
Clearing Algorithms for Barter Exchange Markets:
Enabling Nationwide Kidney Exchanges

David J. Abraham
Computer Science

Department
Carnegie Mellon University

dabraham@cs.cmu.edu

Avrim Blum
Computer Science

Department
Carnegie Mellon University

avrim@cs.cmu.edu

Tuomas Sandholm
Computer Science

Department
Carnegie Mellon University

sandholm@cs.cmu.edu

ABSTRACT
In barter-exchange markets, agents seek to swap their items
with one another. These swaps consist of cycles of agents,
with each agent receiving the item of the next agent in the
cycle. We focus mainly on the upcoming national kidney-
exchange market, where patients with kidney disease can
obtain compatible donors by swapping their own willing but
incompatible donors. With almost 70,000 patients already
waiting for a cadaver kidney in the US, this market is seen as
the only ethical way to significantly reduce the 4,000 deaths
per year attributed to kidney disease.

The clearing problem involves finding a social welfare max-
imizing exchange when the maximum length of a cycle is
fixed. Long cycles are forbidden, since, for incentive reasons,
all transplants in a cycle must be performed simultaneously.
Also, in barter-exchanges generally, more agents are affected
if one drops out of a longer cycle. We prove that the clearing
problem is NP-hard. Solving it exactly is one of the main
challenges in establishing a national kidney exchange.

We present the first algorithm capable of clearing these
markets on a nationwide scale. The key is incremental prob-
lem formulation. We adapt two paradigms for the task:
constraint generation and column generation. For each, we
develop techniques that dramatically improve both runtime
and memory usage. We conclude that column generation
scales drastically better than constraint generation.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics; F.2 [Analysis of Algorithms and Prob-
lem Complexity]: [General]

General Terms
Algorithms, Economics

Keywords
Barter, Exchange, Kidney, Column Generation, Branch-and-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’07, June 11–15, 2007, San Diego, California.
Copyright 2007 ACM ??? ...$5.00.

Price

1. INTRODUCTION
In the United States in 2005, 4,052 people died waiting

for a life-saving kidney transplant. During this time, almost
30,000 people were added to the national waiting list, while
only 9,913 people left the list after receiving a deceased-
donor kidney. Demand for kidneys continues to far outstrip
supply. The waiting list currently has almost 70,000 peo-
ple, and the median waiting time ranges from 2 to 5 years,
depending on blood type.1

For many kidney disease patients, the best option is to find
a living donor, that is, a healthy person willing to donate
one of his/her two kidneys. Although there are marketplaces
for buying and selling living-donor kidneys, the commercial-
ization of human organs is almost universally regarded as
unethical, and the practice is often explicitly illegal. How-
ever, in most countries, live donation is legal, provided it
occurs as a gift with no financial compensation. In 2005,
there were 6,563 live donations in the United States.

The number of live donations would have been much higher
if it were not for the fact that, frequently, a potential donor
and his intended recipient are blood-type or tissue-type in-
compatible. In the past, the incompatible donor was sent
home, leaving the patient to wait for a deceased-donor kid-
ney. However, there are now a few regional kidney exchanges
in the United States, in which patients can swap their in-
compatible donors with each other, in order to each obtain
a compatible donor.

These markets are examples of barter exchanges. In a
barter-exchange market, agents (patients) seek to swap their
items (incompatible donors) with each other. These swaps
consist of cycles of agents, with each agent receiving the
item of the next agent in the cycle. Barter exchanges are
ubiquitous: examples include Peerflix (DVDs) [11], Read It
Swap It (books) [12], and Intervac (holiday houses) [9]. For
many years, there has even been a large shoe exchange in
the United States [10]. People with different-sized feet use
this to avoid having to buy two pairs of shoes. Leg amputees
have a separate exchange to share the cost of buying a single
pair of shoes.

We can encode a barter exchange market as a directed
graph G = (V, E) in the following way. Construct one vertex
for each agent. Add a weighted edge e from one agent vi to
another vj , if vi wants the item of vj . The weight we of e
represents the utility to vi of obtaining vj ’s item. A cycle c

1Data from the United Network for Organ Sharing [20].

in this graph represents a possible swap, with each agent in
the cycle obtaining the item of the next agent. The weight
wc of a cycle c is the sum of its edge weights. An exchange
is a collection of disjoint cycles. The weight of an exchange
is the sum of its cycle weights. A social welfare maximizing
exchange is one with maximum weight.

Figure 1 illustrates an example market with 5 agents,
{v1, v2, . . . , v5}, in which all edges have weight 1. The mar-
ket has 4 cycles, c1 = 〈v1, v2〉, c2 = 〈v2, v3〉, c3 = 〈v3, v4〉
and c4 = 〈v1, v2, v3, v4, v5〉, and two (inclusion) maximal ex-
changes, namely M1 = {c4} and M2 = {c1, c3}. Exchange
M1 has both maximum weight and maximum cardinality
(i.e., it includes the most edges/vertices).

v1 v2 v3 v4

v5

e1 e3 e5

c1 c2 c3

e8
e7

e6e4e2

c4

Figure 1: Example barter exchange market.

The clearing problem is to find a maximum-weight ex-
change consisting of cycles with length at most some small
constant L. This cycle-length constraint arises naturally
for several reasons. For example, in a kidney exchange, all
operations in a cycle have to be performed simultaneously;
otherwise a donor might back out after his incompatible
partner has received a kidney. (One cannot write a binding
contract to donate an organ.) This gives rise to a logistical
constraint on cycle size: even if all the donors are operated
on first and the same personnel and facilities are used to
then operate on the donees, a k-cycle requires between 3k
and 6k doctors, around 4k nurses, and almost 2k operating
rooms.

Due to such resource constraints, the upcoming national
kidney exchange market will likely allow only length 2 and
3 cycles. Another motivation for short cycles is that if the
cycle fails to exchange, fewer agents are affected. For exam-
ple, last-minute testing in a kidney exchange often reveals
new incompatibilities that were not detected in the initial
testing (based on which the compatibility graph was con-
structed). More generally, an agent may drop out of a cycle
if his preferences have changed, or he simply fails to fulfill
his obligations (such as sending a book to another agent in
the cycle) due to forgetfulness.

In Section 3, we show that (the decision version of) the
clearing problem is NP-complete for L ≥ 3. One approach
then might be to look for a good heuristic or approxima-
tion algorithm. However, for two reasons, we aim for an
exact algorithm based on an integer-linear program (ILP)
formulation, which we solve using specialized tree search.

• First, any loss of optimality generally leads to unnec-
essary patient deaths.

• Second, an attractive feature of using an ILP formula-
tion is that it allows one to easily model a number of

variations on the objective, and to add additional con-
straints to the problem. For example, if 3-cycles are
believed to be more likely to fail than 2-cycles, then
one can simply give them a weight that is appropri-
ately lower than 3/2 the weight of a 2-cycle. Or, if
for various (e.g., ethical) reasons one requires a maxi-
mum cardinality exchange, one can at least in a second
pass find the solution (out of all maximum cardinality
solutions) that has the fewest 3-cycles. Other varia-
tions one can solve for include finding various forms of
“fault tolerant” (non-disjoint) collections of cycles in
the event that certain pairs that were thought to be
compatible turn out to be incompatible after all.

In this paper, we present the first algorithm capable of
clearing these markets on a nationwide scale. Straight-forward
ILP encodings are too large to even construct on current
hardware — not to talk about solving them. The key then is
incremental problem formulation. We adapt two paradigms
for the task: constraint generation and column generation.
For each, we develop a host of (mainly problem-specific)
techniques that dramatically improve both runtime and mem-
ory usage.

1.1 Prior Work
Several recent papers have used simulations and market-

clearing algorithms to explore the impact of a national kid-
ney exchange [13, 19, 6, 14, 15, 17]. For example, us-
ing Edmond’s maximum-matching algorithm [4], [19] shows
that a national pairwise-exchange market (using length-2 cy-
cles only) would result in more transplants, reduced waiting
time, and savings of $750 million in heath care costs over 5
years. Those results are conservative in two ways. Firstly,
the simulated market contained only 4,000 initial patients,
with 250 patients added every 3 months. It has been re-
ported to us that the market could be almost double this
size. Secondly, the exchanges were restricted to length-2 cy-
cles (because that is all that can be modeled as maximum
matching, and solved using Edmonds’s algorithm). Allow-
ing length-3 cycles leads to additional significant gains. This
has been demonstrated on kidney exchange markets with
100 patients by using CPLEX to solve an integer-program
encoding of the clearing problem [15]. In this paper, we
present an alternative algorithm for this integer program
that can clear markets with over 10,000 patients (and that
same number of willing donors).

For kidney exchange, there is very little gain in allowing
cycles of length more than 3 [15]. Furthermore, in a sim-
plified theoretical model, any kidney exchange can be con-
verted into one with cycles of length at most 4 [15]. While
this does not hold in general, in Section 5.2.3 we make use
of the observation that short cycles suffice to dramatically
increase the speed of our algorithm.

At a high-level, the clearing problem for barter exchanges
is similar to the clearing problem (aka winner determina-
tion problem) in combinatorial auctions. In both settings,
the idea is to gather all the pertinent information about the
agents into a central clearing point and to run a centralized
clearing algorithm to determine the allocation. Both prob-
lems are NP-hard. Both are best solved using tree search
techniques. In fact, each one of the hundreds of real-world
combinatorial auctions that we are aware of is cleared using
tree search (as opposed to, say, approximation algorithms or
iterative refinement algorithms like local search, simulated

annealing, tabu search, or genetic algorithms). Since 1999,
significant work has been done in computer science and op-
erations research on faster optimal tree search algorithms
for clearing combinatorial auctions. (For a recent review,
see [18].) However, the kidney exchange clearing problem
(with a limit of 3 or more on cycle size) is different from the
combinatorial auction clearing problem in significant ways.
The most important difference is that the natural formula-
tions of the combinatorial auction problem tend to easily
fit in memory, so time is the bottleneck in practice. In
contrast, the natural formulations of the kidney exchange
problem (with L = 3) take cubic space to even model, and
therefore memory becomes a bottleneck much before time
does when using standard tree search, such as branch-and-
cut in CPLEX, to tackle the problem. (On a 1GB computer
and a realistic standard instance generator, discussed later,
CPLEX 10.010 runs out of memory on five of the ten 900-
patient instances and ten of the ten 1,000-patient instances
that we generated.) Therefore, the approaches that have
been developed for combinatorial auctions cannot handle
the kidney exchange problem.

1.2 Paper Outline
The rest of the paper is organized as follows. Section 2

discusses the process by which we generate realistic kidney
exchange market data on which we benchmark the clearing
algorithms. Section 3 contains a proof that the market clear-
ing decision problem is NP-complete. Sections 4 and 5 each
contain an ILP formulation of the clearing problem. We also
detail in those sections our techniques used to solve those
programs on large instances. Section 6 presents experiments
on the various techniques. Finally, we present our conclu-
sions in Section 7, and suggest future research directions.

2. MARKET CHARACTERISTICS AND IN-
STANCE GENERATOR

We test the algorithms on simulated kidney exchange mar-
kets, which are generated by a process described in Roth et
al. [17]. This process is based on the extensive nationwide
data maintained by the United Network for Organ Sharing
(UNOS) [20], so it generates a very realistic instance dis-
tribution. Several papers have used variations of this pro-
cess to demonstrate the effectiveness of a national kidney
exchange (extrapolating from small instances or restricting
the clearing to 2-cycles) [6, 19, 14, 13, 15, 17].

Briefly, the process involves generating patients with a
random blood type, sex, and probability of being tissue-type
incompatible with a randomly chosen donor. The probabil-
ities are based on the actual real-world population. Each
patient is assigned a potential donor with a random blood
type and relation to the patient. If the patient and potential
donor are incompatible, the two are entered into the mar-
ket. Blood type and tissue type information is then used to
decide on which patients and donors are compatible. One
complication, handled by the generator, is that if the patient
is female, and she has had a child with her potential donor,
then the probability that the two are incompatible increases.
Finally, although our algorithms can handle more general
weight functions, patients have a utility of 1 for compatible
donors, since their survival probability is not affected by the
choice of donor [3]. This means that the maximum-weight
exchange has maximum cardinality.

Figure 2 gives lower and upper bounds on the size of a
maximum-cardinality exchange in the kidney-exchange mar-
ket. The lower bounds were found by clearing the market
with length-2 cycles only, while the upper bounds had no re-
striction on cycle length. For each market size, the bounds
were computed over 10 randomly generated markets. Note
that there can be a large amount of variability in the mar-
kets - in one 5000 patient market, less than 1000 patients
were in the maximum-cardinality exchange.

Maximum exchange size
Patients Length-2 cycles only Arbitrary cycles

100 40 ± 2.6 53 ± 4.0
500 258 ± 11.4 279 ± 9.6
1000 535 ± 22.6 561 ± 17.1
2000 1,052 ± 23.8 1,092± 17.7
3000 1,633 ± 25.2 1,677± 23.4
4000 2,148 ± 23.3 2,205± 22.5
5000 2,527 ± 349.9 2,590± 357.5
6000 3,261 ± 23.9 3,346± 15.9
7000 3,802 ± 27.9 3,893± 25.3
8000 4,347 ± 27.1 4,456± 23.9
9000 4,900 ± 30.1 5,010± 23.2
10000 5,470 ± 60.9 5,601± 77.1

Figure 2: Upper and lower bounds on exchange size,
with 95% confidence intervals.

Figure 3 gives additional characteristics of the kidney-
exchange market. Note that a market with only 5000 pa-
tients can already have as many as 400 million cycles of
length 2 and 3.

Patients Edges Length 2 & 3 cycles

100 2,379 ± 126 2757 ± 799
500 61,925 ± 1,746 396,319 ± 44,729
1000 244,199 ± 6,184 3,314,795 ± 283,481
2000 960,292 ± 18,357 25,008,243 ± 2,037,809
3000 2,188,216 ± 31,560 86,990,641 ± 3,477,473
4000 3,856,069 ± 42,700 193,883,289 ± 7,803,793
5000 5,665,381 ± 785,024 359,534,057 ± 73,323,001
6000 8,801,249 ± 53,689
7000 11,930,487 ± 65,567
8000 15,598,373 ± 89,389
9000 19,775,034 ± 122,672
10000 24,440,228 ± 220,834

Figure 3: Market characteristics with 95% confi-
dence intervals

3. PROBLEM COMPLEXITY
In this section, we prove that (the decision version of) the

market clearing problem with short cycles is NP-complete.

Theorem 1. Given a graph G = (V, E) and an integer
L ≥ 3, the problem of deciding if G admits a perfect cycle
cover containing cycles of length at most L is NP-complete.

Proof. It is clear that this problem is in NP. For NP-
hardness, we reduce from 3D-Matching, which is the prob-
lem of, given disjoint sets X, Y and Z of size q, and a set of
triples T ⊆ X × Y ×Z, deciding if there is a disjoint subset
M of T with size q.

One straightforward idea is to construct a tripartite graph
with vertex sets X ∪ Y ∪ Z and directed edges (xa, yb),
(yb, zc), and (zc, xa) for each triple ti = {xa, yb, zc} ∈ T .
However, it is not too hard to see that this encoding fails
because a perfect cycle cover may include a cycle with no
corresponding triple.

Instead then, we use the following reduction. Given an
instance of 3D-Matching, construct one vertex for each el-
ement in X, Y and Z. For each triple, ti = {xa, yb, zc}
construct the gadget in Figure 4, which is a similar to one
in Garey and Johnson [5, pp 68-69]. It is clear that this
construction can be done in polynomial time.

1

...
2 3

y_b

...
2 3

z_c

y_b^i z_c^i

L−1 L−1 L−1

x_a^i

x_a

...
2 31 1

Figure 4: NP-completeness gadget for triple ti and
maximum cycle length L.

Let M be a perfect 3D-Matching. We will show the con-
struction admits a perfect cycle cover by short cycles. If
ti = {xa, yb, zc} ∈ M , add from ti’s gadget the three length-
L cycles containing xa, yb and zc respectively. Also add the
cycle

xi

a, yi
b, z

i
c

�
. Otherwise, if ti /∈ M , add the three length-

L cycles containing xi
a, yi

b and zi
c respectively. It is clear that

all vertices are covered, since M partitions X × Y × Z.
Conversely, suppose we have a perfect cover by short cy-

cles. Note that the construction only has small cycles of
lengths 3 and L. It is easy to see then that each gadget ti

contributes cycles according to the cases above: ti ∈ M , or
ti /∈ M . Hence, there exists a 3D-Matching in the original
instance.

4. SOLUTION APPROACHES BASED ON
AN EDGE FORMULATION

In this section, we consider a formulation of the clearing
problem as an ILP with one variable for each edge. This
encoding is based on the following classical algorithm for
solving the directed cycle cover problem with no cycle-length
constraints.

Given a market G = (V, E), construct a bipartite graph
with a left and right vertex for each agent. The left vertex
represents the agent, while the right vertex represents its
item. Add an edge ev with weight 0 between each agent v
and its item. At this point, the encoding is a perfect match-
ing. Now, for each edge e = (vi, vj) in the original market,
add an edge e with weight we between agent vi and the item
of vj . Perfect matchings in this encoding correspond exactly
with cycle covers, since whenever an agent’s item is taken,
it must receive some other agent’s item. It follows that the

unrestricted clearing problem can be solved in polynomial
time by finding a maximum-weight perfect matching. Fig-
ure 5 contains the bipartite graph encoding of the example
market from Figure 1. The weight-0 edges are encoded by
dashed lines, while the market edges are in bold.

Items

Agents
v1 v2 v3 v4 v5

e1 e3 e8

e2

v1 v2 v3 v4 v5

e7e6

e5

e4

Figure 5: Perfect matching encoding of the market
in Figure 1.

We can also solve the unrestricted problem by encoding
it as the following ILP:

max
X
e∈E

wee

such that for all vi ∈ V , the conservation constraintX
eout=(vi,vj)

eout −
X

ein=(vj ,vi)

ein = 0

and capacity constraintX
eout=(vi,vj)

eout ≤ 1

are satisfied.
If cycles are allowed to have length at most L, it is easy

to see that we only need to make the following changes to
the ILP. For each length-L path p = 〈ep1

, ep2
, . . . , epL

〉, add
a constraint

ep1
+ ep2

+ . . . + epL
≤ L − 1,

which precludes path p from being in any feasible solution.
Unfortunately, in a market with only 1000 patients, the

number of length-3 paths is in excess of 400 million, and so
we cannot even construct this ILP without running out of
memory.

Therefore, we use a tree search with an incremental for-
mulation approach. Specifically, we use CPLEX, though we
add constraints as cutting planes during the tree search pro-
cess. We begin with only a small subset of the constraints
in the ILP. Since this ILP is small, CPLEX can solve its
LP relaxation. We then check whether any of the missing
constraints are violated by the fractional solution. If so, we
generate a set of these constraints, add them to the ILP, and
repeat. Even once all constraints are satisfied, there may be
no integral solution matching the fractional upper bound,
and even if there were, the LP solver might not find it.

In these cases, CPLEX branches on a variable (we used
CPLEX’s default branching strategy), and generates one

new search node corresponding to each of the children. At
each node of the search tree that is visited, this process of
solving the LP and adding constraints is repeated. Clearly,
this approach yields an optimal solution once the tree search
finishes.

We still need to explain the details of the constraint seeder
(i.e., selecting which constraints to begin with) and the con-
straint generation (i.e., selecting which violated constraints
to include). We describe these briefly in the next two sub-
sections, respectively.

4.1 Constraint Seeder
The main constraint seeder we developed forbids any path

of length L− 1 that does not have an edge closing the cycle
from its head to its tail. While it is computationally ex-
pensive to find these constraints, their addition focuses the
search away from paths that cannot be in the final solution.
We also tried seeding the LP with a random collection of
constraints from the ILP.

4.2 Constraint Generation
We experimented with several constraint generators. In

each, given a fractional solution, we construct the subgraph
of edges with positive value. This graph is much smaller
than the original graph, so we can perform the following
computations efficiently.

In our first constraint generator, we simply search for
length-L paths with value sum more than L − 1. For any
such path, we restrict its sum to be at most L − 1. Note
that if there is a cycle c with length |c| > L, it could contain
as many as |c| violating paths.

In our second constraint generator, we only add one con-
straint for such cycles: the sum of edges in the cycle can be
at most ⌊(L − 1)/L⌋ · |c|.

This generator made the algorithm slower, so we went
in the other direction in developing our final generator. It
adds one constraint per violating path p, and furthermore,
it adds a constraint for each path with the same interior
vertices (not counting the endpoints) as p. This improved
the overall speed.

4.3 Experimental performance
It turned out that even with these improvements, the edge

formulation approach cannot clear a kidney exchange with
100 vertices in the time the cycle formulation (described
later in Section 5) can clear one with 10,000 vertices. In
other words, column generation based approaches turned
out to be drastically better than constraint generation based
approaches. Therefore, in the rest of the paper, we will focus
on the cycle formulation and the column generation based
approaches.

5. SOLUTION APPROACHES BASED ON A
CYCLE FORMULATION

In this section, we consider a formulation of the clearing
problem as an ILP with one variable for each cycle. This
encoding is based on the following classical algorithm for
solving the directed cycle cover problem when cycles have
length 2.

Given a market G = (V, E), construct a new graph on V
with a weight wc edge for each cycle c of length 2. It is easy
to see that matchings in this new graph correspond with

cycle covers by length-2 cycles. Hence, the market clearing
problem with L = 2 can be solved in polynomial time by
finding a maximum-weight matching.

c_1

v_1 v_2 v_3 v_4

c_3c_2

Figure 6: Maximum-weight matching encoding of
the market in Figure 1.

We can generalize this encoding for arbitrary L. Let C(L)
be the set of all cycles of G with length at most L. Then
the following ILP finds the maximum-weight cycle cover by
C(L) cycles:

max
X

c∈C(L)

wcc

subject to
X

c:vi∈c

c ≤ 1 ∀vi ∈ V

with c ∈ {0, 1} ∀c ∈ C(L)

5.1 Edge vs Cycle Formulation
In this section, we consider the merits of the edge for-

mulation and cycle formulation. The edge formulation can
be solved in polynomial time when there are no constraints
on the cycle size. The cycle formulation can be solved in
polynomial time when the cycle size is at most 2.

We now consider the case of short cycles of size at most
L, where L ≥ 3. Our tree search algorithms use the LP
relaxation of these formulations to provide upper bounds on
the optimal solution. These bounds help prune subtrees and
guide the search in the usual ways.

Theorem 2. The LP relaxation of the cycle formulation
weakly dominates the LP relaxation of the edge formulation.

Proof. Consider an optimal solution to the LP relax-
ation of the cycle formulation. We show how to construct
an equivalent solution in the edge formulation. For each
edge in the graph, set its value as the sum of values of all
the cycles of which it is a member. Also, define the value
of a vertex in the same manner. Because of the cycle con-
straints, the conservation and capacity constraints of the
edge encoding are clearly satisfied. It remains to show that
none of the path constraints are violated.

Let p be any length-L path in the graph. Since p has L−1
interior vertices (not counting the endpoints), the value sum
of these interior vertices is at most L−1. Now, for any cycle
c of length at most L, the number of edges it has in p, which
we denote by ec(p), is at most the number of interior vertices
it has in p, which we denote by vc(p). Hence,X

e∈p

e =
X

c∈C(L)

c ∗ ec(p) ≤
X

c∈C(L)

c ∗ vc(p) =
X
v∈p

v = L − 1

The converse of this theorem is not true. Consider a graph
which is simply a cycle with n edges. Clearly, the LP re-
laxation of the cycle formulation has optimal value 0, since
there are no cycles of size at most L. However, the edge for-
mulation has a solution of size n/2, with each edge having
value 1/2.

Hence, the cycle formulation is tighter than the edge for-
mulation. Additionally, for a graph with m edges, the edge
formulation requires O(m3) constraints, while the cycle for-
mulation requires only O(m2).

5.2 Column Generation for the LP
Figure 3 shows how the number of cycles of length at most

3 grows with the size of the market. With one variable per
cycle in the cycle formulation, CPLEX cannot even clear
markets with 1,000 patients without running out of memory
(see Figure 8). To address this problem, we took an incre-
mental formulation approach to formulating and using the
cycle formulation.

The first step in LP-guided tree search is to solve the
LP relaxation. Since the cycle formulation does not fit in
memory, already this LP stage fails if we did not have an
incremental formulation approach. However, motivated by
the observation that an exchange solution can include only
a tiny fraction of the cycles, we explored the approach of
using column (i.e., cycle) generation.

The idea of column generation is to start with a restricted
LP containing only a small number of columns (variables,
i.e., cycles), and then to repeatedly add columns until an
optimal solution to this partially formulated LP is an op-
timal solution to the original (aka master) LP. We explain
this further by way of an example.

Consider the market in Figure 1 with L = 2. Figure 7
gives the corresponding master LP, P , and its dual, D.

Primal P
max 2c1 +2c2 +2c3

s.t. c1 ≤ 1 (v1)
c1 +c2 ≤ 1 (v2)

+c2 +c3 ≤ 1 (v3)
+c3 ≤ 1 (v4)

with c1, c2, c3 ≥ 0

Dual D
min v1 +v2 +v3 +v4

s.t v1 +v2 ≥ 2 (c1)
+v2 +v3 ≥ 2 (c2)

+v3 +v4 ≥ 2 (c3)
with v1, v2, v3, v4 ≥ 0

Figure 7: Cycle formulation.

Let P ′ be the restriction of P containing columns c1 and c3

only. Let D′ be the dual of P ′, that is, D′ is just D without
the constraint c2. Because P ′ and D′ are small, we can solve
them to obtain OPT (P ′) = OPT (D′) = 4, with cOPT (P ′) =
〈c1 = c3 = 1〉 and vOPT (D′) = 〈v1 = v2 = v3 = v4 = 1〉.

While cOPT (P ′) must be a feasible solution of P , it turns
out (fortunately) that vOPT (D′) is feasible for D (so OPT (D′) ≥
OPT (D)). We can verify this by checking that vOPT (D′) sat-
isfies the additional c2 constraint. It follows that OPT (P ′) =
OPT (D′) ≥ OPT (D) = OPT (P), and so vOPT (P ′) is an
optimal solution for P , even though P ′ is missing the c2

column.
Of course, it may turn out (unfortunately) that vOPT (D′)

is not feasible for D. This can happen above if vOPT (D′) =
〈v1 = 2, v2 = 0, v3 = 0, v4 = 2〉. Although we can still see
that OPT (D′) = OPT (D), in general we cannot prove this

because D and P are too large to solve. Instead, because
constraint c2 is violated, we add column c2 to P ′, update
D′, and repeat. The problem of finding a violated constraint
is called the pricing problem. Here, the price of a column
(cycle in our setting) is the difference between its weight, and
the dual-value sum of the cycle’s vertices. If any column of P
has a positive price, its corresponding constraint is violated
and we have not yet proven optimality. In this case, we must
continue generating columns to add to P ′.

5.2.1 Pricing Problem
For smaller instances, we can maintain an explicit collec-

tion of all feasible cycles. This makes the pricing problem
easy and efficient to solve: we simply traverse the collection
of cycles, and look for cycles with positive price. We can
even find cycles with the most positive price, which are the
ones most likely to improve the objective value of restricted
LP [1]. This approach does not scale however. A market
with 5000 patients can have as many as 400 million cycles
of length at most 3 (see Figure 3). This is too many cycles
to keep in memory.

Hence, for larger instances, we have to generate feasible
cycles while looking for one with a positive price. We do
this using a depth-first search algorithm on the market graph
(see Figure 1. In order to make this search faster, we explore
vertices in non-decreasing value order, as these vertices are
more likely to belong to cycles with positive weight. We also
use several pruning rules to determine if the current search
path can lead to a positive weight cycle. For example, at a
given vertex in the search, we can prune based on the fact
that every vertex we visit from this point onwards will have
value at least as great the current vertex.

Even with these pruning rules, column generation is a
bottleneck. Hence, we also implemented the following opti-
mizations.

Whenever the search exhaustively proves that a vertex
belongs to no positive price cycle, we mark the vertex and
do not use it as the root of a depth-first search until its
dual value decreases. In this way, we avoid unnecessarily
repeating our computational efforts from a previous column
generation iteration.

Finally, it can sometimes be beneficial for column gener-
ation to include several positive-price columns in one iter-
ation, since it may be faster to generate a second column,
once the first one is found. However, we avoid this for the
following reason. If we attempt to find more positive-price
columns than there are to be found, or if the columns are
far apart in the search space, we end up having to generate
and check a large part of the collection of feasible cycles. In
our experiments, we have seen this occur in markets with
hundreds of millions of cycles, resulting in prohibitively ex-
pensive computation costs.

5.2.2 Column Seeding
Even if there is only a small gap to the master LP re-

laxation, column generation requires many iterations to im-
prove the objective value of the restricted LP. Each of these
iterations is expensive, as we must solve the pricing problem,
and re-solve the restricted LP. Hence, although we could be-
gin with no columns in the restricted LP, it is much faster
to seed the LP with enough columns that the optimal objec-
tive value is not too far from the master LP. Of course, we
cannot include so many columns that we run out of memory.

We experimented with several column seeders. In one
class of seeder, we use a heuristic to find an exchange, and
then add the cycles of that exchange to the initial restricted
LP. We implemented two heuristics. The first is a greedy
algorithm: for each vertex in a random order, if it is un-
covered, we attempt to include a cycle containing it and
other uncovered vertices. The other heuristic uses special-
ized maximum-weight matching code [16] to find an optimal
cover by length-2 cycles.

These heuristics perform extremely well, especially tak-
ing into account the fact that they only add a small num-
ber of columns. For example, Figure 2 shows that an op-
timal cover by length-2 cycles has almost as much weight
as the exchange with unrestricted cycle size. However, we
have enough memory to include hundreds-of-thousands of
additional columns and thereby get closer still to the upper
bound.

Our best column seeder constructs a random collection of
feasible cycles. Since a market with 5000 patients can have
as many as 400 million feasible cycles, it takes too long to
generate and traverse all feasible cycles, and so we do not
include a uniformly random collection. Instead, we perform
a random walk on the market graph (see, for example, Figure
1), in which, after each step of the walk, we test whether
there is an edge back onto our path that forms a feasible
cycle. If we find a cycle, it is included in the restricted LP,
and we start a new walk from a random vertex. In our
experiments (see Section 6), we use this algorithm to seed
the LP with 400,000 cycles.

This last approach outperforms the heuristic seeders de-
scribed above. However, in our algorithm, we use a combina-
tion that takes the union of all columns from all three seed-
ers. In Figure 8, we compare the performance of the combi-
nation seeder against the combination without the random
collection seeder. We do not plot the performance of the al-
gorithm without any seeder at all, because it can take hours
to clear markets we can otherwise clear in a few minutes.

5.2.3 Proving Optimality
Recall that our aim is to find an optimal solution to the

master LP relaxation. Using column generation, we can
prove that a restricted-primal solution is optimal once all
columns have non-positive prices. Unfortunately though,
our clearing problem has the so-called tailing-off effect [1,
Section 6.3], in which, even though the restricted primal is
optimal in hindsight, a large number of additional iterations
are required in order to prove optimality (i.e., eliminate all
positive-price columns). There is no good general solution
to the tailing-off effect.

However, to mitigate this effect, we take advantage of
the following problem-specific observation. Recall from Sec-
tion 1.1 that, almost always, a maximum-weight exchange
with cycles of length at most 3 has the same weight as an
unrestricted maximum-weight exchange. Furthermore, the
unrestricted clearing problem can be solved in polynomial
time (recall Section 4). Hence, we can efficiently compute an
upper bound on the master LP relaxation, and, whenever
the restricted primal achieves this upper bound, we have
proven optimality without necessarily having to eliminate
all positive-price columns!

In order for this to improve the running time of the overall
algorithm, we need to be able to clear the unrestricted mar-
ket in less time than it takes column generation to eliminate

all the positive-price cycles. Even though the first prob-
lem is polynomial-time solvable, this is not trivial for large
instances. For example, for a market with 10,000 patients
and 25 million edges, specialized maximum-weight matching
code [16] was too slow, and CPLEX ran out of memory on
the edge formulation encoding from Section 4. To make this
idea work then, we used column generation to solve the edge
formulation. The resulting speedup to the overall algorithm
is dramatic, as can be seen in Figure 8.

5.2.4 Column Management
If the optimal value of the initial restricted LP P ′ is far

from the the master LP P , then a large number of columns
are generated before the gap is closed. This leads to mem-
ory problems on markets with as few as 4,000 patients. Also,
even before memory becomes an issue, the column genera-
tion iterations become slow because of the additional over-
head of solving a larger LP.

To address these issues, we implemented a column man-
agement scheme to limit the size of the restricted LP. If the
LP ever contains more than a threshold number of columns,
we selectively remove columns until it is again below the
threshold2. As we discussed earlier, only a tiny fraction of
all the cycles will end up in the final solution. It is unlikely
that we delete such a cycle, and even if we do, it can always
be generated again. Of course, we must not be too aggres-
sive with the threshold, because doing so may offset the
per-iteration performance gains by significantly increasing
the number of iterations required to get a suitable column
set in the LP at the same time.

There are some columns we never delete, for example
those we have branched on (see Section 5.3.2), or those with
a non-zero LP value. Amongst the rest, we delete those with
the lowest price, since those correspond to the dual con-
straints that are most satisfied. This column management
scheme works well and has enabled us to clear markets on a
nationwide scale, as seen in Figure 8.

5.3 Branch-and-Price Search for the ILP
Given a large market clearing problem, we can success-

fully solve its LP relaxation to optimality by using the col-
umn generation enhancements described above. However,
the solutions we find are usually fractional. Thus the next
step involves performing a branch-and-price tree search [1]
to find an optimal integral solution.

Briefly, this is the idea of branch-and-price. Whenever we
set a fractional variable to 0 or 1 (branch), both the master
LP, and the restriction we are working with, are changed
(constrained). By default then, we need to perform column
generation (go through the effort of pricing) at each node of
the search tree to prove that the constrained restriction is
optimal for constrained master LP.

For the clearing problem with cycles of length at most
3, we have found that there is rarely a gap between the
optimal integral and fractional solutions. This means we can
largely avoid the expensive per node pricing step: whenever
the constrained restricted LP has the same optimal value
as its parent in the tree search, we can prove optimality, as
in Section 5.2.3, without having to include any additional
columns.

Although CPLEX can solve ILPs, it does not support
branch-and-price (for example because there can be problem-

2Based on memory size, we set the threshold at 400,000.

specific complications involving the interaction between the
branching rule and the pricing problem). Hence, we imple-
mented our own branch-and-price algorithm, which explores
the search tree in depth-first order. We also experimented
with the A* node selection order [7, 2]. However, this search
strategy requires significantly more memory, which we found
was better employed in making the column generation phase
faster (see Section 5.2.2). The remaining major components
of the algorithm are described in the next two subsections.

5.3.1 Primal Heuristics
Before branching on a fractional variable, we use primal

heuristics to construct a feasible integral solution. These
solutions are lower bounds on the final optimal integral so-
lutions. Hence, whenever a restricted fractional solution is
no better than the best integral solution found so far, we
prune the current subtree. A primal heuristic is effective if
it is efficient and constructs tight lower bounds.

We experimented with two primal heuristics. The first
is a simple rounding algorithm [8]: include all cycles with
fractional value at least 0.5, and then, ensuring feasibility,
greedily add the remaining cycles. Whilst this heuristic is
efficient, we found that the lower bounds it constructs rarely
enable much pruning.

We also tried using CPLEX as a primal heuristic. At any
given node of the search tree, we can convert the restricted
LP relaxation back to an ILP. CPLEX has several built-in
primal heuristics, which we can apply to this ILP. Moreover,
we can use CPLEX’s own tree search to find an optimal
integral solution. In general, this tree search is much faster
than our own.

If CPLEX finds an integral solution that matches the frac-
tional upper bound at the root node, we are done. Other-
wise, no such integral solution exists, or we don’t yet have
the right combination of cycles in the restricted LP. For
kidney-exchange markets, it is usually the second reason
that applies (see Sections 5.2.2 and 5.2.4). Hence, at some
point in the tree search, once more columns have been gen-
erated as a result of branching, the CPLEX heuristic will
find an optimal integral solution.

Although CPLEX tree search is faster than our own, it is
not so fast that we can apply it to every node in our search
tree. Hence, we make the following optimizations. Firstly,
we add a constraint that requires the objective value of the
ILP to be as large as the fractional target. If this is not
the case, we want to abort and proceed to generate more
columns with our branch-and-price search. Secondly, we
limit the number of nodes in CPLEX’s search tree. This is
because we have observed that no integral solution exists,
CPLEX can take a very long time to prove that. Finally,
we only apply the CPLEX heuristic at a node if it has a
sufficiently different set of cycles from its parent.

Whilst the majority of runtime is spent during column
generation, using CPLEX as a primal heuristic still has a
large impact, both by making the tree search phase faster,
and by reducing the number of pricing steps during the
search.

5.3.2 Cycle Brancher
We experimented with two branching strategies, both of

which select one variable per node. The first strategy, branch-
ing by certainty, randomly selects a variable from those
whose LP value is closest to 1. The second strategy, branch-

ing by uncertainty, randomly selects a variable whose LP
value is closest to 0.5. In either case, two children of the
node are generated corresponding to two subtrees, one in
which the variable is set to 0, the other in which it is set
to 1. Our depth-first search always chooses to explore first
the subtree in which the value of the variable is closest to
its fractional value.

For our clearing problem with cycles of length at most
3, we found branching by uncertainty to be superior, rarely
requiring any backtracking.

6. EXPERIMENTAL RESULTS
All our experiments were performed in Linux (Red Hat

9.0), using a Dell PC with a 3GHz Intel Pentium 4 proces-
sor, and 1GB of RAM. Wherever we used CPLEX (e.g., in
solving the LP and as a primal heuristic, as discussed in the
previous sections), we used CPLEX 10.010.

Figure 8 shows the runtime performance of four clearing
algorithms. For each market size listed, we randomly gen-
erated 10 markets, and attempted to clear them using each
of the algorithms.

The first algorithm is CPLEX on the full cycle formula-
tion. This algorithm fails to clear any markets with 1000
patients or more. Also, its running time on markets smaller
than this is significantly worse than the other algorithms.

The other algorithms are variations of the incremental col-
umn generation approach described in Section 5. We begin
with the following settings (all optimizations are switched
on):

Category Setting

Column Seeder Combination of greedy exchange
and maximum-weight matching
heuristics, and random walk
seeder (400,000 cycles).

Column Generation One column at a time.
Column Management On, with 400,000 column limit.
Optimality Prover On.
Primal Heuristic Rounding & CPLEX tree search.
Branching Rule Uncertainty.

The combination of these optimizations allows us to easily
clear markets with over 10,000 patients. In each of the next
two algorithms, we turn one of these optimizations off to
highlight its effectiveness.

First, we restrict the seeder so that it only begins with
10,000 cycles. This setting is faster for smaller instances,
since the LP relaxations are smaller, and faster to solve.
However, at 5000 vertices, this effect starts to be offset by
the additional column generation that must be performed.
For larger instance, this restricted seeder is clearly worse.

Finally, we restore the seeder to its optimized setting, but
this time, remove the optimality prover described in Sec-
tion 5.2.3. As in many column generation problems, the
tailing-off effect is substantial. By taking advantage of the
properties of our problem, we manage to clear a market with
10,000 patients in about the same time it would otherwise
have taken to clear a 6000 patient market.

7. CONCLUSION AND FUTURE RESEARCH
We developed the most scalable algorithms for barter ex-

changes to date. In barter-exchange markets, agents seek to
swap their items with one another. These swaps consist of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2000 4000 6000 8000 10000

C
le

ar
in

g
T

im
e

(s
ec

on
ds

)

Number of Patients

Our Clearing Algorithm
With restricted column seeder

With no optimality prover
Basic cycle formulation

Figure 8: Experimental Results.

cycles of agents, with each agent receiving the item of the
next agent in the cycle. We focused mainly on the upcoming
national kidney-exchange market, where patients with kid-
ney disease can obtain compatible donors by swapping their
own willing but incompatible donors. With almost 70,000
patients already waiting for a cadaver kidney in the US, this
market is seen as the only ethical way to significantly reduce
the 4,000 deaths per year attributed to kidney disease.

The clearing problem involves finding a social welfare max-
imizing exchange when the maximum length of a cycle is
fixed. Long cycles are forbidden, since, for incentive rea-
sons, all transplants in a cycle must be performed simulta-
neously. Also, in barter-exchanges generally, more agents
are affected if one drops out of a longer cycle. We proved
that the clearing problem is NP-hard. Solving it exactly is
one of the main challenges in establishing a national kidney
exchange.

We presented the first algorithm capable of clearing these
markets on a nationwide scale. It optimally solves the kid-
ney exchange clearing problem with 10,000 donor-donee pairs.
Thus there is no need to resort to approximation and let pa-
tients die unnecessarily. The best prior technology (vanilla
CPLEX) cannot handle instances beyond about 900 donor-
donee pairs because it runs out of memory. Thus the key
to our success was incremental problem formulation. We
adapted two paradigms for the task: constraint generation
and column generation. For each, we developed a host
of techniques that dramatically improve both runtime and
memory usage. Some of the techniques use domain-specific
observations while others are domain independent. We con-
clude that column generation scales drastically better than
constraint generation. For column generation in the LP,
our enhancements include pricing techniques, column seed-
ing techniques, techniques for proving optimality without
having to bring in all positive-price columns (and using an-

other column-generation process in a different formulation
to do so), and column removal techniques. For the branch-
and-price search in the integer program that surrounds the
LP, our enhancements include primal heuristics and branch-
ing strategies.

Undoubtedly, further parameter tuning, and perhaps also
additional speed improvement techniques, could be used to
make the algorithm even faster. However, at least for the
projected kidney exchange market size in the US, it is fast
enough now. We are in discussions with regional kidney ex-
changes currently about them adopting our algorithm and
software for clearing their kidney exchanges. That should
help pave the way for adoption of this technology in the
nationwide kidney exchange once that exchange gets estab-
lished.

At least in the short run, kidney exchanges will most likely
continue to run in batch mode every so often. (This is indeed
the most common approach in optimization problems when
the future involves uncertainties.) However, future research
should explicitly address the online aspects of the problem:
1) additional donees and donors will arrive over time, and
it may be best to not execute the myopically optimal ex-
change now, but rather save part of the current market for
later matches, and 2) some of the matched donor-donee pairs
turn out incompatible in last-minute tests before the opera-
tion, and thus the market graph becomes sparser at the last
minute. As we discussed in the introduction, our optimiza-
tion algorithm can be used to find solutions that are robust
(in different senses) by altering the objective (and perhaps
also by altering or adding constraints). We plan to explore
that further. We plan to also tackle these online problems
directly, both with an adversarial model of the future —
and more importantly from a practical perspective, with a
probabilistic model of the future.

Acknowledgments
We thank economists Al Roth and Utku Unver, as well as
kidney transplant surgeon Michael Rees, for alerting us to
the fact that prior technology was inadequate for the clear-
ing problem on a national scale, supplying initial data sets,
and discussions on details of the kidney exchange process.
We also thank Don Sheehy for bringing to our attention the
idea of shoe exchange.

8. REFERENCES
[1] C. Barnhart, E. L. Johnson, G. L. Nemhauser,

M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge
integer programs. Operations Research, 46:316–329,
May-June 1998.

[2] R. Dechter and J. Pearl. Generalized best-first search
strategies and the optimality of A*. Journal of the
ACM, 32(3):505–536, 1985.

[3] F. L. Delmonico. Exchanging kidneys - advances in
living-donor transplantation. New England Journal of
Medicine, 350:1812–1814, 2004.

[4] J. Edmonds. Path, trees, and flowers. Canadian
Journal of Mathematics, 17:449–467, 1965.

[5] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. 1990.

[6] S. E. Gentry, D. L. Segev, and R. A. Montgomery. A
comparison of populations served by kidney paired
donation and list paired donation. American Journal
of Transplantation, 5(8):1914–1921, August 2005.

[7] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[8] K. Hoffman and M. Padberg. Solving airline
crew-scheduling problems by branch-and-cut.
Management Science, 39:657–682, 1993.

[9] Intervac. http://intervac-online.com/.

[10] National odd shoe exchange.
http://www.oddshoe.org/index.php.

[11] Peerflix. http://www.peerflix.com.

[12] Read it swap it. http://www.readitswapit.co.uk/.

[13] A. E. Roth, T. Sonmez, and M. U. Unver. Kidney
exchange. Quarterly Journal of Economics,
119(2):457–488, May 2004.

[14] A. E. Roth, T. Sonmez, and M. U. Unver. A kidney
exchange clearinghouse in New England. American
Economic Review, 95(2):376–380, May 2005.

[15] A. E. Roth, T. Sonmez, and M. U. Unver. Efficient
kidney exchange: Coincidence of wants in a market
with compatibility-based preferences. American
Economic Review, forthcoming.

[16] E. Rothberg. Gabow’s n3 maximum-weight matching
algorithm: an implementation. The First DIMACS
Implementation Challenge, 1990.

[17] S. L. Saidman, A. E. Roth, T. Snmez, M. U. Unver,
and F. L. Delmonico. Increasing the opportunity of
live kidney donation by matching for two and three
way exchanges. Transplantation, 81(5):773–782, March
2006.

[18] T. Sandholm. Optimal winner determination

algorithms. In Chapter 14 of the book Combinatorial
Auctions, Cramton, Shoham, and Steinberg, eds. MIT
Press, 2006.

[19] D. L. Segev, S. E. Gentry, D. S. Warren, B. Reeb, and
R. A. Montgomery. Kidney paired donation and
optimizing the use of live donor organs. Journal of the
American Medical Association, 293(15):1883–1890,
April 2005.

[20] United Network for Organ Sharing (UNOS).
http://www.unos.org/data/.

