction.

Our study appears to be the first auction model in which contracting is contingent upon
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passing costly supplier qualification screening, a common feature of RFQs in practice. The central

tradeoff of the research problem is this: while delaying some or all qualification screening until after

the auction saves the buyer qualification screening costs, doing so increases contract payments and

also risks non-transaction (turning to an outside option, such as internal production) if all suppliers

in the auction turn out to be unqualified. By optimally balancing these tradeoffs, we find that the

buyer can significantly reduce its total procurement cost (qualification cost plus contract payment)

by judiciously delaying all or part of supplier qualification screening until after the auction, provided

the qualification screening is not prohibitively selective (suppliers stand a reasonable chance of

passing qualification) and not too costly (prompting defection to the outside option) nor too cheap

(making total pre-qualification the best option). Our analysis endogenizes the level of pre- and

post-qualification as well as the negotiation mechanism chosen by the buyer.

Section 2 provides a literature review, and §3 introduces the model and assumptions. Com-

bining classical mechanism design with optimal stopping time problems, the negotiation structure

(optimal reserve prices and post-qualification sequence) is derived in §4.1 and behavior of the opti-

mal balance between pre- and post-qualification is characterized in §4.2. Cost savings are explored

in §5 and §6 discusses practical considerations and extensions.

2. Literature Review

Many practical decisions faced by procurement managers have been addressed by academic research:

contract type, such as fixed price versus cost plus; negotiation framework such as auction versus

face-to-face; and competition type such as sole versus dual sourcing. See Elmaghraby (2000) for

a detailed survey on procurement studies in economics and operations management. The present

paper focuses on a procurement situation in which a buyer holds an auction to award a contract

to one of several potential suppliers. There is a sizeable literature on auctions – the books by

Krishna (2002) and Milgrom (2004) provide excellent treatments and detailed references – but only

a handful of such studies include the processes which occur before and after an auction. Typically

these processes seek to mitigate the risk of consummating a transaction in which one or more parties
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does not obtain what it expected, what we will call non-performance. Note that non-performance

could describe, for example, an item falling short of the winner’s expectations, or a winner failing

his obligations to the auctioneer. The supplier qualification process central to this paper – and to

our knowledge novel in the literature – is one such process meant to mitigate the risk of supplier

non-performance in a procurement auction.

One type of non-performance in forward auctions is the winner’s failure to pay. Papers dealing

with this issue have looked at the ability of bidders to borrow money and the ensuing possibility

of broke winners (Zheng 2001), and the use of deposits or fees forfeited to the auctioneer in the

event a winning bid is reneged (Rothkopf 1991, Waehrer 1995). In a procurement auction context,

surety bonds (analogous to a bid deposit) to partially offset non-performance costs are examined by

Calveras et al. (2004), while Braynov and Sandholm (2003) study a buyer who is unable to directly

verify the “trustworthiness” of suppliers, but knowing the form of the suppliers’ cost functions

can design bidding options which cause each supplier to reveal themselves as either a high or low

trustworthy type, allowing the buyer to estimate the expected utility of contracting with that

supplier. In contrast, we assume that the buyer verifies (at a cost) that a supplier is qualified up

to some threshold prior to contracting (he will not contract with unqualified types). Practitioners

we have spoken with use qualification and surety bonds in tandem, the former to proactively avoid

problems (the focus and main contribution area of our paper), the latter to partially recoup costs

if problems arise.

A second type of non-performance is misevaluation of the item. For example, costly bid

preparation (or costly entry, or due diligence) plays a central role in forward auctions for non-

standard, complex items such as an entire company or its assets. To encourage participation in

auctions where bidders trade off their bid preparation costs (possibly millions of dollars) against

their anticipated likelihood of winning the item, Ye (2005) suggests inviting only bidders whose bid

in an initial, assumed costless round of bidding signals that they stand a good chance of winning

the item. While Ye finds that screening out low value bidders can promote competition in a

complex item auction by limiting bidders’ unnecessary bid preparation costs, we examine screening
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costs borne by the auctioneer (buyer) and find that screening out unqualified suppliers promotes

competition by increasing the likelihood that each bid in an RFQ auction will be qualified and

therefore eligible for contracting.

In our context of relatively well-specified RFQ auctions we assume that a supplier’s bid

indicates the value offered to the buyer should that supplier be deemed qualified. This allows the

buyer to delay all or part of the qualification process until after the auction, at which point – with

bids in hand – he can home in on the suppliers offering the highest value (who may or may not turn

out to be qualified). Other auction theoretic papers have focused on situations where it is costly

for the auctioneer to estimate even the value offered in the suppliers’ bids. In such situations, the

buyer could employ a sequential search model whereby suppliers are communicated with and their

bids evaluated until either finding a supplier whose cost is sufficiently low or exhausting the supply

pool (McAfee and McMillan 1988). In an effort to explain unconsummated Request For Proposals

auctions documented by Snir and Hitt (2003), Carr (2003) models an auction for professional

services where proposals (bids) are difficult to compare; in his model, faced with high evaluation

costs after the auction, the auctioneer might simply forego evaluating any proposals in favor of an

outside option. The buyer sometimes turns to an outside option in our model, but for different

reasons – either due to reserve prices, or after disqualifying all suppliers invited to the auction.

Methodologically, our study is also related to the screening literature, in particular studies

such as Feinberg and Huber (1996) which assume that some form of screening can be performed

cheaply (e.g., bids can be observed) relative to more costly forms of screening (e.g., qualification).

In our context, partial qualification screening impacts the extent to which bidders compete in the

auction, by creating randomness in the number of qualified bidders in the auction. For auctions

with an uncertain number of bidders, optimal mechanisms and equilibrium bid functions have been

respectively derived by McAfee and McMillan (1987) and Harstad et al. (1990), but neither studies

qualification processes or the attendant possibility of having to turn to an outside option.

Our study is related in spirit to multiple dimensional auctions (Che 1993, Beil and Wein

2003, Chen 2004) in that both seek to take non-price factors into account. Although the goals of
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a multiple dimension auction and qualification processes are related, they are distinct: multiple

dimension auctions serve as tools to better express the value of non-price abilities of suppliers, such

as quality. Qualification processes seek to verify the ability of a supplier to deliver on the promises

expressed by its bid, be they promises on price or any other dimensions. While we will assume a

single dimension (price) auction format to keep our focus on the qualification process, a multiple

dimension auction could be used at the expense of more complex analyses (discussed in §6.4).

3. Model

We model a risk-neutral cost-minimizing buyer seeking to award an indivisible contract to a qualified

supplier. A supplier is called qualified if the buyer is willing to transact with the supplier without

performing additional due diligence. Qualification thresholds vary widely in practice depending on

the buyer’s needs and the contract type (see Leenders and Fearon 1997 for a discussion of purchasing

processes). The constituent requirements themselves exhibit varying degrees of standardization.

Among the more standard requirements are the need to verify the supplier’s reputability (e.g.,

through published ratings) and ability to ramp up production. Not all requirements are so trans-

parent, as qualification can encompass relational aspects that are difficult to codify; e.g., a just in

time manufacturer we spoke with visits with supplier management to ensure they and the supplier

“see eye to eye on lean principles” before awarding contracts. These verification processes take

time and can be costly, particularly if involving visits to distant supplier facilities. As is common

in industry, we will refer to this verification as the qualification process, or the act of qualifying a

supplier. A supplier is described as qualified once he successfully passes the qualification process.

To begin formalizing the model, let q0 be the buyer’s qualification threshold, a scalar between

0 and 1 capturing the strictness of the pre-award requirements. For each supplier i, we will define

its qualification level qi as the maximum qualification threshold that supplier i can pass. If qi ≥ q0,

the buyer’s qualification process on supplier i would reveal that supplier i is qualified. The cost the

buyer would incur to do so is denoted byK, the total cost to the buyer of verifying that an individual

supplier meets all requirements to be deemed qualified. On the other hand, if qi < q0, supplier i
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would be rejected during the buyer’s qualification process after failing to meet a requirement. In

this latter case, how much cost would the buyer incur? Assuming that the requirements are nested

(passing threshold q implies passing threshold q′ < q, but not vice-versa), the cost strictly increases

with qi and approaches K as qi → q0. To streamline the exposition we further assume that the cost

is linear and normalized such that a threshold of zero costs zero to verify, implying that weeding

out an unqualified supplier i costs the buyer qi

q0
K; we discuss non-linear functions in §6.2.

Each supplier i possesses two dimensions of private information. The first is a signal si ∈ [0, 1]

about their true value of qi. The information contained in si induces a conditional probability

distribution over qi given by H(·|si). (For simplicity we will assume that all distributions in this

paper are continuous, increasing and differentiable over their domains.) Signals s1, s2, . . . , are i.i.d.

random variables distributed according to G, which is common knowledge.

Supplier i’s second dimension of private information is its cost to fulfill the contract, xi,

which it observes perfectly prior to the auction. Cost xi is distributed according to a commonly

known distribution Fi on domain [0, 1] which for simplicity is assumed statistically independent of

other supplier’s costs and signals, including si. In reality, a supplier likely to be qualified might be

expected to have relatively high costs if qualification requires that costly spare capacity be kept on

hand for an ability to ramp up production in the face of surge orders from the buyer; on the other

hand, lower costs might prevail if qualification includes lean principles which impart efficiency. We

leave such issues for future research.

The buyer completely verifies a supplier’s qualification before contracting with them, so there

is no adverse selection for qualification. In this paper the signals si serve the purpose of explicitly

modelling the information over qualification, although possible extensions using these signals in

the auction mechanism are discussed in §6.4. However, there is adverse selection for supplier costs.

The buyer utilizes an auction to extract private cost information from the risk-neutral suppliers,

who – as is standard in the auction literature – are assumed to be fully rational players following a

Bayesian Nash bidding equilibrium. Bidding is assumed to be costless, as is common in the auction

literature. To capture practical demands on the buyer’s resources such as auction participant
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training and technical support, we assume the auction has a finite bidder capacity N . In §4.2 we

discuss the case where n, the number of bidders invited to the auction, is chosen optimally subject

to n ≤ N . In the meantime our analysis treats n ≤ N as fixed.

We now describe the procurement process the buyer uses to minimize costs associated with

supplier qualification screening (qualification checks) and the contract payment associated with

supplier cost screening (competitive auction). The procurement process proceeds as follows.

Pre Qualification Stage. The buyer announces the qualification threshold q0 and a pre-qualification

threshold q ≤ q0. The buyer verifies requirements of supply pool members one by one until finding

n suppliers who pass the pre-qualification threshold. (For simplicity we assume an infinite supplier

pool; the finite case is an interesting, but complicated extension – see §6.3.)

Auction Stage. The n pre-qualified suppliers participate in a price-only auction (we discuss a

potential multiple attribute extension in §6.4). To help minimize contract payment, the buyer

employs optimally chosen reserve prices during the auction, as is common in the mechanism design

literature (e.g., Myerson 1981). Unlike a traditional optimal auction where the low virtual cost

supplier wins the contract, in our optimal auction the lowest virtual cost qualified supplier wins

the contract (see the Post Qualification Stage description below). Virtual costs account for infor-

mation rents accruing to suppliers and are defined on p14. When bidding, supplier i estimates the

probability a given rival is qualified as

β =

∫ 1

0

1−H(q0|s)

1−H(q|s)
dG(s). (1)

In particular, each supplier believes it faces a Binomial(n − 1, β) distributed number of qualified

rivals.

Post Qualification Stage. After the auction the buyer post-qualifies suppliers up to qualification

threshold q0 in the order of increasing virtual cost until either finding a qualified supplier, quitting,

or disqualifying all n suppliers (in §4.1 we prove this is optimal). In the latter two cases, the

buyer turns to his outside option at a cost of Co. For example, Co could be the cost of in-house
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production.

The main tradeoffs of the model are rooted in the variable β. If β = 1, then the buyer performs

all due diligence prior to the auction – the situation tacitly assumed in traditional auction theory.

In such a case the buyer incurs qualification costs for at least n (possibly more if some are rejected

en-route to being qualified) suppliers prior to the auction, and awards the contract directly to the

lowest virtual cost bidder after the auction. On the other hand, β =
∫ 1
s=0[1−H(q0|s)]dG(s) models

postponement of all due diligence; after the auction, the buyer only pays qualification costs until

finding the first qualified bidder or turning to his outside option. Clearly the expected pre- plus

post-qualification costs are greater for the case when β = 1. But the buyer also must consider the

expected costs of contracting and non-transaction, for which the cost relationship can be reversed

– consider the following toy example showing why larger β (more pre-qualification) reduces the

expected costs of contract payment and non-transaction in an open descending auction. Suppose

supplier i faces existing bids of $100,000 from supplier j and $125,000 from supplier k. In order to

take the lead in the auction, supplier i must enter a bid below $100,000. However, the value of β

must be considered: if β = 1, then taking the lead is a prerequisite to winning the contract, and

supplier i knows he must bid below $100,000 in order to have any hope of winning the business.

Conversely, suppose β << 1; in this case, supplier i knows that rivals j and k stand a good chance

of being disqualified after the auction. A bid exceeding $100,000 – or $125,000 – could potentially

still win the contract even though it would not take the lead in the auction. Thus supplier bids are

inflated in the open descending auction when β < 1, but by how much? And what about the risk

that all suppliers are disqualified, forcing the buyer to use his costly outside option? As discussed

in the next section, precisely capturing the effects of β when designing the buyer’s optimal auction

mechanism requires extension of existing (Myerson 1981, McAfee and McMillan 1987) optimal

mechanism methodology.

For various pre-qualification thresholds (captured by β), the remainder of this paper speci-

fies the buyer’s optimal mechanism, quantifies the expected costs of pre-qualification PRE, post-

qualification POST, contract payment PAY, and non-transaction NT, and then uses these analyses
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to characterize how the optimal pre-qualification threshold depends on model parameters.

4. Analysis

4.1 Expected Costs Derivations

We begin by deriving PRE, the expected cost of the pre-qualification stage. We then move on to

deriving PAY, POST, and NT, the expected costs of the auction and post qualification stages.

Pre-Qualification Cost. As explained in §3 we assume an infinite supply pool from which the

buyer samples until finding n suppliers passing the pre-qualification stage. The expected pre-

qualification cost is comprised of n pre-qualification “successes” plus geometrically distributed

numbers of pre-qualification “failures” before each success. Since a supplier with type s passes

pre-qualification with probability 1 − H(q|s), the unconditional probability of success from the

buyer’s perspective equals 1 −
∫ 1
s=0H(q|s)dG(s). Because the qualification cost is linear in the

amount of qualification performed, for each success the buyer pays q
q0
K to pre-qualify a supplier

with qualification y ≥ q up to the pre-qualification threshold q. For each failed pre-qualification

on a supplier with qualification level y < q, the buyer pays y
q0
K. Since y is a random variable, the

buyer expects to pay

PRE = n
q

q0
K +

[

n

1−
∫ 1
s=0H(q|s)dG(s)

− n

]

∫ 1

s=0

∫ q

y=0

y

q0H(q|s)
KdH(y|s)dG(s). (2)

Costs in the Auction and Post-Qualification Stages. After pre-qualification, the n pre-

qualified suppliers compete in an auction preceding post-qualification. For mechanism design pur-

poses, the auction and post-qualification stages comprise a mechanism of awarding a contract to

one of n suppliers or to the buyer’s outside option. The auction mechanism with post-qualification

has four components: a set of possible messages (or “bids”) for each supplier; a rule that describes

how the buyer sequences the suppliers during post-qualification; a rule that describes how the

buyer chooses the maximum number of suppliers to post-qualify from this supplier sequence; and
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a payment rule mapping bids to an amount transferred between the buyer and sellers. The post-

qualification sequencing rule and the max number to qualify rule are the analogues of the allocation

rule in standard mechanism design problems absent post-qualification; together they capture the

fact that the allocation decision itself is not entirely in the buyer’s hands, as post-qualification out-

comes (the realization of qi’s) play a role in determining whether or not a post-qualified supplier

will actually be qualified for contract award.

All three rules (sequencing, max number to post-qualify, and payments) are functions of

the messages sent by suppliers. Thanks to the revelation principle (Myerson 1981), given any

mechanism and an equilibrium for that mechanism, there exists an outcome equivalent “direct”

mechanism in which it is an equilibrium for each supplier to bid its true cost. This allows us to

restrict our optimal mechanism search to direct mechanisms; in what follows the set of messages

sent is assumed without loss of generality to be just the supplier cost vector ~x = (x1, x2, . . . , xn).

After the analysis which follows we find that the sequencing and max number to post-qualify

rules are pure strategy (deterministic) plans the buyer announces ex ante to the suppliers in the

optimal mechanism. However, for generality in the mechanism design analysis we allow these

rules to be mixed strategies (probabilistic) and define them as follows. Let Π : ~x → [0, 1]n! be

a probability distribution over the n! different sequences of suppliers, and let Γ : ~x → [0, 1]n+1

be a probability distribution over the n + 1 possible different maximum number of suppliers to

post-qualify (including zero). For a given vector of costs ~x, using Π, Γ, and β we can compute ∆i

the probability that supplier i wins the contract (unconditional on si):

∆i(~x) = β

[

n!
∑

a=1

n
∑

b=0

Πa(~x)Γb(~x)(1− β)
z(i,a)−1Iz(i,a)≤b

]

, (3)

where Πa is the ath element of Π, Γb is the bth element of Γ, and z(i, a) is supplier i’s position in

sequence a (for example, if a corresponds to sequence (6, 3, 5, 7, . . . , 4) then z(3, a) = 2). Here the

bracketed term on the RHS of (3) is just the probability that supplier i is post-qualified by the

buyer, where the leading β term is simply the probability that i is qualified (unconditional on si).

The expected payment rule, which we will denote as M : ~x→ R
n, is the expected monetary

transfer (unconditional on si’s) from the buyer to the suppliers. Note that we have so far defined
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both Mi and ∆i from the buyer’s perspective, that is, they equal the expected transfer amount

to, and probability of award to, supplier i based only on the vector of all costs ~x. However, from

supplier i’s perspective – privileged with knowledge of si – these quantities are different owing to

the fact that supplier i estimates its own probability of being qualified as 1−H(q0|si)
1−H(q|si)

while the buyer

(and other suppliers) estimate it as β. Taking this into account, we can define the suppliers’ best

response functions in order to characterize the equilibrium payments of the buyer. If all suppliers

j 6= i report their true cost, supplier i’s expected profit from reporting zi is maximized by a truthful

bid of zi = xi if

xi solves max
zi∈[0,1]

{

1−H(q0|si)

β(1−H(q|si))
[mi(zi)− δi(zi)xi]

}

(4)

where mi(zi) =
∫

~x−i
Mi(zi, ~x−i)dF−i(~x−i) and δi(zi) =

∫

~x−i
∆i(zi, ~x−i)dF−i(~x−i). Here ~x−i is

(x1, x2, . . . , xi−1, xi+1, . . . , xn) and F−i its distribution. Equation (4) is known as the “incentive

compatibility” constraint for supplier i, and must hold for all suppliers in a direct mechanism.

Applying the envelope theorem to equation (4) implies that the derivative of supplier i’s profit at

xi ∈ [0, 1] is given by −δi(xi)
1−H(q0|si)

β(1−H(q|si))
. Treating this as a differential equation and using the

expected profit at xi ≡ 1 as an integration constant yields an equation for supplier i’s equilibrium

expected profit:

1−H(q0|si)

β(1−H(q|si))
[mi(xi)− δi(xi)xi] =

1−H(q0|si)

β(1−H(q|si))

[

mi(1)− δi(1) +

∫ 1

xi

δi(zi)dzi

]

. (5)

Solving for mi, the buyer’s expected payment to supplier i given reported cost xi is

mi(xi) = mi(1)− δi(1) + δi(xi)xi +

∫ 1

xi

δi(zi)dzi. (6)

Using a convexity argument it can be shown that a mechanism is incentive compatible (i.e.,

(4) holds) if and only if (5) holds and the associated δi(xi) is nonincreasing in xi for all i. We use

this condition to check that our proposed mechanism is indeed incentive compatible (see Online

Appendix A). Furthermore, to ensure participation of all suppliers i = 1, . . . , n we must also check

that our mechanism is “individually rational,” i.e., has non-negative expected profit for supplier

i given any possible cost realization xi. Equation (5) implies that individual rationality for an

incentive compatible mechanism obtains if supplier i’s expected profit at xi ≡ 1 is non-negative.
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With our direct mechanism defined and the expected payment to each supplier derived we

are ready to compute all the ex ante expected costs associated with our mechanism.

Proposition 1 Given a direct mechanism defined by Π, Γ, and M, the ex ante expected contract

payment, post-qualification cost, and non-transaction cost are

PAY =
n
∑

i=1

[mi(1)− δi(1)] +
n
∑

i=1

∫

~x

[ψi(xi)∆i(~x)] dF (~x), (7)

POST =

∫

~x

n
∑

b=1

E[POST|b]Γb(~x)dF (~x), and NT = Co

∫

~x

n
∑

b=0

Γb(~x)(1− β)
bdF (~x),

where F is the distribution over ~x, fi is the density of Fi, and

ψi(x) , xi +
Fi(xi)

fi(xi)
.

Furthermore, where b is the max number of suppliers to post-qualify, E[POST|b] equals

b
∑

t=1

[

(t− 1)CREJECT + CACCEPT

]

β(1− β)t−1 + b(1− β)bCREJECT ,

where the expected cost to post-qualify an unqualified supplier is given by

CREJECT ,

∫ 1

s=0

1

H(q0|s)−H(q|s)

∫ q0

y=q

y − q

q0
KdH(y|s)dG(s),

and the deterministic cost to post-qualify a qualified supplier is given by

CACCEPT ,
q0 − q

q0
K.

Proof. Since the buyer’s ex ante expected contract payment is simply the combined ex ante

expected payments to all suppliers, we get (7) by integrating (6) over xi and summing over i =

1, . . . , n. The forms of POST and NT follow from the definition of Γb(~x) and β. In particular, for

cost vector ~x, with probability Γb(~x) the maximum number of suppliers to post-qualify is set to

b. Once b is set, the number of suppliers to post-qualify depends on the number of suppliers who

are rejected by post-qualification, where each rejection occurs independently with probability β;

either suppliers are post-qualified until the tth results in successful post-qualification, or all b are

post-qualified and all are rejected. The post qualification costs CREJECT and CACCEPT are derived
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using the fact that post-qualification of a supplier with qualification level y costs the buyer q0−q
q0

K

if the supplier is qualified (i.e. y ≥ q0),
y−q
q0
K otherwise. The supplier qualification level y for an

unqualified bidder is random between q and q0 and follows conditional distribution H(y|s)
H(q0|s)−H(q|s)

(recall suppliers with qualification level below q are prevented from entering the auction by pre-

qualification), where signal s follows distribution G.

The derivation of costs associated with the mechanism ignores the pre-qualification cost,

which is considered sunk by the auction and post-qualification mechanism. Note that if the buyer

selects the pre-qualification threshold to be q = q0 – i.e., he performs all qualification prior to the

auction – then β ≡ 1 and the above mechanism analysis devolves into the standard mechanism

design analysis of Myerson (1981). The value Fi(xi)
fi(xi)

represents the informational rent accruing to

supplier i’s asymmetric knowledge of his cost xi (no rent accrues to supplier i’s knowledge of si,

since there is no adverse selection for the qualification level). Following mechanism design literature

tradition we will refer to ψi(xi) as supplier i’s “virtual cost.”

The Optimal Auction and Post-Qualification Mechanism. We now find a mechanism

(Π,Γ,M) that minimizes PAY+POST+NT subject to the incentive compatibility and individual

rationality constraints described following (6). To ensure that the optimal Π and Γ we choose will

satisfy incentive compatibility, we will assume that the virtual cost ψi(xi) = xi+
Fi(xi)
fi(xi)

is increasing

in the true cost xi (this standard, technical condition ensures δi(xi) nonincreasing in xi for all i,

and is satisfied, for example, if Fi is logconcave; see Bagnoli and Bergstrom 2005 for details about

logconcave functions, which include uniform, normal, logistic and exponential distributions). For

the remainder of this section we will assume without loss of generality that bidder labels are such

that ψ1(x1) ≤ ψ2(x2) ≤ · · · ≤ ψn(xn).

Proposition 2 An optimal direct, individually rational, and incentive compatible auction and post-

qualification mechanism (Π∗,Γ∗,M∗) that minimizes PAY+ POST+NT is as follows. Set m∗i (xi)

to the RHS of (6) with m∗i (1) − δ∗i (1) fixed at zero for all i, where Π∗(~x) weights with probability

one the permutation (1, 2, 3, · · ·, n) that orders suppliers by virtual cost, and Γ∗(~x) weights with
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probability one the value

max{i, i = 1, . . . , n such that ψi(xi) < Co − CACCEPT −
(1− β)

β
CREJECT }, (8)

or the value zero if the above set is empty.

See the Online Appendix for proof of this proposition and all others which follow. In practice

buyers often do employ a reserve price. Proposition 2 says in an optimal auction the buyer should

set supplier-specific reserve prices {ri, i = 1, · · ·, n} such that ri = max{min{ψ−1i (Co−CACCEPT −

(1−β)
β

CREJECT ), 1}, 0} and promise to post-qualify, in order of ascending virtual costs, only those

suppliers whose bids fall below their corresponding reserve price. When suppliers’ costs are sym-

metrically distributed a common reserve price is optimal and the supplier with the lowest virtual

cost is also the one with the lowest true cost, since the virtual cost function is assumed to be

increasing. While the optimal post-qualification sequencing strategy is intuitive, the determination

of the optimal reserve prices is perhaps not as straightforward. To illustrate the intuition behind

the reserve prices, the remainder of this subsection provides a dynamic program interpretation.

In the post-qualification stage, when the buyer determines whether to post-qualify supplier

i he has two choices. First, the buyer can post-qualify i; this incurs a cost ψi(xi) + CACCEPT if

supplier i turns out qualified, otherwise an expected cost of CREJECT if supplier i turns out to be

unqualified. Second, the buyer can quit and take the outside option at a fixed cost of Co. The

buyer’s problem is to determine the stopping policy, that is, when to quit or equivalently what

are the reserve prices, given that suppliers are qualified with probability β and unqualified with

probability 1−β. To find the optimal stopping policy, consider an equivalent n+1-period dynamic

program. Let vi be the optimal expected cost to go given that the buyer did not transact or quit

in the first i− 1 periods, where

vi = min{Co, [ψi(xi) + CACCEPT ]β + [vi+1 + CREJECT ](1− β)} for i = 1, . . . , n, (9)

vn+1 = Co, and ψ1(x1) ≤ ψ2(x2) ≤ · · · ≤ ψn(xn). (10)

Proposition 3 An optimal policy for the stopping problem (9)-(10) is as follows: in period i, the

buyer should attempt to transact if and only if ψi(xi) < Co−CACCEPT −
(1−β)

β
CREJECT , and quit
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otherwise. Furthermore, this implies that

E
~x
v1(~x) = PAY+ POST+NT.

Proposition 3 reveals that the buyer’s decision in the post-qualification stage can be interpreted

as an optimal stopping problem. In particular, the ex ante expected total auction and post-

qualification cost with the optimal mechanism is simply the ex ante optimal cost of a dynamic

program. We will exploit this structure in the sequel.

4.2 Optimal Qualification Screening Strategy

The buyer’s problem is now extended to investigate optimal selection of the pre-qualification thresh-

old (equivalently β) and the number of suppliers invited to the auction n.

Optimal Pre-Qualification Threshold. We first extend the optimization analysis by allowing

the buyer to optimally select β. The buyer faces four practical concerns: uncertain supplier costs,

uncertain supplier qualification levels, costs associated to verify the qualification of a supplier,

and an outside option cost. Comparisons of the latter two costs determine the buyer’s optimal

pre-qualification threshold, for given uncertainties over supplier costs and qualification levels. The

following three propositions summarize the optimal pre-qualification characterizations for general

uncertainty distributions, culminating in Proposition 6’s threshold results.

Proposition 4 Under the mechanism described in Proposition 2, the more qualification due dili-

gence the buyer performs before the auction, the more he pays before the auction but the less he

pays after the auction. That is,

PRE increases in β, while PAY+ POST+NT decreases in β.

Therefore, the buyer trades off the pre-qualification cost against the total post-auction cost in an

optimal qualification strategy.

This proposition reflects the intuition that the more due diligence work the buyer does before

the auction, the more he needs to pay before the auction, given that a higher pre-qualification
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requirement means not only more suppliers to pre-qualify (more rejections) but also more cost to

pre-qualify each supplier. Also, the more due diligence work the buyer does before the auction the

less cost he expects to incur after the auction. However, showing this requires some care because

PAY and POST are not monotonic in β. The proof exploits the dynamic program structure

described in Proposition 3: increasing β reduces the cost to go because it increases the likelihood

of success at each stage and decreases the costs associated with acceptance or rejection.

Although Proposition 4 reveals the key tradeoff made when deciding the pre-qualification

threshold, solving for the optimal β∗ which minimizes PRE+ PAY+POST+NT for fixed K and

Co is precluded by the complexity of the total cost expression (see, for example, Proposition 1).

However, exploiting the dynamic program structure of the auction and post-qualification cost helps

prove monotonicities of β∗, sharpening the insight of Proposition 4.

Proposition 5 Under the mechanism described in Proposition 2, β∗ decreases with K and in-

creases with Co.

Given that β∗ decreases with K, it is natural that there exist thresholds characterizing the

switching behavior between “pre-qualification only,” “a mix of pre- and post-qualification” and

“post-qualification only.”

Proposition 6 Under the mechanism described in Proposition 2, for fixed Co, there exist positive

finite thresholds Kpre ≤ Kpost < Knt, all increasing in Co, such that (i) pre-qualification only is

optimal if and only if K ≤ Kpre, (ii) a mix of pre- and post-qualification is optimal if and only if

Kpre < K < Kpost, (iii) post-qualification only is optimal if and only if Kpost ≤ K < Knt, and (iv)

it is optimal to forego the auction in favor of the outside option if and only if Knt ≤ K.

Proposition 6 first shows that there exists a threshold separating the complete versus partial

pre-qualification decision. Keeping the outside option cost constant, if the qualification cost is

below this threshold, the buyer prefers to completely pre-qualify suppliers before the auction.

Furthermore, once the buyer prefers complete pre-qualification, any increase in the outside option

cost while holding the qualification cost fixed will result in the buyer still preferring complete
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Figure 1: Optimal bidder qualification probability β∗ as a function of both the per-supplier quali-
fication cost K and the outside option cost Co, showing (a) the values of β∗ and (b) the regions of
the different optimal qualification decisions. The figures are based on a numerical solution of the
optimal β∗ with n = 5 suppliers, qualification threshold q0 = 0.9, and all priors over costs Fi and
qualification levels H uniform over [0, 1].

pre-qualification. The third part of Proposition 6 shows that a similar threshold exists between

the partial pre-qualification versus the post-only decision. The first three parts of the proposition

together indicate that, keeping the outside option cost fixed, as qualification cost increases from

zero the decision shifts from complete pre-qualification, to a mixture of pre and post-qualification,

and finally to the pure post-qualification decision. Finally, the buyer prefers to forego the auction

altogether if the cost of qualification is too high, as shown in the last part of Proposition 6.

In words, Proposition 6 indicates that despite the risk of non-transaction and larger contract

payment, the buyer sometimes finds it profitable to postpone some or all qualification processes until

after the auction. The decision of how much qualification to postpone depends on the qualification

cost, as the buyer has more incentive to risk non-transaction and higher payments with qualification

postponement if doing so avoids high qualification expenses before the auction. Figure 1 illustrates

the main points of this subsection so far: (a) the optimal β∗ is monotone in K and Co; and (b) the

optimal policy switches between pre-only, a mixture of pre- and post-qualification, and post-only.

This figure is based on uniform Fi and H, a case which we explore further in §5.
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Optimal Number of Bidders. For all analyses above we fixed the number of suppliers invited

to bid in the auction n. We now consider the problem of jointly optimizing β and the number of

suppliers n ≤ N , where N is the auction capacity. The complexity of the cost expressions preclude

closed form expressions for the optimal number of suppliers and the optimal bidder qualification

probability as functions of auction capacity, denoted n∗(N) and β∗(N), respectively. However,

threshold results do obtain; the following proposition characterizes when using full auction capacity

is optimal and when post-qualification only is optimal.

Proposition 7 Under the mechanism described in Proposition 2, given any q0, Co > 0 and 0 <

K < Knt, there exists some N̄1 ≤ N̄2 < ∞, such that n∗(N) = N for all N ≥ N̄1 and β
∗(N) =

∫ 1
s=0[1−H(q0|s)]dG(s) (post-only) for all N ≥ N̄2.

Having a large number of bidders drives bids towards zero despite some bidders being possibly

unqualified. Intuitively, inviting up to capacity (n∗ = N) and delaying all qualification is optimal

for large N because after the auction the buyer then simply locates a single qualified supplier who

charges close to zero. More bidders always benefit the buyer (and at no additional cost) when he

delays all qualification until after the auction, which explains why the buyer invites up to capacity

when all qualification is delayed (N̄1 ≤ N̄2). The managerial implication is that post-qualification

alone can be highly attractive when the buyer has the capacity to run a very large auction, but the

buyer might prefer to use some pre-qualification and might even not invite up to capacity if the

auction capacity is small. The next section provides numerical insights into of the effect of optimally

selecting n, and suggests that compared to setting n ≡ N the profit increase is usually minor (0−7%

in most cases studied), but can be significant when both the outside option and qualification costs

are large: an expensive outside option scares the buyer into using a pre-qualification only strategy;

with each bidder very expensive to invite, the buyer finds it profitable to reduce the auction size.
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5. Cost Savings: Symmetric Uniform Priors Example

We now illustrate cost savings from optimal qualification screening strategies for a canonical case

in which qualification level and cost distributions are uniform. In particular, H(·|s) ∼ U [0, 1] for

all s, and normalizing to reflect dollar values, we take Fi ∼ U [$500, 000, $1, 000, 000] for all i. This

models the case in which all suppliers are equally unsure about their ability to qualify for the

contract, and the supplier cost types are evenly dispersed.

Cost Savings From Optimal Pre-Qualification Threshold. We have shown that pre-only

qualification is not always optimal even though it is typically considered the default method for

supplier qualification in practice. If the cost gap between pre-only and the optimal qualification

strategy is small, one might prefer pre-only because of its simplicity; however, we often find a

significant cost gap, particularly when the supplier qualification cost K is moderate. Define the

rate of savings as follows:

rate of savings =
total cost with pre-only − total cost with optimal threshold

total cost with pre-only
,

=
TOTAL(K,Co, β = 1)− TOTAL(K,Co, β

∗)

TOTAL(K,Co, β = 1)
.

In Figure 2 we illustrate the rate of savings for our uniform priors example. The buyer’s outside

option cost of $1,200,000 is 20% higher than the worst possible supplier cost (e.g., this could model

procurement with low cost foreign suppliers).

Cost savings from optimally balancing the qualification process can be significant: the max-

imal rate of saving is around 11% in Figure 2(a) and 17% in Figure 2(b). In Figure 2(a) only

ten percent of all suppliers are truly qualified (q0 = 0.90), mitigating the benefits of aggressive

post-qualification due to non-transaction risks. This could model the case in which foreign sup-

pliers are extremely unlikely to meet rigorous qualification requirements set by the buyer. On the

other hand, Figure 2(b) depicts a case with more lenient qualification requirements that eighty

percent of suppliers would meet (q0 = 0.20); in this case, costly pre-qualification reveals little new

information so postponing some or all qualification can be very beneficial. For example, if supplier
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Figure 2: Percent cost savings and β∗ the optimal bidder qualification probability plotted ver-
sus qualification cost K, in dollars. Pictures assume n = 5 suppliers, outside option cost
Co = $1, 200, 000, supplier cost and qualification level distributions U [$500, 000, $1, 000, 000] and
U [0, 1] respectively, and (a) strict (q0 = 0.90) and (b) more lenient (q0 = 0.20) qualification thresh-
olds.

qualification costs $25,000 (perhaps $10,000 spent to purchase and test supplier products, $10,000

to send three buyer employees to inspect supplier facilities abroad, and $5,000 on time intensive

meetings with stakeholders throughout the buyer’s company), about 10% of total procurement

costs are saved by postponing qualification checks. Figure 2(a) shows that as K increases the rate

of saving first increases and then decreases. This is because beyond a qualification cost of $19,500,

the pre-only strategy’s cost is fixed at Co because qualification is too costly to make the auction

with pre-only worthwhile. In contrast, with optimal qualification the buyer strictly prefers the

auction to the outside option until the qualification cost is $127,500 (Knt). For a larger value of K

than those shown, the savings curve in Figure 2(b) would eventually peak following the same logic.

In summary, these results suggest the buyer should seriously consider postponing some or all of

the supplier qualification process, especially when the outside option cost is high, the qualification

requirement is low, and it is moderately costly to qualify a supplier.

Optimal Number of Bidders. Table 1 provides numerical results on the optimal number of

bidders for our uniform priors example; its contents are as follows: the first three columns list
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Table 1: Characterization of n∗(N) and β∗(N) when supplier cost and qualification level distribu-

tions are U [$500, 000, $1, 000, 000] and U [0, 1], respectively.

q0 K (in $000s) Co (in $000s) {N |n∗(N) < N} n∗ β∗ N̄1 N̄2 Cost Advantage

0.8 5 1,200 {8,9,10} 7 1 11 30 ≤ 0.095%

0.8 20 1,200 {4,5,6,7} 3 1 8 12 ≤ 0.94%

0.8 50 1,200 φ φ φ 2 2 0

0.8 5 2,000 {8,9,10,11} 7 1 12 31 ≤ 0.097%

0.8 20 2,000 {4,...,9} 3 1 10 17 ≤ 1.48%

0.8 50 2,000 {3,...,8} 2 1 9 11 ≤ 4.71%

0.9 5 2,000 {6,...,23} 5 1 24 47 ≤ 1.26%

0.9 20 2,000 {3,...,20} 2 1 21 25 ≤ 5.93%

0.9 50 2,000 {3,...,13} 2 0.87 14 15 ≤ 6.51%

0.9 20 1,200 {3,...,10} 2 1 11 11 ≤ 2.54%

0.9 50 100,000 {3,...,51} 2 1 52 52 ≤ 37%

0.9 0.050 1,200 φ φ φ 2 419 0

parameter values; the fourth column indicates the auction capacity levels under which the buyer

optimally uses only partial capacity; the fifth and sixth columns list the optimal number of bidders

and the optimal β when the buyer optimally uses only partial capacity; and the seventh and eighth

columns are the thresholds defined in Proposition 7. To see how much the buyer benefits from

choosing an optimal number of bidders, we computed the total cost with n = n∗(N) and the total

cost with n = N and report in the last column the upper bound of the percent cost advantage,

defined to be Total cost(n=N)−Total cost(n=n∗(N))
Total cost(n=N) .

Take the first row as an example. When q0 = 0.8, K = $5, 000, and Co = $1, 200, 000 it

is optimal to perform pre-qualification only and invite up to N when N = 2, ..., 7. However, it

is optimal to choose n = 7 and do pre-qualification only when N = 8, 9, 10 because the benefits

from additional bidders are dominated by the costs of additional qualification work. As shown by

Proposition 7, post-qualification is more attractive if there are more bidders; accordingly, when the

buyer is able to invite at least 11 bidders, he would like to invite as many bidders as possible and

postpone part or all of the due diligence until after the auction. Eventually – when the auction

capacity is at least 30 bidders – a post-qualification only strategy dominates.
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The table indicates that n∗ < N decreases in K and q0, which makes sense because the higher

the qualification cost or the stricter the qualification requirement, the higher the pre-qualification

cost to find each bidder. Similar reasoning explains why N̄1 and N̄2 decrease in K. However, N̄1

and N̄2 increase in Co and q0: the higher Co or q0, the less attractive post-qualification becomes

due to a higher cost and greater risk of non-transaction, making more bidders required (lowering

the supplier bids available to the buyer) to compensate for this effect.

The cost advantages of optimizing n∗ appear moderate when K and Co are relatively small,

as the qualification and non-transaction costs do not greatly impact the buyer’s total cost in such

cases. Row ten shows an advantage of about 2.54% over the n = N = 5 case depicted in Figure 2(a)

at K = $20, 000. Since Figure 2(a) showed 10.7% savings off the pre-only strategy in this case,

Table 1 shows that optimizing n as well as β saves about 1− 0.893 ∗ 0.9746 = 13% off the pre-only

case. The cost advantage becomes significant when Co is huge (for example, Co equal to a hundred

million dollars in row eleven) and the buyer is happy finding virtually any qualified supplier. This

extreme case might represent a scenario where the buyer cannot produce in-house and the contract

is extremely important – for example, flu vaccine procurement by a government. In this case, even

with a moderate to large auction capacity it is still optimal to perform pre-qualification only with

just two bidders; numerical studies show the cost advantage over setting n ≡ N could be as high

as 30% when N = 5 or 6. In summary, simultaneously optimizing the number of bidders n as well

as the probability of bidder qualification β can yield notable cost savings, especially when Co and

K are moderate to large.

6. Practical Considerations and Extensions

6.1 Value of Credible Reserve Price

Our optimal mechanism derivation in §4.1 assumed the buyer could credibly commit to not awarding

the contract to any supplier bidding above their reserve price. As Milgrom (1987) points out, an

auctioneer who cannot credibly commit to throwing away bids between the reserve price and the
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auctioneer’s own valuation is disadvantaged: the auctioneer cannot achieve the optimal ex-ante

expected profits because bidders will ignore the announced reserve price.

Post-qualification of bidders places additional importance on reserve price credibility. Using

Proposition 2, we can characterize the optimal reserve prices by ψi(ri) = bmax, where bmax ,

Co−CACCEPT −
(1−β)

β
CREJECT is the maximum bid that the buyer would find profitable to post-

qualify. Since ψi(x) > x, we have ri < bmax; i.e., in the optimal mechanism the buyer promises to

ignore bids below bmax that he would otherwise find profitable to post-qualify.

If this promise is uncredible, the buyer is forced to set bmax as the auction reserve price

and cannot apply an optimal mechanism (optimal reserve prices). Supposing supplier costs are

normalized to interval [0, 1], this is particularly problematic when bmax > 1: if all other bidders

fail post-qualification, a bidder i with cost 1 will be considered by the buyer. Because all other

bidders would have failed post-qualification by the time i’s offer is considered, bidder i can make

a take-it-or-leave-it offer of bmax to the buyer. Therefore a cost type 1 bidder i expects (without

conditioning on si) to earn (bmax − 1)β(1 − β)n−1 from the auction. Note that when β = 1, as is

assumed in classical auction theory, cost type 1 bidders expect to earn zero profits in the auction

provided the auction has at least two bidders.

Thus, two factors inflate the costs of an uncredible buyer in our setting: forgone “price

discrimination” opportunities, as seen in classical auction theory; and the “being held hostage by

the last remaining bidder” effect, a consequence of post-qualification which to our knowledge is new

to the literature. If, for example, supplier cost distributions are symmetric (and hence one reserve

price r prevails for all suppliers), when bmax > r ≥ 1 only the “being held hostage” effect exists;

when 1 ≥ bmax > r, only the “price discrimination” effect exists; and when bmax > 1 > r both

effects exist. In words, this suggest that post-qualification should be used carefully when the buyer

has little or no negotiating clout with suppliers and must rely solely on competition among suppliers

for price concessions. In such situations a supplier can command a very high price in a one-on-one

negotiation with the buyer, a damaging scenario for the buyer that is risked by post-qualification.
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6.2 General Qualification Cost Models

Our analyses assumed that qualification costs are increasing and linear in the qualification level

q ∈ [0, q0]. However, for any non-linear qualification cost function that is strictly increasing from 0

to K over q ∈ [0, q0], the optimal qualification strategy can be recovered by analyzing an equivalent

model in which qualification costs are linear but the buyer’s prior distribution over qualification

levels is redefined. The buyer’s decision about how much pre-qualification money to spend rests

on how much screening each successive dollar accomplishes; by preserving this relationship in

the redefined linear model, the linear model analysis is sufficient. Because this redefinition is

straightforward per the above, we omit the formalization.

6.3 Finite Supplier Pool

Our analyses assumes a large (effectively infinite) supplier pool from which the buyer pre-qualifies

suppliers. This ensures that the buyer is always able to find as many suppliers as necessary to fill

the auction. However, in practice the number of suppliers who show interest in the RFQ is finite

and could be small for specialized purchases. On one hand, this would not affect post-qualification

only policies provided the number of suppliers to invite to the auction does not exceed the supplier

pool size. On the other hand, a finite supplier pool would affect strategies with a pre-qualification

stage, since the number of suppliers passing pre-qualification and entering the auction would be

non-deterministic. Presumably the buyer could more actively control the pre-qualification process,

for example by dynamically adjusting the pre-qualification threshold per the remaining supplier

pool size. We leave the finite supplier pool case to our future work.

6.4 Inclusion of Multiple Attributes

This paper took a first step at managing supplier qualification and price negotiation processes with

an analytical model. However, the auction format was assumed to be price only. One potentially

appealing but complicating extension would be to allow suppliers to report their signals si of their

qualification level to the buyer, allowing, for example, the buyer’s post-qualification decisions to
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factor in not only price but also the supplier’s indication of how likely they are to be qualified.

Since the suppliers’ signals are noisy, care would be required to keep the reporting meaningful and,

for example, prevent suppliers from falsely claiming to have the best possible signal. This might

be accomplished if the buyer can penalize a supplier for failing post-qualification, but in turn this

might tempt the buyer to arbitrarily fail suppliers for the sake of recovering a penalty, especially

since in practice the buyer’s qualification standards can be idiosyncratic and opaque. We leave

such issues to future research.

7. Conclusions

When issuing an RFQ for competitive bid, finding a supplier truly qualified to fulfill the contract

is often as important as price concerns. Costly supplier qualification processes are virtually ubiq-

uitous in industry to help buyers proactively avoid problems and expenses associated with supplier

non-performance, e.g., buyer production line stoppages and product reliability issues. This paper

explicitly models and suggests optimal policies for both the supplier qualification and competitive

price negotiations processes together, and to our knowledge is the first study of optimal supplier

qualification processes in the operations management and auction theoretic literatures. To save on

total supplier qualification and contracting costs we allow the buyer to delay all or part of the qual-

ification process until after the competitive price negotiation (an auction) and then home in on the

lowest (virtual cost) bidders. While delaying qualification is not to our knowledge common practice

in industry, our study provides a mathematical framework which suggest such a post-qualification

stage can indeed be beneficial.

In particular, we find that pre-qualification only is optimal solely when supplier qualification

is relatively cheap. Because postponing qualification means that some attractive bids in the auction

may be disqualified, it makes sense to completely pre-qualify suppliers if doing so is cheap. However,

for moderate sized qualification costs the buyer can do much better if some costly qualification is

delayed until after the auction, because reduced qualification costs with judicious post-qualification

can more than offset expected increases in the contracting costs (as determined by our auction the-
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oretic analysis). Figure 2(b) shows total (qualification plus procurement) cost savings of around

10% for a contract worth $1.2M to the buyer when qualifying a supplier costs $25, 000 and priors

over supplier costs and qualification levels are uniform and symmetric. More generally, Proposi-

tion 6 partitions the two-dimensional qualification cost (K) and outside option cost (Co) plane

into regions where either traditional pre-qualification only, our novel post-qualification only, or our

novel mix of the two are optimal (illustrated for a uniform case in Figure 1(b)). Cost savings are

even higher (Table 1) when the buyer also optimizes the number of bidders invited to the auction.

While operations management analyses such as ours may merely galvanize a reconsideration

of current procurement policies, as supply chains lengthen and supply sources become globalized

and more varied, the increase in potential new suppliers and the growing number of RFQ events

could make the standard pre-qualification only strategy prohibitive for resource-constrained pro-

curement departments that cannot possibly fully pre-qualify all suppliers invited to all bidding

events. Post-qualification might eventually by used out of sheer necessity to accommodate con-

strained qualification resources, but fortunately our study shows that post-qualification can be part

of an optimally balanced supplier qualification strategy even without such resource constraints.

Our study is built on classical auction theory, shouldering the auction with a stopping problem

model of pre-qualification and a dynamic program model of post-qualification. Expansions to the

auction theory literature are developed in pursuit of an optimal auction and post-qualification

mechanism, boiling down to Proposition 3’s dynamic programming interpretation of the expanded

auction model. The spirit of the results are general in the sense that they characterize the tradeoff

between costly pre-qualification and increased bidding competition. Section 6 discusses several

possible extensions to our model, which while fairly general does make some important assumptions

in order to keep the analyses focused and tractable.
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A. Proof of Proposition 2

The optimal mechanism design problem can be formulated as

min
Π, Γ, M

PAY+ POST +NT (11)

s.t. ∆i(~x) = β

[

n!
∑

a=1

n
∑

b=0

Πa(~x)Γb(~x)(1− β)
z(i,a)−1Iz(i,a)≤b

]

, (12)

δi(xi) nonincreasing in xi ∀ i, (13)

mi(xi) = mi(1)− δi(1) + δi(xi)xi +

∫ 1

xi

δi(zi)dzi ∀ i, (14)

mi(xi)− δi(xi)xi ≥ 0 ∀ xi, (15)

Πa(~x) ≥ 0, a = 1, . . . , n! and
n!
∑

a=1

Πa(~x) = 1 ∀ ~x, (16)

Γb(~x) ≥ 0, b = 0, . . . , n and
n
∑

b=0

Γb(~x) = 1 ∀ ~x, (17)

where mi(zi) =
∫

~x−i
Mi(zi, ~x−i)dF−i(~x−i) and δi(zi) =

∫

~x−i
∆i(zi, ~x−i)dF−i(~x−i). Constraints (13)-

(14) ensure incentive compatibility and (15) imposes individual rationality (see the discussion in

the text following (6)). Constraints (16)-(17) ensure that Π and Γ are well defined probability

distributions. Using Proposition 1, (11) can be written as

n
∑

i=1

[mi(1)−δi(1)]+

∫

~x

{

n
∑

i=1

ψi(xi)∆i(~x) +

n
∑

b=1

E[POST|b]Γb(~x) + Co

n
∑

b=0

Γb(~x)(1− β)
b

}

dF (~x).

Setting mi(1) ≡ δi(1) for all i ensures (15) and leaves us with only δi to worry about. (Note that

(14) defines mi in terms of δi once mi(1) is fixed.) Further, an optimal ∆ is one which minimizes
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the integrand of the expression above, i.e., we can re-write our objective function as

Co +
n
∑

i=1

[ψi(xi)− Co]∆i(~x) +
n
∑

b=1

E[POST|b]Γb(~x),

where we have used the fact that NT is just Co, the outside option cost, times the probability of

non-transaction, where the latter equals 1 −
∑n

i=1∆i(~x). Expanding ∆i using (12), the optimal

mechanism minimizes

C(Π,Γ) , Co + β

n
∑

i=1

n!
∑

a=1

n
∑

b=0

Πa(~x)Γb(~x)(1− β)
z(i,a)−1Iz(i,a)≤b [ψi(xi)− Co] +

n
∑

b=1

E[POST|b]Γb(~x),

subject to (13), (16)-(17). To prove Proposition 2, we first prove by Lemmas 1-2 that permutation

(1, 2, . . . , n) (which we index as a = 1) is a (weakly) dominant strategy no matter what ~x and Γ

is. Then, given that Π∗ selects a = 1 w.p.1, we show with Lemma 3 that for any ~x there exists b∗

such that setting the max number of suppliers to post-qualify as b∗ is a (weakly) dominant strategy

(i.e., Γ∗b∗(~x) = 1).

Lemma 1 Label suppliers such that ψ1(x1) ≤ ψ2(x2) ≤ · · · ≤ ψn(xn) and let permutation (1, 2, 3, . . . , n)

be indexed by a = 1 . Then for all possible permutations of the n suppliers, indexed by a = 1, . . . , n!,

we have

n
∑

i=1

(1− β)z(i,1)−1Iz(i,1)≤b[ψi(xi)− Co] ≤
n
∑

i=1

(1− β)z(i,a)−1Iz(i,a)≤b[ψi(xi)− Co].

Proof. The proof utilizes an interchange argument. For any permutation a, suppose z(1, a) = r > 1

and z(t, a) = 1 for some t > 1. Consider a revised permutation a(1) in which the positions of t and

1 are swapped, so that z(1, a(1)) = 1 and z(t, a(1)) = r. Then

n
∑

i=1

(1− β)z(i,a
(1))−1Iz(i,a(1))≤b[ψi(xi)− Co]−

n
∑

i=1

(1− β)z(i,a)−1Iz(i,a)≤b[ψi(xi)− Co]

=
n
∑

i=1

[

(1− β)z(i,a
(1))−1Iz(i,a(1))≤b − (1− β)z(i,a)−1Iz(i,a)≤b

]

[ψi(xi)− Co],

= [ψ1(x1)− Co] + (1− β)r−1[ψt(xt)− Co]− [ψt(xt)− Co]− (1− β)r−1[ψ1(x1)− Co],

= (1− (1− β)r−1)[ψ1(x1)− ψt(xt)] ≤ 0.
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For a(1) we can repeat the process, this time swapping supplier 2 into the second position, creating a

new permutation a(2) for which an analogous analysis holds. Continuing this process we eventually

end up with permutation a(n), which is precisely permutation 1. This proves the lemma.

Lemma 2 Under the assumptions of Lemma 1, a = 1 (weakly) dominates any other permutation

a = 1, . . . , n! for any max number to post-qualify rule Γ.

Proof. Notice that only the second term of C(Π,Γ) involves a, so it suffices to prove that a = 1

minimizes this term.

n
∑

i=1

n!
∑

a=1

n
∑

b=0

Πa(~x)Γb(~x)(1− β)
z(i,a)−1Iz(i,a)≤b [ψi(xi)− Co]

≥
n!
∑

a=1

n
∑

b=0

Πa(~x)Γb(~x)
n
∑

i=1

(1− β)z(i,1)−1Iz(i,1)≤b [ψi(xi)− Co] by Lemma 1,

=
n
∑

b=0

Γb(~x)
n
∑

i=1

(1− β)z(i,1)−1Iz(i,1)≤b [ψi(xi)− Co] ,

which proves Lemma 2.

Lemma 2 implies that Π∗1(~x) ≡ 1 for all ~x; that is, it is always optimal to rank suppliers on

the waiting list according to ascending virtual costs (breaking ties arbitrarily, for example evenly).

Hence, it only remains to find Γ∗ assuming Π∗1(~x) ≡ 1. Before doing this in the following lemma,

we introduce some notation. Write C(Π∗,Γ) =
∑n

b=0 Γb(~x)S(b), where

S(b) , Co + β

n
∑

i=1

(1− β)z(i,1)−1Iz(i,1)≤b [ψi(xi)− Co] + E[POST |b].

Proposition 2 claims that given ~x, Γ∗b∗(~x) ≡ 1 for the b∗ satisfying (8). This is equivalent to proving

that, given ~x, b∗ minimizes S(b), where b ∈ {0, 1, . . . , n}. S(b) is simply the expected value of a

b-stage problem where, at stage i = 1, . . . , b the buyer attempts to buy an asset with value ψi(xi),

where the attempt is successful with probability β and fails with probability 1 − β. Failures cost

the buyer CREJECT , and success costs CACCEPT . The buyer quits either after the first success, or
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after failing the b stages he pays a terminal cost of Co. To see this, we write

S(b) = Co + β

n
∑

i=1

(1− β)z(i,1)−1Iz(i,1)≤b [ψi(xi)− Co] + E[POST |b],

= Co + β

n
∑

i=1

(1− β)i−1Ii≤b [ψi(xi)− Co] + E[POST |b] since z(i, 1) ≡ i,

= Co + β

b
∑

i=1

(1− β)i−1 [ψi(xi)− Co] +
b
∑

i=1

[

(i− 1)CREJECT + CACCEPT

]

β(1− β)i−1

+ b(1− β)bCREJECT by Proposition 1,

=

b
∑

i=1

β(1− β)i−1
[

ψi(xi) + (i− 1)CREJECT + CACCEPT

]

+ (1− β)b(Co + bCREJECT ).

Lemma 3 An optimal stopping policy for the above problem is as follows. The buyer should try to

buy in period i if and only if ψi(xi) < Co − CACCEPT −
1−β
β
CREJECT , and quit otherwise.

Proof. Let vi be the optimal value to go at stage i. We prove the result by induction. The

statement is true for i = n, since

vn = min
{

Co, [ψi(xi) + CACCEPT ]β + [Co + CREJECT ](1− β)
}

, and

ψn(xn) < Co − CACCEPT −
(1− β)

β
CREJECT

⇐⇒ [ψn(xn) + CACCEPT ]β + [Co + CREJECT ](1− β) < Co.

Suppose the statement is true for i+ 1. Given that

vi = min{Co, [ψi(xi) + CACCEPT ]β + [vi+1 + CREJECT ](1− β)},

there are two cases:

Case 1: ψi(xi) < Co − CACCEPT −
(1−β)

β
CREJECT . Since vi+1 ≤ Co, we have

[ψi(xi) + CACCEPT ]β + [vi+1 + CREJECT ](1− β)

≤ [ψi(xi) + CACCEPT ]β + [Co + CREJECT ](1− β) < Co;

that is, it is optimal to try to buy the asset in this period.
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Case 2: ψi(xi) ≥ Co − CACCEPT −
(1−β)

β
CREJECT . It must be that ψi+1(xi+1) ≥ ψi(xi) ≥

Co−CACCEPT −
(1−β)

β
CREJECT , which means vi+1 = Co by the induction assumption. Therefore,

[ψi(xi) + CACCEPT ]β + [vi+1 + CREJECT ](1− β)

= [ψi(xi) + CACCEPT ]β + [Co + CREJECT ](1− β) ≥ Co;

that is, it is optimal to quit and choose the outside option. Thus, the statement of the lemma has

been proven by induction.

Since the optimal stopping policy of Lemma 3 implies b∗ satisfies (8), the proof of Proposi-

tion 2 is complete once we verify that constraint (13) holds, i.e., δi(xi) is nonincreasing in xi. Since

the buyer post-qualifies bidders in sequence of ascending virtual costs, δi nonincreasing is implied

by the virtual costs increasing in xi, which we assumed on page 14.

B. Proof of Proposition 3

Lemma 3 proves the structure of the optimal policy. It remains to show E
~x
[v1(~x)] = PAY+POST+

NT. Using the notation S(b) introduced before Lemma 3 we get PAY+POST+NT = E
~x
[S(b∗(~x))]

where b∗(~x) satisfies equation (8). Since S(b∗(~x)) = v1(~x), the result follows.

C. Proof of Proposition 4

It is easy to check that PRE as given in equation (2) is strictly increasing in q, and by equation (1)

q strictly increases in β.

From Proposition 3 we have PAY+POST+NT = E
~x
v1(~x), where v1(~x) is backward inducted

from equations (9)-(10). We show that E
~x
v1(~x) decreases in β because v1(~x) decreases in β for any

realization of ~x (in particular, it strictly decreases in β for any ~x ∈ {~x|b∗(~x) > 0}, a fact used in

proving Proposition 6-7). Given any ~x, under the optimal mechanism,

vm(~x) = vm+1(~x) = · · · = vn+1(~x) = Co

vi(~x) = [ψi(xi) + CACCEPT ]β + [vi+1(~x) + CREJECT ](1− β)}, for i = 1, ...,m− 1
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where m = min{i ∈ {1, ..., n}|ψi(xi) > Co−CACCEPT −CREJECT
1−β
β
} or n+1 if the set is empty.

Notice that, m increases with β.

In the remainder of the proof, we first show that vi(~x) increases in i and then show that

ψi(xi) ≤ vi+1(~x) − CACCEPT − CREJECT
1−β
β

for i = 1, ...,m − 1. Using these two facts, we show

that d
dβ
vi(~x) ≤ 0 for i = 1, ..., n and hence v1(~x) decreases in β.

Because vm(~x) = Co and ψm−1(xi) ≤ Co − CACCEPT − CREJECT
1−β
β

, we have vm−1(~x) ≤

vm(~x). This implies that

vm−2(~x)− vm−1(~x) = [ψm−2(xm−2)− ψm−1(xm−1)]β + [vm−1(~x)− vm(~x)](1− β) ≤ 0,

since ψm−2(xm−2) ≤ ψm−1(xm−1) and vm−1(~x) ≤ vm(~x). By induction, we have vi(~x) ≤ vi+1(~x)

for i = 1, ..., n. Next, given that vi(~x) ≤ vi+1(~x) for i = 1, ...,m− 1, we have

vi+1(~x) ≥ vi(~x) = [ψi(xi) + CACCEPT ]β + [vi+1(~x) + CREJECT ](1− β)}, for i = 1, ...,m− 1,

implying that ψi(xi) ≤ vi+1(~x)− CACCEPT − CREJECT
1−β
β

for i = 1, ...,m− 1.

Consider the fact that, for i = m+1, ..., n, vi(~x) = Co. As β increases, vi(~x) cannot increase,

since — even if m increases — it will still always be the minimum of Co and another term; thus,

d
dβ
vi(~x) ≤ 0 for i = m + 1, . . . , n. For i = m, d

dβ
vm(~x) ≤ 0 because m increases with β, so we can

write for i = m− 1

d

dβ
vi(~x) = [ψi(xi) + CACCEPT ]− [vi+1(~x) + CREJECT ]

+ β
dCACCEPT

dβ
+ (1− β)

dvi+1(~x)

dβ
+ (1− β)

dCREJECT

dβ

≤ vi+1(~x)− CACCEPT − CREJECT
1− β

β
+ CACCEPT − [vi+1(~x) + CREJECT ]

+ β
dCACCEPT

dβ
+ (1− β)

dCREJECT

dβ
+ (1− β)

dvi+1(~x)

dβ

= −
CREJECT

β
+ β

dCACCEPT

dβ
+ (1− β)

dCREJECT

dβ
+ (1− β)

dvi+1(~x)

dβ

< 0,

where the first inequality is due to ψi(xi) ≤ vi+1(~x) − CACCEPT − CREJECT
1−β
β

and the second

inequality is due to the fact that dvi+1(~x)
dβ

≤ 0, dCACCEPT

dβ
< 0 and dCREJECT

dβ
< 0. Repeating the
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above for i = m − 2,m − 3, . . . , 1 yields d
dβ
v1(~x) ≤ 0 and at least one strict inequality holds if

~x ∈ {~x|b∗(~x) > 0}.

D. Proof of Proposition 5

We prove Proposition 5 by first establishing the following technical lemma.

Lemma 4 Let TOTAL , PRE+ PAY+ POST+NT, the total ex ante expected procurement cost

of the buyer. Then ∂2TOTAL

∂Co∂β
< 0 and ∂2TOTAL

∂K∂β
> 0.

Proof. Letting TOTAL , E
~x
[TOTAL(~x)] we prove Lemma 4 by showing ∂2TOTAL(~x)

∂Co∂β
< 0 and

∂2TOTAL(~x)
∂K∂β

> 0 for any realization of ~x, where TOTAL(~x) is the expected total cost conditional on

the realization of ~x. (Note that it is still an expected cost because we take the expectation over

bidders’ qualification levels.)

From Proposition 1 we see that for fixed ~x, when Co is changed slightly, only NT is affected.

Further, NT(~x) equals Co times the probability of non-transaction. Let m equal the optimal

number of bidders to post-qualify given in equation (8) for a given ~x; clearly the probability of

non-transaction equals (1− β)m. That is, ∂TOTAL(~x)
∂Co

= (1− β)m. Hence,

∂2TOTAL(~x)

∂Co∂β
= −m(1− β)m−1 + (1− β)m · ln(1− β) ·

dm

dβ
< 0,

where the inequality follows from 0 < β < 1 and the fact that as β increases the m which sat-

isfies equation (8) increases. Simply taking an expectation, we get ∂2TOTAL(~x)
∂Co∂β

< 0 implies that

∂2TOTAL
∂Co∂β

< 0.

To show ∂2TOTAL(~x)
∂K∂β

> 0, first recall that the parameter K comes into the total cost via the

qualification costs, which means that TOTAL(~x)
∂K

= ∂[PRE(~x)+POST(~x)]
∂K

; since qualification costs are

assumed linear in K, to show ∂2[PRE(~x)+POST(~x)]
∂K∂β

> 0 it suffices to show ∂[PRE(~x)+POST(~x)]
∂β

> 0. In

other words, it suffices to show that given any realization of ~x, the expected total qualification cost

strictly increases in β (equivalently, pre-qualification threshold q). A sample path proof is given as

follows:
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Consider a sample path of the pre-qualification process. When the pre-qualification threshold

q equals q1, denote the the number of suppliers examined (all those who pass plus all those who fail

pre-qualification) during pre-qualification as n1pre and the total (pre plus post) qualification cost as

C1qual. If on the same sample path the buyer instead adopted a higher pre-qualification threshold

q2 > q1, n2pre, the number of suppliers examined during pre-qualification must be no less than n1pre.

Noticing that the total (pre plus post) qualification cost spent on the first n1pre suppliers is greater

than or equal to C1qual, we conclude that C2qual, the total qualification cost when q = q2, must be

no less than C1qual.

Using Lemma 4 we are now ready to complete the proof of Proposition 5. Let β∗(K,Co)

denote the optimal β given K and Co. Then, by this definition, it must be true that

TOTAL(K,Co)|β=β∗(K,Co) ≤ TOTAL(K,Co)|β=β∗(K+dK,Co), and

TOTAL(K + dK,Co)|β=β∗(K+dK,Co) ≤ TOTAL(K + dK,Co)|β=β∗(K,Co).

Therefore, [TOTAL(K + dK,Co)− TOTAL(K,Co)]|β=β∗(K+dK,Co)

≤ [TOTAL(K + dK,Co)− TOTAL(K,Co)]|β=β∗(K,Co).

Because ∂2TOTAL
∂K∂β

> 0, we conclude that β∗(K + dK,Co) ≤ β∗(K,Co), that is, β∗ decreases with

K. Similarly, with the fact that ∂2TOTAL
∂Co∂β

< 0, we can prove β∗ increases with Co, and the proof of

Proposition 5 is complete.

E. Proof of Proposition 6

For shorthand, let β ,
∫ 1
s=0[1 − H(q0|s)]dG(s) be the lower bound on β and let TOTAL(n, β),

PRE(n, β), PAY(n, β), POST(n, β), and NT(n, β) be the expected total cost, the expected pre-

qualification cost, the expected payment, the expected post-qualification cost and the expected

non-transaction cost respectively, given the probability of bidder qualification β and n bidders.

Above all, we show the expected total cost has a uniform lower bound. For any finite n and
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any β,

TOTAL(n <∞, β) = [PRE + PAY+ POST +NT](n <∞, β),

≥ PAY(n <∞, β) + POST(n <∞, β) + NT(n <∞, β),

= PAY(n <∞, β)

+ POST(n =∞, β) · [1−
n
∏

i=1

(1− βFi(ri))] + Co

n
∏

i=1

(1− βFi(ri)), (18)

≥ PAY(n <∞, β) + POST(n =∞, β) (19)

≥ POST(n =∞, β).

The first inequality is due to the fact that PRE(n <∞, β)+POST(n <∞, β) ≥ POST(n <∞, β),

which is because ∂[PRE(~x)+POST(~x)]
∂β

> 0 (shown during the proof of Proposition 5). The second

equality uses the fact that the buyer transacts (finds a qualified supplier i bidding below its reserve

price ri) with probability
∏n

i=1(1− βFi(ri)) and the second inequality then follows because in the

optimal post-qualification stopping problem (see Proposition 3) the buyer can always defect to the

outside option, in particular, POST(n = ∞, β) ≤ Co. The last inequality is due to PAY(n <

∞, β) ≥ 0 for any finite n.

In the following, we will first show the existence of Knt and Knt < ∞ by showing Knt is

just the K such that Co − CACCEPT −
(1−β)

β
CREJECT = 0, and next show the existence of Kpre

and Kpre > 0, and then show the existence of Kpost and Kpost < Knt. Since Kpre ≤ Kpost is

straightforward by Proposition 5, we then conclude 0 < Kpre ≤ Kpost < Knt < ∞. Finally,

Kpre,Kpost being increasing in Co is by Proposition 5.

Since Co − CACCEPT −
(1−β)

β
CREJECT is linearly decreasing in K, there exists a unique K

such that Co − CACCEPT −
(1−β)

β
CREJECT = 0. Denote this K by Knt, and we will show that it

is optimal to run the auction whenever K < Knt and it is optimal to forego the auction in favor of

the outside option whenever K ≥ Knt.

Consider any K < Knt, we have

TOTAL|n<∞,β(K,Co) < TOTAL|n<∞,β(K
nt, Co) = Co,
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where the inequality is due to the fact that PAY+PAY+NT strictly increases in K when K < Knt

(by equation (9)-(10)), and the equality follows from {~x|b∗(~x) > 0} = ∅. This implies that running

the auction with post-qualification only is better than taking the outside option when K < Knt.

Then, consider any β and K ≥ Knt > K ′, we have

TOTAL|n<∞,β(K,Co) ≥ TOTAL|n<∞,β(K
′, Co)

≥ POST|n=∞,β(K
′, Co) · [1−

n
∏

i=1

(1− βFi(ri))] + Co

n
∏

i=1

(1− βFi(ri)),

where the first inequality is due to the fact that the total cost increases in K (since PRE increases

in K by equation (2) and PAY + POST + NT increases in K by equation (9)-(10)), the second

inequality is from equation (18). Since the limit from the left limK′↑Knt POST|n=∞,β(K
′, Co) = Co

(since the buyer becomes indifferent between post qualifying bidders and taking the outside option

as K ′ approaches Knt from the left), we have TOTAL|n<∞,β(K,Co) ≥ Co.

Therefore, Knt as defined is just the threshold switching between “running the auction” and

“taking the outside option”. Further, because Co is finite and Co − CACCEPT −
(1−β)

β
CREJECT is

linearly decreasing in K, Knt is finite and increasing in Co.

The existence of Kpre is due to the existence of Knt and the fact that it is always optimal

to do pre-only when K = 0. This fact is true because PRE = 0 when K = 0 and hence TOTAL =

PAY+POST+NT, which strictly decreases in β because ∂TOTAL
∂β

|K=0 =
∂PAY+POST+NT

∂β
|K=0 < 0

for all β on [β, 1] (by the proof of Proposition 4 and the fact that {~x|b∗(~x) > 0} 6= ∅ when K = 0).

Further, Kpre > 0 because TOTAL strictly decreases in β on the full support of [β, 1] when K

is positive and close enough to zero, given that ∂TOTAL
∂β

is uniformly continuous in K and β on

[0,Knt]× [β, 1].

The existence of Kpost and Kpost < Knt are due to the fact that it is optimal to run the

auction with post-only when K is less than but close enough to Knt. That is, there exists ∆K >

0 such that TOTAL(Knt − ∆K,β) > TOTAL(Knt − ∆K,β), ∀β > β. (TOTAL(K,β) is the

expected total cost as a function of K and β, for fixed n and Co > 0.) This is true because i)

TOTAL(Knt, β) > TOTAL(Knt, β), ∀β > β; ii) ∂TOTAL
∂β

(Knt, β)|β=β > 0.
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In the following, we first show why i) and ii) are true and then complete the proof by showing

why i) and ii) together imply the existence of ∆K.

Fact i) is true because for all β > β and K ′ < Knt, TOTAL(K ′, β) ≥ PAY(K ′, β) +

POST|n=∞(K ′, β) (by inequality (19)) and limK′↑Knt PAY(K ′, β) > 0 (since {~x|b∗(~x) > 0} 6= ∅

whenK = Knt and β > β); however, limK′↑Knt POST|n=∞(K ′, β) = Co and TOTAL(Knt, β) = Co.

ii) is true. Note that ∂TOTAL
∂β

(Knt, β)|β=β = ∂PRE
∂β

(Knt, β)|β=β+
∂(POST+PAY+NT)

∂β
(Knt, β)|β=β.

By Lemma 4 ∂PRE
∂β

(Knt, β)|β=β > 0. To show i), we show ∂(POST+PAY+NT)
∂β

(Knt, β)|β=β = 0 as fol-

lows.

∂(PAY + POST + NT)

∂β
|β=β

=
∂E

~x
v1(~x)

∂β
|β=β =

∫

~x

[

∂v1(~x)

∂β
|β=β

]

dF (~x) =

∫

{~x|b∗(~x)>0}

[

∂v1(~x)

∂β
|β=β

]

dF (~x),

where the last equality is due to the fact that ∂v1(~x)
∂β

|β=β = 0 for ~x ∈ {~x|b∗(~x) = 0} (because

v1(~x) = Co for any ~x ∈ {~x|b∗(~x) = 0}).

We can show ∂v1(~x)
∂β

|β=β is uniformly bounded for all n and ~x. Clearly ∂v1(~x)
∂β

|β=β is bounded

from above by zero (Proposition 4); we show that for any ~x it is bounded from below as well.

∂v1(~x)

∂β
|β=β =

∂{
∑b∗(~x)

i=1 ψi(xi)β(1− β)
i−1 + E[POST|b∗(~x)] + Co(1− β)

b∗(~x)}

∂β
|β=β,

=

b∗(~x)
∑

i=1

ψi(xi)
∂[β(1− β)i−1]

∂β
|β=β +

∂{E[POST|b∗(~x)] + Co(1− β)
b∗(~x)}

∂β
|β=β

≥

b∗(~x)
∑

i=1

ψi(xi)
∂[β(1− β)i−1]

∂β
|β=β + min

b=0,...,n

{

∂{E[POST|b] + Co(1− β)
b}

∂β
|β=β

}

≥

b∗(~x)
∑

i=1

ψi(xi)min

{

0,
∂[β(1− β)i−1]

∂β
|β=β

}

+ min
b=0,...,n

{

∂{E[POST|b] + Co(1− β)
b}

∂β
|β=β

}
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≥ [Co − CACCEPT −
CREJECT (1− β)

β
]

b∗(~x)
∑

i=1

min

{

0,
∂
[

β(1− β)i−1
]

∂β
|β=β

}

+ min
b=0,...,n

{

∂{E[POST|b] + Co(1− β)
b}

∂β
|β=β

}

≥ [Co − CACCEPT −
CREJECT (1− β)

β
]
∞
∑

i=1

min

{

0,
∂[β(1− β)i−1]

∂β
|β=β

}

+ min
b=0,...,∞

{

∂{E[POST|b] + Co(1− β)
b}

∂β
|β=β

}

. (20)

Note: the first inequality is due to ∂{E[POST|b∗(~x)]+Co(1−β)b
∗(~x)}

∂β
|β=β ≥ min

b=0,...,n
{∂{E[POST|b]+Co(1−β)b}

∂β
|β=β};

the second inequality is due to ∂[β(1−β)i−1]
∂β

|β=β ≥ min{0, ∂[β(1−β)i−1]
∂β

|β=β} for all i; the third in-

equality is due to min{0, ∂[β(1−β)i−1]
∂β

|β=β} ≤ 0 and 0 ≤ ψi(xi) ≤ Co−CACCEPT −
CREJECT (1−β)

β
for

all i ≤ b∗(~x); and the last inequality is due to Co−CACCEPT−
CREJECT (1−β)

β
≥ 0 (by b∗(~x) > 0) and

∑b∗(~x)
i=1 min{0, ∂[β(1−β)i−1]

∂β
|β=β} ≥

∑∞
i=1min{0, ∂[β(1−β)i−1]

∂β
|β=β} and min

b=0,...,n

{

∂{E[POST|b]+Co(1−β)b}
∂β

|β=β

}

≥

min
b=0,...,∞

{

∂{E[POST|b]+Co(1−β)b}
∂β

|β=β

}

. Since the RHS of the last inequality can be shown (indepen-

dent of ~x and n) to be bounded, ∂[PAY(n,β)+POST(n,β)+NT(n,β)]
∂β

|β=β is bounded from below uniformly

for all n.

Given that as K ↑ Knt, {~x|b∗(~x) > 0} → ∅ (by the definition of Knt and Proposition 2)

and ∂v1(~x)
∂β

|β=β is bounded, the dominated convergence theorem implies ∂(PAY+POST+NT)
∂β

|β=β ↓ 0

as K ↑ Knt.

Given i) and ii), to complete this proof, we can construct a ∆K > 0 such that TOTAL(Knt−

∆K,β) > TOTAL(Knt −∆K,β), ∀β > β.

Considering that ∂TOTAL
∂β

(Knt, β) is continuous in β and positive (by ii)) at β, there exists

δ > 0 such that ε1 , min{∂TOTAL
∂β

(Knt, β) : β ∈ [β, β + δ]} > 0. Given that ∂TOTAL
∂β

(K,β)

is continuous in (K,β) on [0,Knt] × [β, β + δ] and hence uniformly continuous, there exists a

∆K1 > 0 such that |∂TOTAL
∂β

(K,β) − ∂TOTAL
∂β

(Knt, β)| < ε1
2 for all K ∈ [Knt − ∆K1,K

nt] and

β ∈ [β, β + δ]. Further, it is easy to check that ∂TOTAL
∂β

(K,β) > 0 for all K ∈ [Knt − ∆K1,K
nt]

and β ∈ [β, β + δ].

Considering that TOTAL(Knt, β)−TOTAL(Knt, β) is positive (by i)) and continuous in β on

[β+δ, 1], there exists ε2 , min{TOTAL(Knt, β)−TOTAL(Knt, β) : β ∈ [β+δ, 1]} > 0. Given that
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TOTAL(K,β)−TOTAL(K,β) is continuous in (K,β) on [0,Knt]× [β + δ, 1] and hence uniformly

continuous, there exists a ∆K2 > 0 such that |[TOTAL(K,β)−TOTAL(K,β)]−[TOTAL(Knt, β)−

TOTAL(Knt, β)]| < ε2
2 for all K ∈ [Knt − ∆K2,K

nt] and β ∈ [β + δ, 1]. It is easy to check that

TOTAL(K,β)− TOTAL(K,β) > 0 for all K ∈ [Knt −∆K2,K
nt] and β ∈ [β + δ, 1].

Therefore, TOTAL(Knt − ∆K,β) > TOTAL(Knt − ∆K,β) for all β > β and ∆K <

min{∆K1,∆K2}. This establishes the existence of Kpost and hence completes the proof.

F. Proof of Proposition 7

When post-only is used the buyer’s cost strictly decreases in the number of invited bidders; thus,

once post-only is optimal (N > N̄2) we must also have that inviting up to capacity is optimal

(N > N̄1), so the existence of N̄1 and N̄1 ≤ N̄2 are established as long as the existence of N̄2 is

established.

The existence of N̄2 is shown by showing two facts: first, limn′→∞TOTAL(n′, β) < TOTAL(n, β)

for any β and finite n; and second, TOTAL(n, β) < TOTAL(n, β) for all β > β when n large enough.

First fact. When the buyer is able to invite an infinite number of bidders and perform post-

qualification only, the expected total cost approaches expected post-qualification cost, POST(n =

∞, β), because all other costs are zero. To see this, note that the post-only strategy avoids all

pre-qualification costs, the infinite bidder auction with fixed probability of bidder qualification

ensures the buyer can find a qualified bidder, and infinite numbers of bidders drives bids to the

left endpoint of the cost distribution (zero). Hence, limn′→∞TOTAL(n′, β) = POST(n =∞, β) <

TOTAL(n, β) for any β and finite n, where the strict inequality is from inequality (19) given that

PAY(n <∞, β) > 0 when K < Knt.

Second fact. Since PRE(n, β) = nPRE(1, β) (by equation (2)), β > β cannot be optimal

when n > Co

PRE(1,β)
. However, since PRE(1, β) approaches zero as β approaches β, this bound

is not uniform for all β. Fortunately, we can prove ∂[TOTAL(n,β)]
∂β

|β=β > 0 when n is large, which

helps establish a uniform bound. Given that ∂[PRE(1,β)]
∂β

|β=β > 0 (by Proposition 4), we have

∂[PRE(n,β)]
∂β

|β=β = n
∂[PRE(1,β)]

∂β
|β=β → ∞ as n → ∞. This implies ∂[TOTAL(n,β)]

∂β
|β=β > 0 for n large
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enough, provided that ∂[PAY(n,β)+POST(n,β)+NT(n,β)]
∂β

|β=β is uniformly bounded for all n (by inequal-

ity (20)). Therefore, there exist n0 and δ > 0 such that TOTAL is strictly increasing on [β, β + δ]

for all n > n0. Thus TOTAL(n, β) < TOTAL(n, β) for all β > β when n > max{n0,
Co

PRE(1,β+δ)
},

which is finite given that PRE(1, β + δ) > 0 when K > 0.

Showing N̄2 exists. Suppose not; then there must exist a sequence N (1) < N (2) < N (3) . . . , such

that N (m) → ∞ as m goes to infinity but β∗(N (m)) > β for all m. Then by the second fact it

must be that the sequence {n∗(N (m))} is bounded. By the first fact and TOTAL(n, β) continuous

over the compact set [β, 1], minβ∈[β,1],n∈{n∗(N(1)),n∗(N(2)),...}TOTAL(n, β) exists and strictly exceeds

POST(n =∞, β) = limn′→∞TOTAL(n′, β). Hence there exists anm such that TOTAL(N (m), β) <

TOTAL(n∗(N (m)), β∗(N (m))), a contradiction to (n∗(N (m)), β∗(N (m))) optimal.
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