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ABSTRACT
The central mechanism design problem is to develop incentives
for agents to truthfully reveal their preferences over different out-
comes, so that the system-wide outcome chosen by the mechanism
appropriately re¤ects these preferences. However, in many set-
tings, agents’ do not know their actual preferences a priori. Instead,
an agent may need to compute or gather information to determine
whether they prefer one possible outcome over another. Due to
time constraints or the cost of acquiring information, agents must
be deliberative in that they need to carefully decide how to allocate
their computational or information gathering resources when de-
termining their preferences. In this paper we study the problem of
designing mechanisms explicitly for deliberative agents. We pro-
pose a set of intuitive properties which we argue are desirable in
deliberative-agent settings. We show that these properties are mu-
tually incompatible, and that many approaches to mechanism de-
sign are not robust against undesirable behavior from deliberative
agents.

Categories and Subject Descriptors: 1.2.11 Multiagent Systems
General Terms: Design, Theory
Keywords: Mechanism Design, Game Theory, Resource-bounded
Agents

1. INTRODUCTION
Game theory and mechanism design have played an important

role in the £eld of multiagent systems. They have provided a foun-
dation for analyzing negotiation and resource allocation protocols,
and have supplied a set of tools and techniques for engineering
incentives so that agents behave in the way we, the system de-
signers, want them to. However, game theory and mechanism de-
sign have traditionally ignored constraints on the computational re-
sources and information gathering technology of agents in many
real-world applications.

Recently, researchers have started studying how computational
and informational constraints in¤uence the behavior of both the
mechanism and the agents in multiagent systems. One direction of
research has focused on what happens if the mechanism does not
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have in£nite computational powers. In many interesting applica-
tions, such as combinatorial auctions, the mechanism is required to
solve (possibly multiple) NP-hard problems. Determining how to
replace the mechanism with approximation algorithms, while still
maintaining the desirable game-theoretic properties has been a vi-
brant research area [6, 10, 12].

Researchers have also started to study computational and infor-
mational constraints placed on the agents participating in a mecha-
nism. Mechanism design has traditionally assumed that the agents
know their preferences over different outcomes, and the mecha-
nism problem is to simply get the agents to reveal this information.
However, in many settings agents do not know their preferences
and instead must learn them by computing or acquiring information
(at some cost). One model which has been studied allows an agent
the choice between participating in the mechanism without know-
ing its true preferences or paying a fee to learn them. Questions
asked using this model include what sort of incentives are required
for agents to acquire information about their own preferences [1],
and how does information acquisition depend on the rules of the
mechanism [2, 13, 14].

It has also been noted that an agent’s decision as to whether to
compute or gather information about it’s own preferences can de-
pend on the preferences of other agents [15]. We have proposed ex-
plicitly modeling the computing and information gathering actions
of agents, along with the decisions they make when deciding how to
use their computing or information gathering resources. In partic-
ular, our model allows agents to compute or gather information on
other agents’ preferences. We placed this deliberative-agent model
into a game theoretic framework, and have analyzed classic bar-
gaining and auction mechanisms in order to gain an understanding
of the impact that computational and information gathering con-
straints have on agents’ strategic behavior [7, 8].

In this paper, using the deliberative-agent model, we ask the
question “Is it possible to design mechanisms explicitly for deliber-
ative agents?” In particular, we wish to know whether it is possible
to create mechanisms which reduce the strategic and deliberative
burden of agents. We propose a set of three intuitive properties
that we would like mechanisms for deliberative agents to have. We
show that in general it is not possible to design interesting mech-
anisms which have all three of our desired properties. While our
main result is negative, it opens up several fascinating research di-
rections.

The rest of the paper is organized in the following way. In the
next two sections we provide background material needed for the
results. In particular we present the basic mechanism design con-
cepts used in the paper, and describe the deliberative-agent model.
In Section 4 we present our results. We describe the properties
we believe mechanisms for deliberative agents should have, show



that any direct mechanism will be prone to a phenomena called
strategic-deliberation, and show that, in general, interesting mech-
anisms can not satisfy our desired properties. We conclude the pa-
per with a discussion of the implications of our results and describe
some interesting future research directions.

2. MECHANISM DESIGN
Mechanism design studies the problem of how to provide appro-

priate incentives to agents so that they willingly reveal their private
preferences. Once the preferences of the agents are known, the
mechanism selects a system-wide outcome. However, agents are
self-interested and may try to manipulate the mechanism in order
to force an outcome which is desirable for themselves, as opposed
to the system as a whole. In this section we provide a brief overview
of important mechanism design concepts. A more thorough presen-
tation of mechanism design can be found in many game theory and
economic texts [11].

We assume that there is a set of agents denoted by N (with
|N | = n). Each agent i ∈ N is de£ned by a type, θi, which rep-
resents the private information and preferences of the agent. Each
agent has a utility function, ui(o, θi) which depends on the out-
come o, and its type θi. If we knew the actual types of the agents,
θ = (θ1, . . . , θn) then we would be able to apply a social choice
function, f(θ), which selects the optimal outcome given the agents
types. The problem, however, is that we do not know the true types
of the agents. Instead, we use a mechanism to try to reach the cor-
rect outcome.

A mechanism, M , de£nes a game which, when agents play in
equilibrium, results in the same outcome as the social choice func-
tion f(θ). In particular, a mechanism M = (S, g(·)) de£nes the
sets of allowable strategies, S = S1 × . . . × Sn where Si is the
strategy space of agent i, and g(s) is a function which speci£es
an outcome, o, for each strategy pro£le s = (s1, . . . , sn) ∈ S.
An agent i is free to select any strategy in Si, and, in particu-
lar, will try to select a strategy which will lead to an outcome
that maximizes its own utility. The mechanism implements so-
cial choice function f(θ) if there exists an equilibrium s∗ such
that g(s∗) = f(θ). A special subclass of mechanisms is the di-
rect mechanisms. In a direct mechanism, each agent i announces a
type, θ̂i to the mechanism. It is not necessary that θ̂i = θi. How-
ever, in incentive-compatible (direct) mechanisms there exists an
equilibrium s∗ where s∗ = (θ1, . . . , θn). The important Revela-
tion Principle states that if a social choice function f(·) can be im-
plemented, then it can be implemented by an incentive-compatible
direct mechanism. Another feature of a mechanism is that agents
can not be forced to participate. Thus, mechanisms are often de-
signed so that it is in an agent’s best interest to take part. That is,
the utility of an agent who participates in the mechanism is guar-
anteed to be (in expectation) no less than the utility it could get
from not participating. A mechanism with this property is called
individually-rational.

The structure of agents’ preferences in¤uence the structure of
the mechanism. In this paper we assume that the preferences of the
agents take the form of quasi-linear utilities. That is, the preference
of agent i can be captured by a function of the form

ui(o, θi) = vi(x, θi)− pi

where o = (x, p) is an outcome which speci£es a choice x (for ex-
ample an allocation of items or resources) and a transfer pi ∈ R for
each agent, where p = (p1, . . . , pn). An agent’s utility depends on
its valuation function vi(x, θi) which speci£es how much an agent
values choice x given its type θi. A mechanism for a quasi-linear
setting is de£ned by M = (S, g(·)) where g(·) = (x(·), p(·)).

3. DELIBERATIVE AGENTS
In order to effectively participate in a mechanism, an agent needs

to know its preferences over the different outcomes the mechanism
may produce. However, there are many applications where agents
do not know their preferences a priori but instead must compute
or gather information. An example of a situation where an agent
may not know its preferences a priori is a vacation planning set-
ting. An agent may represent a user who wishes to go on a holiday
but is unsure as to how much it is willing to pay for the holiday.
As more information is gathered about the cost of ¤ights and ho-
tel rooms, and as more is learned about the destination, the agent
(and its user) re£nes its preferences about taking the trip. The real-
ities of limited computational resources and time pressures caused
by real-time environments mean that agents are not always able to
optimally determine how much they really value different alterna-
tives.

In this paper we assume that agents are deliberative. A deliber-
ative agent is an agent who must compute or gather information in
order to determine its preferences, has restrictions on its computing
or information gathering capabilities, and who carefully considers
how to use its available resources given its restrictions.

We assume that a deliberative agent has a set of deliberation re-
sources. In the rest of the paper when we use the term “resources”
we mean deliberation resources. We denote the resources of agent
i by Ti. An agent is able to apply its resources to any preference-
determination problem it wishes. If there are m possible problems,
then we let (t1, . . . , tm) ∈ Tm

i denote the situation where the agent
has devoted tj resources to problem j. In particular, the agent is al-
lowed to deliberate on its own preference problems, as well as the
problems of any other agent. many environments agents

We model deliberation-resource limitations through cost func-
tions. The cost function of agent i is costi : Tm

i 7→ R+. The
only restriction placed on the cost functions are that they must be
additive and non-decreasing.

A deliberative agent i is endowed with a multi-set of algorithms
Ai = {Aj

i} where Aj
i is the algorithm agent i can use on prob-

lem j. We use the term algorithm in its broadest sense; algorithms
are step-by-step procedures for solving some problem. In partic-
ular, we include information gathering processes in our set of al-
gorithms. The algorithms of a deliberative agent have the anytime
property; they can be stopped at any point and are guaranteed to
return a solution, but if additional resources are allocated to the
problem then a better solution (or at least no worse a solution) will
be returned.

A deliberative agent carefully decides how to allocate its re-
sources on algorithms given its cost function. To help with this
process, deliberative agents are equipped with a set of performance
pro£les,PPi = {P

j
i }, one performance pro£le for each algorithm.

A performance pro£le has two components. First, it describes how
allocating resources to a problem changes the output of the algo-
rithm. In particular, it describes, for any resource allocation to a
problem, what possible solutions the algorithm may return, condi-
tional on any and all features of the algorithm and problem instance
which are deemed to be of importance to the agent. This is coupled
with a procedural component, which, given the descriptive part of
the performance pro£le, returns a deliberation policy that describes
how the agent should optimally allocate deliberation resources to
the algorithm. We assume that agents have fully normative perfor-
mance pro£les [7]. To summarize, a deliberative agent is de£ned
by

〈Ti, costi(·),Ai,PPi〉



where Ti is the set of deliberation resources of agent i,

costi : T
m
i 7→ R

is a cost function which limits the amount of resources the agent
can use, Ai is the multi-set of algorithms available to the agent,
and PPi is the associated set of performance pro£les.

Agents use their deliberation resources to determine their pref-
erences. As mentioned in the previous section, we assume that
agents have private-value quasi-linear utilities. In practice, agents
deliberate to determine their valuation functions. The utility for
agent i upon determining valuation function vi(ti) after allocating
t = (t1, . . . , tm) resources when the outcome is (x, p) is

ui((x, p), t) = vi(x, ti)− pi − costi(t).

Note that the agent may allocate resources to problems which do
not directly affect its own valuation function. In particular, an agent
may decide to deliberate on the valuation or preference problem of
another agent.

We differentiate between deliberative actions and non-deliberative
actions. A deliberation action for agent i, dj

i (tj), is the act of allo-
cating tj deliberation resources to problem j. The set of possible
deliberation actions that an agent can take is denoted by Di and
includes the action of not deliberating on any problem (∅D). As
an agent takes deliberation actions, it collects information about its
current preferences as well as how future deliberation actions will
likely change this information. This information is stored in a state
of deliberation,

φi(t) = 〈n1(t1), . . . , nm(tm)〉,

where nj(tj) denotes all information agent i has about its prefer-
ences with respect to problem or instance j given that it has allo-
cated tj resources. This information is derived from the perfor-
mance pro£les and the deliberation results of the agent.

We de£ne the set Xi to be the set of non-deliberative actions that
an agent i can take. This set is determined by the mechanism. For
example, in a sealed-bid auction, the setXi is simply the set of bids
that the agent may submit to the auctioneer, while in an ascending
auction the set Xi is the set of messages that an agent can send to
the mechanism whenever the price increases (i.e. Xi = {in, out}).

A strategy for a deliberative agent is a policy which speci£es
which actions to execute (deliberative and other) at every point in
the game. A history at stage st,H(st) ∈ H(st), de£nes the state of
deliberation of the agent at stage st, the set of all non-deliberative
actions the agent has taken before stage st, as well as all actions it
has observed other agents taking. Using this de£nition of a history,
it is possible to de£ne a deliberation strategy.

De£nition 1 (Deliberation strategy) A deliberation strategy for
a deliberative agent i is

Si = (σ
st
i )

∞

st=0

where

σ
st
i : Hi(st) 7→ Di ×Xi.

To clarify the de£nition, we present a simple example.
A strategy Si = (σ

st
i )

∞

st=0 for a deliberative agent in a sealed-
bid auction, where bids are collected at stage st∗ is de£ned as fol-
lows;

σ
st
i (H(st)) =







(dj
i (tj), ∅A) when st < st∗

(dj
i (tj), bi) bi ∈ R when st = st∗

(dj
i (tj), ∅A) when st > st∗

where j is any problem that the agent can deliberate on. That is, be-
fore the auction the agent can take any deliberation action it wishes,
at the bid collection stage the agent submits a bid, and after the
auction closes, the agent may (or may not) take further deliberation
actions.

In this new, enlarged, strategy space we look for equilibria, which
are named deliberation equilibria [7]. In studying how delibera-
tive agents behave in classic auction mechanisms, we noted a new
type of strategic behavior where, in equilibrium, one agent actively
devotes deliberation resources on another agent’s preference prob-
lem [8]. This behavior was called strategic deliberation.

De£nition 2 (Strategic Deliberation) If an agent i uses any of its
deliberation resources on another agent’s preference problem, then
agent i is strategically deliberating.

In the rest of the paper we make several assumptions. First, as
mentioned earlier, we assume that agents have private-value quasi-
linear utilities. We also assume that the agent descriptions are com-
mon knowledge. That is, we assume that the performance pro£les
and cost functions of the agents are common knowledge. We do
not assume that agents are able to observe which computing ac-
tions other agents are taking during a game.

4. MECHANISM DESIGN FOR DELIBER-
ATIVE AGENTS

In this section we study the problem of designing mechanisms
explicitly for deliberative agents. Our goal is to achieve a thor-
ough understanding of the impact that agents’ limited resources
have on mechanism properties, as well as how it in¤uences the type
of mechanisms we can design.

4.1 Agents’ Types and a Revelation Principle
A fundamental tool in mechanism design is the Revelation Prin-

ciple. It states that under very weak conditions mechanism design-
ers need only focus on incentive-compatible direct mechanisms in
order to discover which social-choice functions are implementable.
That is, mechanism designers can restrict their attention to mecha-
nisms where the agents reveal their types truthfully. The dif£culty
with applying the classic Revelation Principle to a deliberative-
agent setting is that it is unclear what the type of an agent is, since
the classic de£nition of type captures information about an agent’s
preferences over outcomes, which may be unknown to the agent
itself.

We propose de£ning the type of a deliberative agent to be every-
thing that it uses to determine its preferences. That is, the type of a
deliberative agent i depends on it’s algorithms,Ai, it’s performance
pro£les,PP i, and it’s cost function costi(·). Furthermore, the type
of an agent is de£ned by an instance which speci£es the features of
the problems the agent is computing or gathering information on.
We denote the instance set by I and let {x1, . . . , xm} ∈ I denote
a speci£c instance where xj is the instance of problem j. We de£ne
the type space of agent i to be

Θi = Ai × PPi × {costi(·)} × I

and a type instance to be

θi = (A
j
i , PP

j
i , costi(·), {x1, . . . , xm}) ∈ Θi

Using this de£nition of an agent’s type, it is possible to derive a
Revelation Principle for deliberative agents.

Theorem 1 (Revelation Principle) Suppose there exists a mech-
anism M = (S1, . . . , Sn, g(·)) that implements the social choice



function f(·) in dominant strategies. Then f(·) is truthfully imple-
mentable in dominant strategies.

Proof: The proof follows an argument similar to that of the
original Revelation Principle. Assume that indirect mechanism M

implements f(·) in dominant strategies. Then there exists a strat-
egy pro£le s∗ = (s∗1, . . . , s

∗

n) such that ui(g(s
∗

i (θi), s−i(θ−i))−
costi(s

∗

i (θi)) ≥ ui(g(s
′

i(θi), s−i(θ−i)) − costi(s
′

i(θi)) for all
s′i and s−i, and f(θi) = g((s∗1(θ1), . . . , s

∗

n(θn))). Create a new
mechanism M ′ such that, when given type θi, mechanism M ′ ex-
ecutes strategy s∗i and charges costi(s∗i (θi)). If s∗i (θi) is the opti-
mal strategy for agent i for each θi ∈ Θi in mechanism M , given
any set of strategies chosen by the other agents, then truth telling
will be a dominant strategy in M ′. Thus, there is a mechanism that
truthfully implements f(·). Using a similar argument, it is possible
to derive a Bayes-Nash Revelation Principle. ¤

At £rst reading, Theorem 1 suggests that designing mechanisms
for deliberative agents is the identical problem as designing mech-
anisms for fully rational agents. However, there are several unreal-
istic assumptions made in Theorem 1 which are above and beyond
the criticisms of the Revelation Principle for classic settings [3].

First, Theorem 1 assumes that an agent is capable of revealing
its type to the mechanism in a single step. While this can be a large
burden for a classical agent, in a deliberative-agent setting it im-
plies that an agent must communicate a full description of its cost
function, its algorithms, its performance pro£les, and all features
of its current problem instances. It is unreasonable to assume that a
deliberative agent would be capable of doing such a thing. Second,
Theorem 1 assumes that the mechanism itself has enough computa-
tional and information gathering resources of its own to determine
the preferences of all agents. This is in addition to determining the
outcome once it knows the preferences of all agents, which may be
a computationally dif£cult problem in and of itself.

4.2 Properties for Mechanisms
The problem with the approach proposed by Theorem 1 is that

it ignores the fact that the agents participating in the mechanism
are deliberative. We believe that good mechanisms for deliberative
agents should have not only traditional desirable properties such as
individual rationality and incentive-compatibility, but should also
exhibit desirable deliberative properties. In this section we out-
line some intuitive deliberative properties we believe a mechanism
should exhibit.

A concern with the approach taken in Theorem 1 was the as-
sumption that the mechanism could take responsibility for solv-
ing deliberation problems for the agents. We believe that this as-
sumption shifts too high a computational burden to the mechanism
center, and that the main role of the mechanism center should be
to determine an outcome, once it knows the preferences of the
agents. That is, we believe that a mechanism should be prefer-
ence formation-independent in that the mechanism should not be
involved with the process by which agents form their preferences.

Property 1 (Preference formation-independent) A mechanism
should be preference formation-independent. That is, a mechanism
should not be involved in the process by which agents form their
preferences. In particular, the mechanism should not solve agents’
individual deliberation problems.

In Section 3 we noted that in several common auction mecha-
nisms, agents have incentive to use some of their own deliberation
resources to determine the preferences of others. This behavior
was coined strategic-deliberation. We believe that a well-designed
mechanism should reduce the strategic burden on the agents, and

thus try to remove the incentives for agents to strategically delib-
erate. We say that a mechanism where agents have no incentive to
strategically deliberate is deliberation-proof.

Property 2 (Deliberation-proof) A mechanism is deliberation--
proof if, in equilibrium, no agent has incentive to strategically-
deliberate.

Finally, we believe that mechanisms should promote a certain
level of consistency in the strategies of the agents. By this we
mean that the mechanism should not provide incentives for an agent
to follow a strategy which causes other agents to believe that, un-
der the assumption the agent is a utility-maximizer, the true pref-
erences of the agent are impossible. For example, in a single-item
auction an agent needs to have a value, v, for the item being auc-
tioned. A mechanism is misleading if it provides incentives so that
an agent reports that it values the item strictly more than v and that
it is potentially willing to pay more than v. A mechanism is non-
misleading if it provides incentives to the agent to claim that its true
value is less than or equal to v.

Property 3 (Non-misleading) A mechanism is non-misleading if,
in equilibrium, no agent has incentive to follow a strategy which, if
observed by other agents, would lead them to believe that its true
preferences are impossible. That is, if pref∗i is the true preferences
of agent i, and beliefj(prefi) is the probability agent j places on
the event that the true preferences of agent i are pref i, then agent
i has no incentive to follow a strategy such that, upon agent j cor-
rectly updating its beliefs, beliefj(pref∗i ) = 0.

Truthful mechanisms are a subset of non-misleading mechanisms.

4.3 Mechanisms for Deliberative Agents
In this section we investigate what mechanisms can be designed

that satisfy the properties outlined in Section 4.2. We £rst note that
it is trivially possible to design a mechanism which is preference
formation-independent, deliberation-proof, and non-misleading. Any
dictatorial mechanism which always selects the preferred outcome
of one agent satis£es the proposed properties. Similarly any com-
pletely random mechanism where the outcome is independent of
the agents’ preferences also satis£es the properties. Therefore, in
the rest of this paper we restrict ourselves to strategy-dependent
mechanisms where the outcome selected by the mechanism de-
pends on the strategies chosen by the agents.

De£nition 3 (Strategy-dependent) A mechanism M = (S1, . . . ,

Sn, g(·)) is strategy dependent if for each agent i there exists strate-
gies s′i, s

′′

i such that for strategy pro£les s′ = (s1, . . . , si−1, s
′

i,

si+1, . . . , sn) and s′′ = (s1, . . . , si−1, s
′′

i , si+1, . . . , sn), it is the
case that

g(s′) 6= g(s′′).

Most interesting mechanisms are strategy-dependent. For example,
any mechanism which maximizes social welfare must be strategy-
dependent. We note that mechanisms involving randomization can
be strategy-dependent. For example, an auction which allocates
an item randomly, based on a probability weighted by its bid, is
strategy-dependent.

We now present our £rst theorem describing (non-) achievable
properties of mechanisms for deliberative agents.

Theorem 2 There exists no direct strategy-dependent mechanism
which is preference formation-independent, deliberation-proof and
non-misleading across all possible deliberative-agent types.



Proof: Let M = (S1, . . . , Sn, g(·)) be a direct mechanism.
Since we are in a quasi-linear environment, g(·) = (x(·), p(·))
where x(·) is a choice function and p(·) is the transfer function.
If M is preference formation independent then agents can not re-
veal information about their algorithms or performance pro£les to
the mechanism. Instead agents are restricted to reporting their de-
termined preferences (valuations) or expected determined prefer-
ences (expected valuations). If M is non-misleading then in a di-
rect mechanism the agents have incentive to truthfully reveal their
preferences (expected preferences).

De£ne performance pro£les P 1 and P2 as follows

P1 =







0 if
∑

ti = 0
vh
1 with prob. q if t1 > 0
vl
1 with prob. 1− q if t1 > 0

and

P2 =







0 if
∑

ti = 0
vh
2 with prob. r if t2 > 0
vl
2 with prob. 1− r if t2 > 0

where vl
1, vh

1 , vl
2, vh

2 are chosen such that

x((vh
1 , ·)) = 1

x((·, vl
2)) = 1

x((vl
1, v

h
2 )) = 2

where x(·) = i means that an allocation of choice is made in favor
of agent i. Also, since the mechanism is non-misleading, it must
be the case that the transfer functions pi() can not depend on the
declared preference of agent i. That is pi(vj), i 6= j. De£ne the
cost functions of the agents to be cost(t1, t2) = ε(t1+t2) for small
ε > 0, and cost2(t1, t2) = t1+Kt2 for some constantK > 1. For
small ε agent 1 has a dominant strategy which is to deliberate for
one step on its own problem and then truthfully reveal what it has
obtained. A straightforward study of the constraints placed on the
utility functions of agent 1 shows that this is a dominant strategy.

Given that agent 1 has a dominant strategy, agent 2 must de-
termine its best response. By studying constraints placed on the
agent’s utility we can show that agent 2 has incentive to deliberate
on the problem of agent 1 whenever

q + (1− q)r

1− (1− q)r
≤ K ≤ r(vh

2 − p2(v
l
1))−

1 + q

1− q

where we are free to de£ne q, r, vh
2 , vl

1 and K. Strategic deliber-
ation occurs because agent 2 has incentive to learn about agent 1’s
deliberation results, before deciding on its own deliberation policy.
In particular, if it learns that agent 1 has valuation vh

1 , then agent 2
has no incentive to deliberate on its own problem. ¤

In earlier work we showed that the Vickrey auction and generalized
Vickrey auction are not deliberation-proof [8]. Theorem 2 shows
that the problem is more widespread than just ef£cient mechanisms,
and does not depend on the speci£c allocation and payment rules
of the Vickrey auction.

While Theorem 2 is negative in that it states that direct mecha-
nisms do not have the properties we desire, it does give us insight
into why strategic-deliberation may occur. In particular, the proof
shows that the deliberation policy of an agent may depend on the
preferences of another. The problem with direct mechanisms is that
they only allow an agent to obtain relevant preference information
from other agents through strategic-deliberation.

Many indirect (multi-stage) mechanisms reveal information. For
example, in some forms of ascending auctions, an agent may be

aware of how many other agents remain in the auction at a spe-
ci£c price. The information provided by the mechanism may be
useful to agents and help them formulate their optimal deliberation
strategies. In particular, this information can be used to remove the
incentives for agents to strategically-deliberate.

We propose explicitly modeling the information provided by an
indirect mechanism, M , as a feedback game. A feedback game,
(M,FM ), is the extensive form game induced by mechanism M

coupled with a feedback function FM . This extensive form game
includes the deliberation actions of the agents. At every step in the
game, the feedback function FM maps the actions of the agents
into an information structure which describes what information the
mechanism reveals to each agent. For example, in a sealed-bid
auction, where agents must submit bids by stage st′, (the agents can
deliberate before and after stage st′), the corresponding feedback
function would be

F(st, a(st)) =

{

∅ if st < st′

(x, p) if st ≥ st′

where a(st) is the set of actions taken by the agents at stage st, ∅ is
the situation where no information is revealed and (x, p) is the £nal
allocation and transfers. In an ascending auction where agents are
aware of which other agents are participating, a feedback function
takes the form

F(st, a(st)) = (p, {i|agent i is in auction at price p})

Introducing an explicit feedback function does not modify the
original mechanism since nothing in the game induced by the mech-
anism is changed.

Lemma 1 Given any mechanism M it is possible to construct a
feedback functionFM such that the equilibria in the feedback game
(M,FM ) are the same as the equilibria in the original mechanism.

The feedback function provides us with a tool for reasoning about
what information is available to the agents and how agents are act-
ing based upon the information they have. Using this tool we are
able to prove our main theorem.

Theorem 3 There does not exist any strategy-dependent mecha-
nism which is preference formation-independent, deliberation-proof
and non-misleading across all possible deliberative-agent types.

Proof: The full proof is long and technical. In this paper we de-
scribe only the main points. First we restrict ourselves to the space
of preference-formation independent mechanisms. That is, agents
are only permitted to reveal information about their deliberation re-
sults. Second, we assume for technical reasons that if an agent i
announces to the mechanism that it has not deliberated on its own
preference problem, then pi = 0. This assumption guarantees a
weak form of individual rationality.

LetM be a mechanism which implements social choice function
f(·) and de£ne the appropriate feedback function FM . If M is a
direct mechanism then from Theorem 2, it is not deliberation-proof.

Assume that M is an indirect mechanism. Using a Revelation
Principle like argument, it is possible to £nd a direct non-misleading
mechanism M ′ that implements f(·). Using the approach outlined
in Theorem 2 de£ne algorithms, performance, pro£les, cost func-
tions so that strategic deliberation occurs in equilibrium in M ′.

Let v∗i be the valuation that agent i would have achieved if it had
deliberated on its own problem. At each stage in the mechanism let
V̂i be the partition that agent i makes of agent j’s possible values
for v∗j . In particular, V̂i = {Vi(t), V

′

i (t)} where if v∗j ∈ Vi(t)
then agent i has incentive to deliberate on its own problem and if
v∗j ∈ V ′

i (t) then agent i is best off not deliberating. Given the



construction of the instances, there exist stages where V ′

i (t) 6= ∅.
In particular, any stage t where agent 2 has done no deliberating
has V ′

2 (t) 6= ∅.
Next we look at the information structures generated by feed-

back function F at stages where V ′

2 (t) 6= ∅. We say that FM is
separating at stage t if for any non-misleading actions taken when
agent 1’s true value lies in V2(t) and for any non-misleading ac-
tions taken by agent 1 when agent 1’s true value lies in V ′

2 (t), the
outcomes of FM are different. We say that FM is pooling other-
wise. This generates a signaling game with a Bayes-Nash equi-
librium [11]. In this game, given the constructed agents, if FM is
pooling then agent 2 has incentive to strategically deliberate, but if
FM is separating, then agent 1 has incentive to mislead by always
signaling that it has valuation vh

1 .
¤

5. IMPLICATIONS
Theorems 2 and 3 state that it is not possible to design a strategy-

dependent mechanism for deliberative-agent settings which have
the desirable properties we proposed. In particular, we can not have
a strategy-dependent mechanism which is preference formation-
independent, deliberation-proof and non-misleading. While this is
a negative result, it also opens up some interesting questions. In
particular, it may be possible to relax one of the proposed proper-
ties while maintaining the others.

We believe that non-misleading is a fundamental property which
should not be weakened, since it is already a weak constraint on the
equilibrium strategies of agents. One of our motivations for study-
ing the problem of designing mechanisms for deliberative agents
was that we wished to reduce the strategic burden placed on the
agents. Allowing mechanisms to be misleading runs counter to this
motivation.

It may be possible to weaken or remove the deliberation-proof
property. From the analysis in this paper and previous experimen-
tal results [9], it appears as though strategic deliberation is prone
to occur in environments where agents are asymmetric in their de-
liberating capabilities. One research direction is to try and design
mechanisms which are guaranteed to be deliberation-proof as long
as there is a limited amount of asymmetry amongst the agents, but
which have no guarantees otherwise. Categorizing the amount and
type of asymmetry required for strategic-deliberation to occur is an
important £rst step.

A different approach is to embrace strategic deliberation. For ex-
ample, if some agents have adequate computational or information
gathering capabilities so that it is easy or inexpensive for them to
determine valuations and preferences for other agents, it might be
bene£cial, from a system-wide perspective, to allow these agents
to deliberate for other agents, and serve as experts in the mecha-
nism [5]. There are many incentive issues that need to be addressed
before such an approach is feasible. In particular, the mechanism
must provide adequate incentives so that the “right” agents solve
the “right” preference problems, and share this information appro-
priately.

Finally, preference formation-independence is a strong require-
ment. By relaxing this property slightly, and allowing the mecha-
nism center to have more information about the deliberative proces-
ses of the agents, it may be possible to design mechanisms which
are deliberation-proof and non-misleading. An appealing idea is to
allow the mechanism to have information about the performance
pro£les and cost functions of the agents. From its global perspec-
tive, the mechanism could guide the agents in their deliberation-
control policies. A promising approach is to combine a mecha-

nism with search techniques from the Operations Research liter-
ature (such as [16]) so that the mechanism can sequentially query
agents to encourage them to deliberate on their own problems. This
approach has been used in a simple information gathering setting
where agents have the possibility of gathering information only
about their own preferences in a single step [4]. Generalizing the
approach so that strategic-deliberation is avoided raises some inter-
esting issues since incentives need to be engineered so that agents
follow the recommendations of the mechanism, and truthfully re-
veal their preferences. Another interesting problem is determining
what information agents must reveal to the mechanism. We believe
that agents should only be required to reveal some small amount of
details about their deliberative capabilities and technologies. De-
termining the minimal amount of information agents must reveal
to the mechanism in order to avoid strategic-deliberation and mis-
leading behavior is another interesting problem.

6. CONCLUSION
Agents often do not know their preferences a priori. Instead,

they must actively and deliberatively execute a computational or
information gathering process in order to determine them. This
places an added burden on the agents participating in mechanisms
since they are faced with the problem of how to determine their
preferences, and then how to reveal them to the mechanism. These
two aspects are closely interrelated. An agent’s preferences in¤u-
ence what it will reveal to a mechanism. Similarly, what an agent
plans to reveal will in¤uence how it decides to determine its pref-
erences.

In this paper we proposed designing mechanisms explicitly for
deliberative agents. We laid out a set of properties which we believe
mechanisms for deliberative-agents should exhibit. We proposed
that a mechanism should be preference formation-independent in
that the mechanism should not be required to know how the agents
are determining their preferences. We also proposed that a mech-
anism should be deliberation-proof in that no agent should have
incentive to actively determine the (partial) preferences of other
agents. Finally, we claimed that a mechanism should be non-mis-
leading in that no agent should be given incentive to take actions
that purposefully mislead others. We show that in interesting mech-
anisms, it is impossible to obtain all three properties together.

While the results in this paper are negative in that they show
that we are unable to design mechanisms with the properties we
desire, it does open up a range of interesting research questions.
In particular, it may be possible to weaken one of the properties
slightly in order to achieve the other two. Deciding which property
should be relaxed, and by how much are problems we believe are
worthwhile pursuing.
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