
The Burrows-Wheeler Transform:
Ten Years Later

DIMACS, August 19-20, 2004

Organizers:

Paolo Ferragina, University of Pisa.

Giovanni Manzini, University of Piemonte Orientale.

S. Muthu Muthukrishnan, Rutgers University.

List of Contributions

The Pre-history and Future of the Block-Sorting Compression Algorithm 4
Mike Burrows, David Wheeler

An Error-Resilient Blocksorting Compression Algorithm 5
Lee Butterman, Nasir Memon

Compression Boosting Using the Burrows-WheelerTransform 6
Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, Marinella Sciortino

Using the Burrows-Wheeler Transform for PPM compression without escapes 7
Peter Fenwick

Generalized Burrows-Wheeler Transform 9
Sabrina Mantaci, Antonio Restivo, Marinella Sciortino

A Survey of Suffix Sorting 11
Martin Farach-Colton

Fast BWT in Small Space by Blockwise Suffix Sorting 12
Juha K¨ ainenarkk¨

Efficient Computation of the Burrows-Wheeler Transform 14
Kunihiko Sadakane

The FM-Index: A Compressed Full-Text Index Based on the BWT 15
Paolo Ferragina, Giovanni Manzini

Run-Length FM-index 17
Veli Mäkinen, Gonzalo Navarro

Entropy-Compressed Indexes for Multidimensional Pattern Matching 20
Roberto Grossi, Ankur Gupta, Jeffrey Scott Vitter

Fast Gapped Variants Lempel-Ziv-Welch Compression 24
Alberto Apostolico

Vcodex: A Platform of Data Transformers 25
Kiem-Phong Vo

Remote File and Data Synchronization State of the Art and Open Problems 27
Torsten Suel

Toward Ubiquitous Compression 28
Fred Douglis

Block Sorting Lossless Delta Compression Algorithms 32
James J. Hunt

2

Comparing Sequences with Segment Rearrangements 33
S. Cenk Sahinalp

Grammar-based Compression of DNA Sequences 34
Neva Cherniavsky, Richard Ladner

Compression of Words over a Partially Commutative Alphabet 36
Serap A. Savari

Delayed-Dictionary Compression for Packet Networks 38
Yossi Matias, Raanan Refua

3

The Pre-history and Future of the Block-Sorting
Compression Algorithm

Mike Burrows
Google, Inc.

David Wheeler
University of Cambridge, Computer Laboratory

I have organized the talk in two parts. The first is about the years before the algorithm
was published, and the second looks forward to the next ten years.

Unfortunately, my co-author (and the algorithm’s inventor) David Wheeler is unable to
come to the workshop. However, he has given me some notes about the invention of the
algorithm. I will begin by recounting some of his early thoughts; some have stood the test
of time, while others have not. I’ll also describe our efforts to make a practical compressor
based on the algorithm, and various things that didn’t make it into the original paper.

The compression achieved by the algorithm was good from the first, and further gains
have been achieved since its publication. However, its compression and decompression
speed have received less attention. This is curious, because it is its speed rather than its
compression ratio that potential users find most irksome. One might think that the steady
improvement in CPU performance would lead to fewer concerns about its performance;
certainly, larger memories have made its memory footprint less troublesome that it was.
Nevertheless, the unusual structure of the algorithm has rendered recent advances in CPU
microarchitecture largely ineffective at improving its performance, while other compression
algorithms have benefitted. In contrast, I suspect that the next ten years of improvements in
hardware are more likely to favour block-sorting over competing techniques, given suitable
algorithmic changes. I hope to report on one such promising change (joint work with my
colleagues Sean Quinlan and Sean Doward at Google).

4

An Error-Resilient Blocksorting Compression
Algorithm

Lee Butterman
Dept. of Computer Science, Brown University
Lee_Butterman@brown.edu

Nasir Memon
Dept. of Computer Science, Polytechnic University
memon@poly.edu

One key limitation of adaptive lossless compression systems is the susceptibility to errors in
the compressed bit stream. The inherent design of these techniques often requires discarding
all data subsequent to the error. This is particularly problematic in the Burrows-Wheeler
Blocksorting Transform (BWT), which is used in practice to compress files around 1MB
at a time. In the original BWT, each corrupted block must be completely discarded,
but decreasing blocksize increases the bit-per-character (bpc) rates dramatically. Error-
correcting codes (such as Reed-Solomon codes) can be used, but their design allows for
a maximum pre-fixed error rate, and if the channel errors exceed this, the whole block is
again lost. In this paper we present an error-resilient version of the BWT that has error-
free output in low channel noise, and gracefully degrades output quality as errors increase
by scattering output errors, thereby avoiding the significant error propagation typical with
adaptive lossless compression systems (and BWT in particular). The techniques we develop
also yields interesting new insights into this popular compression algorithm. We show how
to perform the inverse blocksort to decode both forwards and backwards by inverting the
original permutation vector T . We periodically save the values of T as overhead. When the
inverse blocksorter encounters an error, it can start at a specific position that corresponds
to one of the saved T anchors, and it can bi-directionally decode until reaching an error.
When there is more than one error between two anchors, we can decode forwards up to the
first error and backwards from the next anchor until the last error between the anchors.
This also generates subloops, decodable text between the anchors that is not connected.
The problem of reconnecting them can be formulated as a TSP problem and can be solved
by an appropriate heuristic.

5

Compression Boosting Using the Burrows-Wheeler
Transform

Paolo Ferragina
University of Pisa, Italy
ferragina@di.unipi.it

Raffaele Giancarlo
University of Palermo, Italy
raffaele@math.unipa.it

Giovanni Manzini
University of Piemonte Orientale
manzini@unipmn.it

Marinella Sciortino
University of Palermo, Italy
mari@math.unipa.it

We discuss a general boosting technique for data compression. Qualitatively, our technique
takes a good compression algorithm and turns it into an algorithm with a better compression
performance guarantee. Our technique displays the following remarkable properties: (a) it
can turn any memoryless compressor into a compression algorithm that uses the “best
possible” contexts; (b) it is very simple and optimal in terms of time; (c) it admits a
decompression algorithm again optimal in time. To the best of our knowledge, this is the
first boosting technique displaying these properties.

Technically, our boosting technique builds upon three main ingredients: the Burrows-
Wheeler Transform, the Suffix Tree data structure, and a greedy algorithm to process them.
Specifically we show that there exists a proper partition of the Burrows-Wheeler Transform
of a string s that shows a deep combinatorial relation with the k-th order entropy of s.
That partition can be identified via a greedy processing of the suffix tree of s with the aim
of minimizing a proper objective function over its nodes. The final compressed string is
then obtained by compressing individually each substring of the partition by means of the
base compressor we wish to boost.

Our boosting technique is inherently combinatorial because it does not need to assume
any prior probabilistic model about the source emitting s, and it does not deploy any
training, parameter estimation and learning. Various corollaries are derived from this main
achievement. Among the others, we show analytically that using our booster we get better
compression algorithms than some of the best existing ones, i.e., LZ77, LZ78, PPMC and
the ones derived from the Burrows-Wheeler Transform. Further, we settle analytically some
long standing open problems about the algorithmic structure and the performance of BWT-
based compressors. Namely, we provide the first family of BWT algorithms that do not use
Move-To-Front or Symbol Ranking as a part of the compression process.

6

Using the Burrows-Wheeler Transform for PPM
compression without escapes

Peter Fenwick
Department of Computer Science,
The University of Auckland, Auckland, New Zealand
p.fenwick@auckland.ac.nz

High performance lossless data compression is dominated by two algorithms. The older
algorithm, PPM or Prediction by Partial Matching, gives slightly better compression, but
requires rather more complex data structures and has rather slower execution. The newer
algorithm, based on the Burrows Wheeler transform, uses simpler data structures and is
faster but with slightly poorer compression.

Although PPM is now a relatively mature technique, Burrows Wheeler compression is
still not well understood, although knowledge is certainly improving. (It must be recognized
that PPM at the same “age”, 10 years, was also still largely a collection of ad hoc rules.)
Some previous work has tried to combine Burrows Wheeler and PPM techniques, usually
by adapting PPM to process the permuted output of the Burrows Wheeler transformation
and bypassing the more usual Move-to-Front recoding of Burrows Wheeler. This work
has generally given little advantage, largely because the permuted output has a context
structure which is not easily exploited by PPM techniques.

The performance of PPM is limited largely by the handling of escapes, to control the
coding of symbols that have not been seen in a higher order. An escape is a symbol that
must be encoded as any other, according to its probability. But whereas we can give a
good estimate of the probabilities of known symbols (which we have seen), it is much more
difficult to estimate the probability of encountering an unexpected symbol. Improvements
in PPM have largely followed from improvements in estimating escape probabilities.

This paper discusses work-in-progress on a new technique for combining Burrows Wheeler
and PPM. While most prior work on Burrows Wheeler compression emphasises data ma-
nipulation after the forward transform and before its inverse, the current approach looks
much more closely at the inverse transform.

In conventional Burrows Wheeler compression the reverse transform generates a single
text string, corresponding to the original compressed text. But the reverse transform can
do much more than this and can generate contexts for all of the symbols in the permuted
data (and therefore contexts for every input symbol). The usual transform generates the
context for either the last input symbol (with forward contexts) or the first symbol (with
reverse contexts and producing reversed output). Conventional Burrows Wheeler produces
its single output context to an unbounded order, so recovering the entire input text.

Here we use the reverse transform to generate contexts for every symbol, but only to
some small constant order, say 6 or 8. Because we generate all contexts for the input, a
PPM compressor can operate at constant order, without escapes. With contexts needed
to only say 6 or 8 symbols, the forward transform can be simplified to use comparisons to

7

only a similar length. A slight modification to the forward comparison allows like symbols
to be grouped within their contexts, with run-length encoding improving the information
density.

The compressor starts by using a normal forward Burrows Wheeler transform, but with
limited comparison lengths. Its permuted output is encoded (in any “standard Burrows
Wheeler” manner) as the context-definition part of the compressed output. The permuted
output is also used to generate the complete suite of constant order PPM contexts, using
the modified reverse transform. Finally, the original data is processed by the constant order
PPM compressor, using the contexts generated from the Burrows Wheeler processing. The
PPM output forms the second part of the compressed output.

The decompressor first creates the contexts, using the same code as was used in com-
pression. It then uses the second part of the compressed data to drive the PPM decoder
and recover the original text. Note here that PPM codes are generated and emitted only
as needed; many PPM contexts are deterministic and their one symbol can be emitted
immediately with no guidance from the compressor.

Results so far do not give the expected improvements, because it turns out not that much
cheaper to send the reduced context information than the full Burrows Wheeler output, and
also because many symbols are encoded twice, once for the contexts and once for PPM. But
two lines of future study are suggested –

1. It is often possible to develop contexts rather longer than the Burrows Wheeler com-
parison. This may reduce the costs of sending the contexts.

2. It is suggested that there may be a connection between error correction coding and
compression which would allow some PPM codes to be replaced by erasure symbols.
Techniques allied to trellis or Viterbi coding may then allow the contexts to be recov-
ered.

8

Generalized Burrows-Wheeler Transform

Sabrina Mantaci
University of Palermo, Dipartimento di Matematica ed Applicazioni,
sabrina@math.unipa.it

Antonio Restivo
University of Palermo, Dipartimento di Matematica ed Applicazioni,
restivo@math.unipa.it

Marinella Sciortino
University of Palermo, Dipartimento di Matematica ed Applicazioni,
mari@math.unipa.it

Michael Burrows and David Wheeler introduced in 1994 (cf. [1]) a reversible transformation
on strings (BWT from now on) that arouses considerable interest and curiosity in the field
of Data Compression.

Most of the studies on the Burrows Wheeler Transform have been experimental and
developed within the Data Compression community. Very recently some combinatorial
aspects of this transform have been investigated (cf. [4, 5]). For instance, by using the
Burrows-Wheeler transform, one can derive a further characterization of Standard words,
that are very important objects in the field of Combinatorics on Words: more specifically,
Standard words correspond to the extremal case, for binary alphabets, of BWT , in the
sense that the transform produces a total clustering of all the instances of any character.

Moreover it has been proved (cf. [2]) that there exists a very close relation between
BWT and a transformation, described by Gessel and Reutenauer in [3], based on a bijection
between finite words and the set of permutations with a given cyclic structure and a given
descent set. Actually in this formalism, BWT corresponds to the special case in which the
considered permutations are cyclic and the cardinality of its descent set is less than the
cardinality of the alphabet.

Now, by starting from the Gessel and Reutenauer transform, we can define a generalized
Burrows-Wheeler transform (denoted by GBWT) applied to a set of n words. This trans-
formation involves an order relation between words that is different from the lexicographic
one. The sorting process derived from such an order relation is realized by using the Fine
and Wilf Theorem for n periods (cf. [6]).

Moreover the GBWT allows to introduce a new notion of similarity between words that
takes into account how equal factors of two words appear in similar contexts.

References

[1] M. Burrows and D.J. Wheeler. A block sorting data compression algorithm. Technical report,
DIGITAL System Research Center, 1994.

9

[2] M. Crochemore, J. Désarménien, and D. Perrin. A note on the Burrows-Wheeler transformation.
Theoret. Comput. Sci. to appear.

[3] I. M. Gessel and C. Reutenauer. Counting permutations with given cycle structure and descent
set. J. Combin. Theory Ser. A, 64(2):189–215, 1993.

[4] S. Mantaci, A. Restivo, and M. Sciortino. Burrows-Wheeler transform and Sturmian words.
Informat. Proc. Lett., 86:241–246, 2003.

[5] S. Mantaci, A. Restivo, and M. Sciortino. Combinatorial aspects of the Burrows-Wheeler trans-
form. TUCS (Turku Center for Computer Science) General Pubblication, 25:292–297, 2003.
proc. WORDS 2003.

[6] R. Tijdeman and L.Zamboni. Fine and Wilf words for any periods. Indag. Math., 14(1):135–147,
2003.

10

A Survey of Suffix Sorting

Martin Farach-Colton
Department of Computer Science, Rutgers University

Suffix trees are the fundamental data structure of stringology. The suffix array is a low-
memory cousin of the suffix tree. In the last 10 years, we have come to realize that building
such data structures is equivalent to sorting the suffixes of a string. Such suffix sorting
is the key algorithmic component of the Burrows-Wheeler transform. We will show the
equivalences between suffix trees, suffix arrays and suffix sorting, as well as the algorithm
that suffix sorts in the same time taken to simply sort the characters of the string. The
field has matured to the point where we may well have the suffix-sorting algorithm “from
the book”.

11

∑

Fast BWT in Small Space by Blockwise
Suffix Sorting

Juha K¨ ainenarkk¨
Department of Computer Science, University of Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

The usual way to compute the Burrows-Wheeler transform (BWT) [3] of a text is by con-
structing the suffix array of the text. Even with space-efficient suffix array construction
algorithms [12, 2], the space requirement of the suffix array itself is often the main factor
limiting the size of the text that can be handled in one piece, which is crucial for construct-
ing compressed text indexes [4, 5]. Typically, the suffix array needs 4n bytes while the text
and the BWT need only n bytes each and sometimes even less, for example 2n bits each
for a DNA sequence.

We reduce the space dramatically by constructing the suffix array in blocks of lexico-
graphically consecutive suffixes. Given such a block, the corresponding block of the BWT
is trivial to compute.

√
Theorem 1 The BWT of a text of length n can be computed in O(n log n + n v + Dv)√
time (with high probability) and O(n/ v + v) space (in addition to the text and the BWT),
for any v ∈ [1, n]. Here Dv = i∈[0,n) min(di, v) = O(nv), where di is the length of the
shortest unique substring starting at i.

Proof (sketch). Assume first that the text has no repetitions longer than v, i.e., di ≤ v
for all i. Choose a set of O(v) random suffixes that divide the suffix array into blocks.
The sizes of the blocks are counted in O(n log v + Dv) time using the string binary search√ √
technique from [11]. Blocks are then combined to obtain O(v) blocks of size O(n/ v).
The suffixes in a block are collected in O(n) time and O(v) extra space using a modified
Knuth–Morris–Pratt algorithm with (the prefixes of) the bounding suffixes as patterns. A
block B is sorted in-place in O(|B| log |B| + Dv(B)) time using the multikey quicksort [1],
where Dv(B) is as Dv but summed over the suffixes in B. Repetitions longer than v are
handled in all stages with the difference cover sampling (DCS) data structure from [2] that
supports constant time order comparison of any two suffixes that have a common prefix of√ √
length v. The DCS data structure can be constructed in O((n/ v) log(n/ v) + Dv(C))√ √
time and O(n/ v + v) space, where C is a set of O(n/ v) suffixes.

With the choice of v = log2 n, we get an algorithm using O(n) bits of space and running
in O(n log n) time on average and in O(n log2 n) time in the worst case. The algorithm is
also fast and space-efficient in practice. The following table shows the space requirement
of a practical implementation for some v (not including the text, the BWT and about
16v + O(log n) bytes).

v 16 32 64 128 256 512 1024 2048
bits 20n 14n 9n 6.5n 5n 3.5n 2.5n 1.8n

12

For small v, the runtime is dominated by the sorting of blocks making the performance
similar to the algorithm in [2], which is competitive with the best algorithms. For larger v,√
the time needed for the O(v) scans to collect suffixes for a block takes over. The Dv term
is dominant only in pathological cases.

There are two other categories of algorithms for computing the BWT when there is
not enough space for the suffix array: compressed suffix array construction [10, 6, 7] and
external memory suffix array construction [8, 9]. Our guess is that the blockwise suffix
sorting is the fastest alternative in practice when v is not too large, and we are in the
process of verifying this experimentally.

References

[1] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching strings. In
Proc. 8th Annual Symposium on Discrete Algorithms, pages 360–369. ACM, 1997.

[2] Stefan Burkhardt and Juha K¨ ainen. Fast lightweight suffix array construction and checking.arkk¨
In Proc. 14th Annual Symposium on Combinatorial Pattern Matching, volume 2676 of LNCS,
pages 55–69. Springer, 2003.

[3] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
Report 124, SRC (digital, Palo Alto), May 1994.

[4] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proc. 41st Annual Symposium on Foundations of Computer Science, pages 390–398. IEEE,
2000.

[5] Paolo Ferragina and Giovanni Manzini. An experimental study of an opportunistic index. In
Proc. 12th Annual Symposium on Discrete Algorithms, pages 269–278. ACM–SIAM, 2001.

[6] Wing-Kai Hon, Tak-Wah Lam, Kunihiko Sadakane, and Wing-Kin Sung. Constructing com-
pressed suffix arrays with large alphabets. In Proc. 14th International Symposium on Algorithms
and Computation, volume 2906 of LNCS, pages 240–249. Springer, 2003.

[7] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-and-space barrier in
constructing full-text indices. In Proc. 44th Annual Symposium on Foundations of Computer
Science, pages 251–260. IEEE, 2003.

[8] Juha K¨ ainen and S. Srinivasa Rao. Full-text indexes in external memory. In U. Meyer,arkk¨
P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies (Advanced Lectures),
volume 2625 of LNCS, chapter 7, pages 149–170. Springer, 2003.

[9] Juha K¨ ainen and Peter Sanders. Simple linear work suffix array construction. In Proc. 30tharkk¨
International Conference on Automata, Languages and Programming, volume 2719 of LNCS,
pages 943–955. Springer, 2003.

[10] Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-Ming Yiu. A space and time
efficient algorithm for constructing compressed suffix arrays. In Proc. 8th Annual International
Conference on Computing and Combinatorics, volume 2387 of LNCS, pages 401–410. Springer,
2002.

[11] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, October 1993.

[12] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm. In
Proc. 10th Annual European Symposium on Algorithms, volume 2461 of LNCS, pages 698–710.
Springer, 2002.

13

Efficient Computation of the Burrows-Wheeler
Transform

Kunihiko Sadakane
Department of Computer Science and Communication Engineering,
Kyushu University, Japan
sada@csce.kyushu-u.ac.jp

The Burrows-Wheeler Transform [1] (BWT) is the core technique that unifies text search
and compression. Many self-indexing text indices use this technique [2, 7, 3]. In spite of
its importance, there has been no time and space efficient algorithm to compute the BWT.
Though it can be computed in linear time by using linear time algorithms for constructing
suffix trees or suffix arrays, they need much more space than the output. On the other
hand, the BWT can be computed using O(log n)-bit extra space although it will require
O(n3) time for a text of length n.

In this talk, we review the development of time and space efficient algorithms for comput-
ing the BWT. The algorithms runs in optimal space, i.e., O(n log |A|)-bit working space for
a text of length n on alphabet A. The time complexities are O(n|A| log n) [6], O(n log n) [4],
and O(n log log |A|) [5].

References

[1] M. Burrows and D. J. Wheeler. A Block-sorting Lossless Data Compression Algorithms.
Technical Report 124, Digital SRC Research Report, 1994.

[2] P. Ferragina and G. Manzini. Opportunistic Data Structures with Applications. In 41st
IEEE Symp. on Foundations of Computer Science, pages 390–398, 2000.

[3] R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compression: experiments
with compressing suffix arrays and applications. In Proc. ACM-SIAM SODA 2004,
pages 636–645, 2004.

[4] W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Constructing Compressed Suffix
Arrays with Large Alphabets. In Proc. of ISAAC, pages 240–249. LNCS 2906, 2003.

[5] W. K. Hon, K. Sadakane, and W. K. Sung. Breaking a Time-and-Space Barrier in
Constructing Full-Text Indices. In Proc. IEEE FOCS, pages 251–260, 2003.

[6] T. W. Lam, K. Sadakane, W. K Sung, and S. M Yiu. A Space and Time Efficient
Algorithm for Constructing Compressed Suffix Arrays. In Proc. COCOON, pages 401–
410. LNCS 2387, 2002.

[7] K. Sadakane. New Text Indexing Functionalities of the Compressed Suffix Arrays.
Journal of Algorithms, 48(2):294–313, 2003.

14

The FM-Index: A Compressed Full-Text Index Based
on the BWT

Paolo Ferragina
Università di Pisa
ferragina@di.unipi.it

Giovanni Manzini
Università del Piemonte Orientale
manzini@unipmn.it

In this talk we address the issue of indexing compressed data both from the theoretical and
the practical point of view.

We start by introducing the FM-index data structure [2] that supports substring searches
and occupies a space which is a function of the entropy of the indexed data. The key feature
of the FM-index is that it encapsulates the indexed data (self-index) and achieves the space
reduction at no significant slowdown in the query performance. Precisely, given a text
T [1, n] to be indexed, the FM-index occupies at most 5nHk(T)+o(n) bits of storage, where
Hk(T) is the k-th order entropy of T , and allows the search for the occ occurrences of a
pattern P [1, p] within T in O(p + occ log1+ε n) time, where ε > 0 is an arbitrary constant
fixed in advance.

The design of the FM-index is based upon the relationship between the Burrows-Wheeler
compression algorithm [1] and the suffix array data structure [9]. It is therefore a sort of
compressed suffix array that takes advantage of the compressibility of the indexed data in
order to achieve space occupancy close to the Information Theoretic minimum. Indeed, the
design of the FM-index does not depend on the parameter k and its space bound holds
simultaneously over all k ≥ 0.

These remarkable theoretical properties have been validated by experimental results [3,
4] and applications [7, 10]. In particular it has been shown that the FM-index achieves a
space occupancy close to the best known compressors and, unlike them, it allows to search
for arbitrary substrings in a hundred of megabytes within few millisecs, since it does not
decompress the whole file.

We will conclude the talk by sketching two intriguing variants of the FM-index. One
achieves O(p + occ) query time (i.e. output sensitivity) and uses O(nHk(T) logε n) + o(n)
bits of storage. This data structure exploits the interplay between two compressors: the
Burrows-Wheeler algorithm and the LZ78 algorithm [11]. Our other proposal [8] combines
two recent and elegant techniques—the compression boosting [5] and the wavelet tree [6]—to
design a variant of the FM-index that scales well with the size of the input alphabet.

15

References

[1] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, 1994.

[2] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. of the
41st IEEE Symposium on Foundations of Computer Science, pages 390–398, 2000.

[3] P. Ferragina and G. Manzini. An experimental study of a compressed index. Information
Sciences: special issue on “Dictionary Based Compression”, 135:13–28, 2001.

[4] P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms, pages 269–278, 2001.

[5] P. Ferragina and G. Manzini. Compression boosting in optimal linear time using the Burrows-
Wheeler transform. In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA ’04),
2004.

[6] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proc. 14th
Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’03), pages 841–850, 2003.

[7] J. Healy, E. E. Thomas, J. T. Schwartz, and M. Wigler. Annotating large genomes with exact
word matches. Genome Research, 13:2306–2315, 2003.

[8] P. Ferragina, G. Manzini, V. Mäkinen and G. Navarro. An Alphabet-Friendly FM-index. Subb-
mitted. 2004.

[9] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

[10] K. Sadakane and T. Shibuya. Indexing huge genome sequences for solving various problems.
Genome Informatics, 12:175–183, 2001.

[11] J. Ziv and A. Lempel. Compression of individual sequences via variable length coding. IEEE
Transaction on Information Theory, 24:530–536, 1978.

16

Run-Length FM-index

Veli Mäkinen
Department of Computer Science, Univ. of Helsinki, Finland.

Gonzalo Navarro
Department of Computer Science, Univ. of Chile, Chile.

Abstract

The FM-index is a succinct text index needing only O(Hkn) bits of space, where n is the
text size and Hk is the kth order entropy of the text. FM-index assumes constant alphabet;
it uses exponential space in the alphabet size, σ. In this paper we show how the same ideas
can be used to obtain an index needing O(Hkn) bits of space, with the constant factor
depending only logarithmically on σ. Our space complexity becomes better as soon as
σ log σ > log n, which means in practice for all but very small alphabets, even with huge
texts. We retain the same search complexity of the FM-index.

FM-index

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which produces
a permutation of the original text, denoted by T bwt = bwt(T). String T bwt is a result of
the following forward transformation: (1) Append to the end of T a special end marker $,
which is lexicographically smaller than any other character; (2) form a conceptual matrix M
whose rows are the cyclic shifts of the string T$, sorted in lexicographic order; (3) construct
the transformed text L by taking the last column of M. The first column is denoted by F .

The suffix array A of text T$ is essentially the matrix M: A[i] = j iff the ith row of M
contains string tjtj+1 · · · tn$t1 · · · tj−1. Given the suffix array, the search for the occurrences
of the pattern P = p1p2 · · · pm is trivial. The occurrences form an interval [sp, ep] in A such
that suffixes tA[i]tA[i]+1 · · · tn, sp ≤ i ≤ ep, contain the pattern as a prefix. This interval
can be searched for using two binary searches in time O(m log n) [5].

The suffix array of text T is represented implicitly by T bwt. The novel idea of the FM-
index is to store T bwt in compressed form, and to simulate a backward search in the suffix
array as follows:

Algorithm FM Search(P [1, m],T bwt[1, n])
(1) c = P [m]; i = m;
(2) sp = CT [c] + 1; ep = CT [c + 1];
(3) while (sp ≤ ep) and (i ≥ 2) do
(4) c = P [i − 1];
(5) sp = CT [c] + Occ(T bwt , c, sp − 1)+1;

(6) ep = CT [c] + Occ(T bwt , c, ep);
(7) i = i − 1;
(8) if (ep < sp) then return “not found” else return “found (ep − sp + 1) occs”.

17

� ′

′

The above algorithm finds the interval [sp, ep] of A containing the occurrences of the
pattern P . It uses the array CT and function Occ(X, c, i), where CT [c] equals the number of
occurrences of characters {$, 1, . . . , c− 1} in the text T and Occ(X, c, i) equals the number
of occurrences of character c in the prefix X[1, i].

Ferragina and Manzini [3] go on to describe an implementation of Occ(T bwt, c, i) that
uses a compressed form of T bwt; they show how to compute Occ(T bwt, c, i) for any c and i
in constant time. However, to achieve this they need exponential space (in the size of the
alphabet).

Run-Length FM-Index

Our idea is to exploit run-length compression to represent T bwt. An array S contains one
character per run in T bwt, while an array B contains n bits and marks the beginnings of
the runs.

nDefinition 2 Let string T bwt = c�
1
1c�2 . . . c ′ consist of n′ runs, so that the i-th run consists2 n

of �i repetitions of character ci. Our representation of T bwt consists of string S = c1c2 . . . cn′
′−1of length n′, and bit array B = 10�1−110�2−1 . . . 10�n .

It is clear that S and B contain enough information to reconstruct T bwt: T bwt[i] =
S[rank(B, i)], where rank(B, i) is the number of 1’s in B[1 . . . i] (so rank(B, 0) = 0).
Function rank can be computed in constant time using o(n) extra bits [4, 6, 2]. Hence, S
and B give us a representation of T bwt that permits us accessing any character in constant
time and requires at most n′ log σ + n + o(n) bits. The problem, however, is not only how
to access T bwt, but also how to compute CT [c] + Occ(T bwt, c, i) for any c and i.

In the following we show that the above can be computed by means of a bit array B′,
obtained by reordering the runs of B in lexicographic order of the characters of each run.
Runs of the same character are left in their original order. The use of B′ will add n + o(n)
bits to our scheme. We also use CS, which plays the same role of CT , but it refers to string
S.

Definition 3 Let S = c1c2 . . . cn′ of length n′, and B = 10�1−110�2−1 . . . 10�n′−1. Let
p1p2 . . . pn′ be a permutation of 1 . . . n′ such that, for all 1 ≤ i < n′, either cpi < cpi+1 or

−1cpi = cpi+1 and pi < pi+1. Then, bit array B′ is defined as B′ = 10�p1 −110�p2−1 . . . 10�p
n .

We now give the theorems that cover different cases in the computation of CT [c] +
Occ(T bwt, c, i) (see [7] for proofs). They make use of select, which is the inverse of rank:
select(B′, j) is the position of the jth 1 in B′ (and select(B′, 0) = 0). Function select can
be computed in constant time using o(n) extra bits [4, 6, 2].

Theorem 4 For any c ∈ Σ and 1 ≤ i ≤ n, such that T bwt[i] �= c, it holds

CT [c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1

Theorem 5 For any c ∈ Σ and 1 ≤ i ≤ n, such that T bwt[i] = c, it holds

CT [c] + Occ(T bwt, c, i) = select(B′, CS [c] + Occ(S, c, rank(B, i)))
+i − select(B, rank(B, i)).

18

(′)

Since functions rank and select can be computed in constant time, the only obstacle to
use the theorems is the computation of Occ over string S.

Instead of representing S explicitly, we will store one bitmap Sc per text character c, so
that Sc[i] = 1 iff S[i] = c. Hence Occ(S, c, i) = rank(Sc, i). It is still possible to determine
in constant time whether T bwt[i] = c or not: an equivalent condition is Sc[rank(B, i)] = 1.

According to [8], a bit array of length n′ where there are f 1’s can be represented using
nlog + o(f) + O(log log n′) bits, while still supporting constant time access and constantf

time rank function for the positions with value 1. It can be shown (see [7]) that the overall
size of these structures is at most n′(log σ + 1.44 + o(1)) + O(σ log n′).

We have shown in [7] that the number of runs in T bwt is limited by 2Hkn+σk. By adding
up all our space complexities we obtain 2n(Hk(log σ+1.44+o(1))+1+o(1))+O(σ log n) =
2n(1 + Hk log σ)(1 + o(1)) bits of space if σ = o(n/ log n), for any fixed k.

References

[1] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. DEC
SRC Research Report 124, 1994.

[2] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[3] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc.
FOCS’00, pp. 390–398, 2000.

[4] G. Jacobson. Succinct Static Data Structures. PhD thesis, CMU-CS-89-112, Carnegie Mellon
University, 1989.

[5] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM J.
Comput., 22, pp. 935–948, 1993.

[6] I. Munro. Tables. In Proc. FSTTCS’96, pp. 37–42, 1996.

[7] V. Mäkinen and G. Navarro. New search algorithms and time/space tradeoffs for succinct suffix
arrays. Technical report C-2004-20, Dept. Computer Science, Univ. Helsinki, April 2004.

[8] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In Proc. SODA’02, pp. 233–242, 2002.

19

Entropy-Compressed Indexes for
Multidimensional Pattern Matching

Roberto Grossi
University of Pisa, Italy

Ankur Gupta
Duke University, USA

Jeffrey Scott Vitter
Purdue University, USA

Abstract

In this talk, we will discuss the challenges involved in developing a multidimensional gener-
alizations of compressed text indexing structures. These structures depend on some notion
of Burrows-Wheeler transform (BWT) for multiple dimensions, though naive generaliza-
tions do not enable multidimensional pattern matching. We study the 2D case to possibly
highlight combinatorial properties that do not emerge in the 1D case. We also present
related work in 2D pattern matching and indexing.

Introduction

Suffix arrays and suffix trees are ubiquitous data structures at the heart of several text and
string algorithms. They are used in a wide variety of applications, including pattern match-
ing, text and information retrieval, Web searching, and sequence analysis in computational
biology [14]. Compressed suffix arrays [13, 18, 19] and opportunistic FM-indexes [7, 8] rep-
resent new trends in the design of advanced indexes for full-text searching of documents,
in that they support the functionalities of suffix arrays and suffix trees, which are more
powerful than classical inverted files, yet they also overcome the aforementioned space lim-
itations by exploiting, in a novel way, the notion of text compressibility and the techniques
developed for succinct data structures and bounded-universe dictionaries.

Grossi and Vitter [13] developed the compressed suffix array using 2n log |Σ| bits in the
worst case with o(m) searching time. Sadakane [18, 19] related the space bound to the
order-0 empirical entropy H0. Ferragina and Manzini devised the FM-index [7, 8], which
is based on the Burrows-Wheeler transform (BWT) and is the first to encode the index
size with respect to the hth-order empirical entropy Hh of the text. Navarro [17] recently
developed an index requiring 4nHh + o(n) bits, and boasts fast search. Grossi, Gupta, and
Vitter [11] exploited the higher-order entropy Hh of the text to represent a compressed
suffix array in just nHh + O(n log log n/ log|Σ| n) bits. The index is optimal in space, apart
from lower-order terms, achieving asymptotically the empirical entropy of the text (with a
multiplicative constant 1). These data structures also have practical significance, as detailed
in [12].

20

∑ ∑

An interesting extension, with practical applications related to image matching, is to
develop a data structure that achieves similar space bounds as the 1-D case and the same
time bounds as known multidimensional data structures. Multidimensional data present a
new challenge when trying to capture entropy, as now the critical notion of spatial informa-
tion also enters into play. (In a strict sense, this information was always present, but we can
anticipate more dependence upon spatially linked data.) Stronger notions of compression
are applicable, yet the searches are more complicated. Achieving both, is again, a challenge.

Multidimensional Matching

We define a text matrix T (d) as a hypercube in d dimensions with length n, where each
symbol is drawn from the alphabet Σ = {0, 1, . . . , σ}. For example, T (2) represents an n×n
text matrix, and T (1) = T simply represents a text document with n symbols.

Handling high-order entropy (and other entropy notions) for multidimensional data in
a practical way is difficult. We generalize the notion of hth order entropy as follows. For a

given text T (d), we define H
(d) ash

H
(d) = −Prob[y, x] · log Prob[y|x],h

x∈A(d) y∈Σ

where A(d) is a d-dimensional text matrix with length h.
A common method used to treat data more contextually (and thus, consider spatial

information explicitly) is to linearize the data. Linearization is the task of performing
somewhat of a “map” to the 1-D case (so that the data is again laid out as we are accustomed
to). One technique is described in [15, 16]. Linearization is primarily performed to meet
the constraints put forth by Giancarlo [9, 10] in order to support pattern matching in 2-D.
(These constraints are readily generalized to multidimensions.)

One major goal of ours in multidimensional matching is to improve the space require-
ment, without affecting the search times already achieved in literature. Not considering
space-efficient solutions (which are absent from current literature), the 2-D pattern match-
ing problem is widely studied by Amir, Benson, Farach, and other researchers [2, 4, 6, 5, 3].
In particular, Amir and Benson [1] give compressed matching algorithms for 2-dimensional
cases; however, their pattern matching is not indexing and it needs the scan over entire
compressed text.

Suffix arrays and trees have been generalized to multiple dimensions, and a great deal of
literature is available that describes various incarnations of these data structures [15, 16],
but the vast majority of them discuss just the construction time of these powerful structures.
Little work has been done on space-efficient versions of these structures, nor has any real
emphasis been given to achieving optimal performance. The hurdles are far more basic than
that.

The primary difficulty stems from the fact that there is no clear multidimensional ana-
logue for the Burrows-Wheeler transform (BWT) that still allows for multidimensional
pattern matching. The BWT is critical to achieving high-order entropy in one dimen-
sion [13, 7, 8, 11, 12]; there, each suffix of the text is sorted and can be indexed using a
variety of tricks [7, 8, 11]. Even with just two dimensions, the problem becomes difficult to
solve.

In order to support multidimensional pattern matching, the data should be considered
from a localized view of the data, namely in terms of hypercubes (which in 1-D is simply

21

a contiguous sequence of symbols) starting at each position of the text. However, a BWT
cannot be formed explicitly upon such a view, as any such localized view violates the critical
invariant that suffixes must overlap perfectly. Nevertheless, some basic notions have been
explored [9, 10, 15, 16] as a first step in tackling these limitations.

Goals of Study

We hope to make major inroads beyond [15, 16] by developing the crucial notion of a
multidimensional BWT. We study the 2D case to highlight combinatorial properties that
do not appear in the 1D case, as a first step towards developing a general multidimensional
framework. In particular, we are considering a series of novel transformations of the data
that simultaneously allow fast access to the data, ease of compression, and do not violate the
various constraints proposed by [10]. We then hope to apply it to build a multidimensional
suffix array while still retaining the best-known performance bounds (both theoretically
and in practice). In addition, much of the literature only discusses extensions to 2-D. We
hope to develop data structures that operate for any dimension d and address these two
problems:

1. Is there a multidimensional analogue to the Burrows-Wheeler transform captures spa-
tial information and still allows multidimensional pattern matching?

2. Is it possible to achieve a multidimensional suffix array that operates on d-dimensional
data in just ndHh + o(nd) bits with O(polylognd) time?

References

[1] A. Amir and G. Benson. Efficient Two-Dimensional Compressed Matching. DCC, 1992, 279–
288.

[2] A. Amir and E. Porat and M. Lewenstein. Approximate subset matching with Don’t Cares.
SODA, 2001, 305–306.

[3] A. Amir and M. Farach. Efficient 2-Dimensional Approximate Matching of of Half-rectangular
Figures. Info. and Computation, 118(1):1–11, 1995.

[4] A. Amir and M. Lewenstein and E. Porat. Faster algorithms for string matching with k
mismatches. SODA, 2000, 794–803.

[5] A. Amir and G. Benson and M. Farach. Let Sleeping Files Lie: Pattern Matching in Z-
Compressed Files. SODA, 1994.

[6] A. Amir and G. Benson and M. Farach. Optimal Two-Dimensional Compressed Matching.
ICALP, 1994, 215–226.

[7] P. Ferragina and G. Manzini. Opportunistic Data Structures with Applications. FOCS, 2000.

[8] P. Ferragina and G. Manzini. An Experimental Study of an Opportunistic Index. SODA, 2001.

[9] R. Giancarlo and R. Grossi. Multi-Dimensional Pattern Matching with Dimensional Wildcards.
CPM, 1995, 90–101.

[10] R. Giancarlo and R. Grossi. On the construction of classes of of suffix trees for square matrices:
algorithms and applications. Info. and Computation, 130(2):151–182, 1996.

[11] R. Grossi and A. Gupta and J. S. Vitter. High-Order Entropy-Compressed Text Indexes.
SODA, 2003.

22

[12] R. Grossi and A. Gupta and J. S. Vitter. When Indexing Equals Compression: Experiments
on Suffix Arrays and Trees. SODA, 2004.

[13] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. STOC, 2000, 397–406.

[14] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology Cambridge University Press, 1997.

[15] D. Kim and Y. Kim and K. Park. Constructing Suffix Arrays for Multi-dimensional Matrices.
CPM, 1998, 126–139.

[16] D. Kim and Y. Kim and K. Park. Generalizations of suffix arrays to multi-dimensional matrices.
TCS, 2003.

[17] G. Navarro. The LZ-index: A Text Index Based on the Ziv-Lempel Trie. Manuscript.

[18] K. Sadakane. Compressed text databases with efficient query algorithms based on the com-
pressed suffix array. ISAAC, 2000, 410–421.

[19] K. Sadakane. Succinct representations of lcp information and improvements in the compressed
suffix arrays. SODA, 2002.

23

Fast Gapped Variants Lempel-Ziv-Welch
Compression

Alberto Apostolico1

Dipartimento di Ingegneria dell’Informazione,
Università di Padova, Padova, Italy
and
Department of Computer Sciences,
Purdue University, Computer Sciences Building, West Lafayette, IN 47907, USA.
axa@dei.unipd.it

This talk presents variants of classical data compression paradigms by Ziv, Lempel, and
Welch in which the phrases used in compression are strings of intermittently solid and wild
characters. Such strings are suitably selected among patterns that are produced in turn, in a
deterministic fashion, by the self-correlation of the source string. In particular, adaptations
and extensions of the classical LZ78 paradigm as implemented by Welch are developed along
these lines, and they are seen to be susceptible of simple linear time implementation. Both
lossy and lossless schemata are considered, and preliminary analyses of performance are
attempted.

Work Supported in part by the Italian Ministry of University and Research under the National Projects
FIRB RBNE01KNFP, and PRIN “Combinatorial and Algorithmic Methods for Pattern Discovery in Biose-
quences”, and by the Research Program of the University of Padova.

24

1

Vcodex: A Platform of Data Transformers

Kiem-Phong Vo
AT&T Labs – Research
180 Park Avenue, Florham Park, NJ 07932, USA
kpv@research.att.com

Modern data compression methods are often built upon other existing techniques. However,
such works tend to focus on the theoretical side of algorithm engineering, i.e., the design
and analysis of the underlying data structures and algorithms while implementation quality
is mostly constrained to producing working tools and often only for the few hardware/OS
platforms used by the tool developers. Not much attention is given to software engineering,
i.e., the design and implementation of standardized interfaces to make such data structures
and algorithms reusable. In addition, virtually every compressor uses its own ad-hoc data
format and little thought is ever given to data engineering so that data produced by one tool
can be further processed by another. Inadequate engineering considerations make it hard
to experiment with different combinations of compression techniques in solving particular
data needs. Below are a few relevant aspects of algorithm, software and data engineering
in building and using compression tools:

• Algorithm engineering: Algorithm design aims at achieving desired computational
bounds while producing good compression rates. But, to maximize performance,
attention must also be paid to tuning the performance of such algorithms by making
effective use of hardware and OS features such as specialized instructions or available
cache and memory.

• Software engineering: Data compressors are routinely built from smaller components.
For example, the popular gzip compressor combines a front-end Ziv-Lempel compres-
sor and a back-end Huffman coder. Similarly, Burrows-Wheeler compressors often
contains phases based on variations of move-to-front, run-length and entropy coding.
Such data transformers should be encapsulated in standardized interfaces allowing
easy composition in building new compression tools.

• Data engineering: Large gains can be obtained by classifying data based on certain
common characteristics and designing algorithms to match such classifications. Ex-
amples of this are specialized compressors such as the Pzip compressor by Buchsbaum
et al. for compressing table data and the Xmill compressor by Liefke and Suciu to
compress XML data. Another aspect of data engineering is to design the persistent
data, i.e., the compressed output data, so that they can be easily extended and used
as new data transforming techniques are invented.

Vcodex is a software platform of data transforming algorithms that can be used as
building blocks to construct data compressors as well as other data processing tools. Its

25

main constributions include an extensible software architecture allowing easy additions of
new data transformers, a flexible and self-describing data encoding format, and a number
of new and efficient algorithms and heuristics for suffix sorting, compressing table data,
etc. This talk discusses the software and data architectures provided by Vcodex. Examples
will be given to show how to build common types of compressors based on generalized
Ziv-Lempel and Burrows-Wheeler transforms as well as other exotic compressors dealing
with different types of table data. Time permitting, the talk will also give overviews of the
algorithms and data structures underlying the various techniques.

26

Remote File and Data Synchronization:
State of the Art and Open Problems

Torsten Suel
CIS Department, Polytechnic University Brooklyn
suel@poly.edu

Remote file and data synchronization tools are used to efficiently maintain large replicated
collections of files or record-based data in distributed environments with limited band-
width. Common application scenarios include synchronization of data between accounts or
mobile devices, content distribution and web caching networks, web site mirroring, stor-
age networks, database replication, and large scale web search and mining. A number of
techniques have been studied by academic researchers over the last few years, and many
companies have developed and deployed tools for various applications.

After a general introduction, we will focus on the remote file synchronization problem,
which in simplified form is stated as follows: given two versions of a file on different ma-
chines, say an outdated and a current version, how can we update the outdated version
with minimum communication cost, by exploiting the significant similarity that often exists
between versions? A well-known open source tool for this problem called rsync is widely
used in practice, and recently researchers have proposed several possible improvements over
the rsync protocol. We will describe theoretical and practical approaches to the file syn-
chronization problem, discuss relationships to compression and coding theory, and list open
challenges. We will also discuss some of our own recent work on the problem. We hope to
convince the audience that these problems are important in practice and of fundamental
interest, and that the compression and algorithms communities in particular have much to
contribute.

27

Toward Ubiquitous Compression (Synopsis)

Fred Douglis
IBM T. J. Watson Research Center
douglis@acm.org

Introduction

Mark Weiser once defined ubiquitous computing as computers that blend into the environ-
ment so well that they are effectively invisible [14]. Basic compression (such as with zip)
is starting to achieve the same level of ubiquity, but it has far to go. This paper considers
the evolution of on-line compression in a number of real-world applications and conjectures
on ways in which compression should continue to evolve. It is written from the perspective
of a consumer of compression technologies, not one who writes the compressors in the first
place.

About Compression

In this paper, compression refers to any technique that encodes data more compactly. Thus
it includes not only “traditional” compression [7], which encodes an object by reducing the
redundancy within it or by encoding the object relative to a well- known dictionary, but also
approaches that encode different objects relative to each other. Examples include duplicate
suppression [1], which replaces identical objects (at some granularity) with references to
an existing copy, and delta-encoding [5], which encodes an object with respect to another
specific object.

Tradeoffs

Compression requires computing resources, such as processor cycles and memory. In some
environments the expenditure of these resources is clearly justified. This may be because
the savings from compression are substantial, because the compressed object will be saved
in compressed form for a prolonged time, or other reasons.

Some forms of compression are automatic and implicit. For example, modems typically
compress data being transmitted over a phone line. By doing the compression in hardware,
modems ensure that the performance of compression is comparable to the speed of trans-
mission; .i.e, transmission is not delayed by the act of compressing or uncompressing data.
For stored data, the notion of compressing data that will not be accessed for a long time
has been well understood for decades.

Quite some time ago, I expounded on the trends in processing speed and suggested
that as processors got faster more quickly than networks, distributed systems should con-
sider automatically compressing data in software in an end-to-end network connection [3].
While I did not anticipate the rapid increase in network bandwidth that accompanied the

28

ever-increasing processor performance, and memory bandwidth is proving to be another
important factor, the general approach still applies:

Systems should automatically compress data whenever the benefits from
transmitting or storing compressed data outweigh the costs.

Just as modems compress transparently, distributed systems, storage systems, and espe-
cially distributed storage systems should be cognizant of the tradeoffs in dynamic compres-
sion and integrate compression techniques.

Where We Are

On-line compression, where everything that goes over a link or into or out of a file system
is compressed and later uncompressed on the “critical path” to accessing the data, is by
now a well-understood and commonly used technique. For several years, users have had
an option to compress everything written to a Windows file system. More recently, there
have been examples of other techniques to trade processing for data size, using technology
beyond simple zip-style data compression, such as:

• Rsync [13], which allows a user to synchronize versions of a file on two different systems
by identifying common blocks. It uses a rolling checksum to match blocks on the
sender that are already contained in the receiver’s copy. The same rolling checksum
technique can be applied to storage systems to find duplication across files [2].

• Link-level duplicate detection [12], which stores fingerprints representing occasional
substrings of streamed data and then matches repeated data by seeing the same
fingerprint again.

• Storage-level duplicate detection, which uses strong checksums to find when files or
blocks are stored multiple times and instead save only one copy. Blocks can be
fixed-size [11] or with boundaries defined by the content itself [8], the latter prevent-
ing changes in one block from affecting subsequent ones but at a higher processing
cost [10].

• Delta-encoding [5], which compresses a file or block against another file or block that
is similar, by representing only the differences. It can use resemblance detection to
find similar files [4, 9] or blocks [6].

I make two observations about these techniques. First, they are generally done in iso-
lation. A system that does block-level duplicate detection may not simultaneously perform
compression at the level of entire files, even though whole-file compression could exploit
inter-block redundancy and dramatically reduce overall storage consumption [6]. Second,
the techniques are applied all-or-none: a system that does one type of compression most
likely always does that type.

Where We Should Go

Not all data are created equal. Some are accessed often; some are write-once, read-rarely-
if-ever. Some compress well with “traditional” compressors; some contain duplication with
other pieces of data. The same is true of computing environments, where the speed of
processing, accessing a disk, or communicating over a network can be extremely variable.

29

It is the combination of all these factors—data contents, access patterns, and execution
environment—that determines how compression should best be applied, if at all. One size
does not fit all.

Ideally, one can give systems (and applications) the ability to pick and choose automat-
ically among a suite of data reduction techniques. With my colleagues at IBM Research, I
have explored and quantified the benefits of a number of techniques across a variety of data
sets [6]. Ultimately, one would offer systems the ability to select compression techniques
dynamically as a function of the data and the execution environment. Eventually, we may
enable compression and other data reduction techniques to fade into the background, just
like Weiser’s ubiquitous computers.

Acknowledgments

Jason LaVoie and John Tracey provided helpful comments on this paper.

References

[1] William J. Bolosky, Scott Corbin, David Goebel, and John R. Douceur. Single instance storage
in windows 2000. In Proceedings of the 4th USENIX Windows Systems Symposium, August
2000.

[2] Timothy E. Denehy and Windsor W. Hsu. Reliable and efficient storage of reference data.
Technical Report RJ10305, IBM Research, October 2003.

[3] Fred Douglis. On the role of compression in distributed systems. In Proceedings of the Fifth
ACM SIGOPS European Workshop. ACM, September 1992. Also appears in ACM Operating
Systems Review, 27(2):88–93, April 1993.

[4] Fred Douglis and Arun Iyengar. Application-specific delta-encoding via resemblance detection.
In Proceedings of 2003 USENIX Technical Conference, June 2003.

[5] David G. Korn and Kiem-Phong Vo. Engineering a differencing and compression data format.
In Proceedings of the 2002 Usenix Conference. USENIX Association, June 2002.

[6] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M. Tracey. Redundancy elim-
ination within large collections of files. In Proceedings of the 2004 Usenix Conference, June
2004. To appear.

[7] D. A. Lelewer and D. S. Hirschberg. Data compression. ACM Computing, Springer Verlag
(Heidelberg, FRG and NewYork NY, USA)-Verlag Surveys, ; ACM CR 8902-0069, 19(3), 1987.

[8] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth network file
system. In Symposium on Operating Systems Principles, pages 174–187, 2001.

[9] Zan Ouyang, Nasir Memon, Torsten Suel, and Dimitre Trendafilov. Cluster-based delta com-
pression of a collection of files. In International Conference on Web Information Systems
Engineering (WISE), December 2002.

[10] Calicrates Policroniades and Ian Pratt. Alternatives for detecting redundancy in storage sys-
tems data. In Proceedings of the 2004 Usenix Conference, June 2004.

[11] S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In Proceedings of the
First USENIX Conference on File and Storage Technologies, Monterey,CA, 2002.

30

[12] Neil T. Spring and David Wetherall. A protocol-independent technique for eliminating redun-
dant network traffic. In Proceedings of ACM SIGCOMM, August 2000.

[13] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, Australian
National University, 1999.

[14] Mark Weiser. Some computer science issues in ubiquitous computing. Communications of the
ACM, 36(7):74–84, July 1993.

31

Block Sorting Lossless Delta Compression
Algorithms

James J. Hunt

The ideas behind block sorting lossless data compression algorithm have influence not only
file compression but also delta compression. Modern delta compression algorithms based on
Ziv-Lempel techniques significantly outperform diff, a popular but older delta compressor,
in terms of compression ratio. The modern compressors also correlate better with the actual
difference between files without sacrificing performance.

Two different delta compression algorithms will be presented. The algorithms used
different strategies for finding common blocks. These strategies will also be compared and
their relationship to the Burrows-Wheeler Transform will be presented. Performance issues
will also be addressed.

The performance of a delta algorithm is dependent upon the size of the difference be-
tween pairs of files. A metric using the Longest Common Subsequence (LCS) as the reference
against which to measure compression will be presented. This metric applies mainly to one-
dimensional data, but it may also apply to higher dimensional data that can be linearized
without fragmenting typical changes.

Delta algorithms are also related to software differencing and merging. By using tokens
instead of byte, one can use delta algorithms to improve differencing and merging. In order
to attain accurate results, differencing and merging must respect the block structure of
programs. A method to extend delta algorithms to this domain will also be presented.

32

Comparing Sequences with Segment Rearrangements

S. Cenk Sahinalp
Simon Fraser University

Computational genomics involves comparing DNA sequences based on similarity/distance
computations for detecting evolutionary and functional relationships. Until recently avail-
able portions of published genome sequences were fairly short and sparse and the similarity
between such sequences was measured based on character level differences. With the advent
of whole genome sequencing technology there is emerging consensus that the measure of
similarity between long DNA sequences must capture segmental rearragements found in
abundance in the human genome. In this talk we will focus on block edit distance, which is
defined as the smallest number of character edits (replacement and indel) and block edits
(segmental duplication, deletion and translocation) to transform one sequence into another.
Although it is NP hard to compute the block edit distance between two sequences, we
show that it can be approximated within a constant factor in linear time via a simple one
pass algorithm. The approximation method, based on the Lempel-Ziv’77 compressibility of
one sequence when concatenated with the other, enhances the long suspected link between
mutual compressibility and evolutionary relationship between genomic sequences.

33

Grammar-based Compression of DNA Sequences

Neva Cherniavsky
Department of Computer Science and Engineering
University of Washington

Richard Ladner
Department of Computer Science and Engineering
University of Washington

Grammar-based compression methods have shown success for many different types of data.
The central idea behind these methods is to use a context-free grammar to represent the
input text. Grammars can capture repetitions occurring far apart in the data. This is a
limitation on sliding window or block sorting algorithms, such as LZ77 or bzip2.

Compression of DNA sequences is a notoriously hard problem. DNA contains only four
symbols, and so can be represented by two bits per symbol. It is very hard to beat the
bound of two bits per symbol. However, DNA is also known to have long repetitions that
a compressor could hope to capture. Furthermore, DNA has a unique kind of repetition,
because it contains both exact matches and reverse complement matches.

We explore the effectiveness of grammar-based compression on DNA sequences. We
exploit the different types of repetition in DNA by modifying a successful grammar inference
algorithm, Sequitur [3]. We then endeavor to maximize our gain in the next two stages
of grammar compression: grammar encoding and entropy encoding. We present several
different techniques for grammar encoding, ranging from very simple methods to more
complicated pointer-based methods. All skew the data in some way to make the entropy
encoding step more effective. We implement a custom arithmetic coder as the entropy
coder, which is specifically designed to work well with our symbol stream. After evaluating
our algorithm, we return to the grammar inference portion of the algorithm and improve
the grammar by quantifying the efficiency of the rules.

After striving to optimize each stage of our compression algorithm, we conclude that
grammar-based compression does not work well on DNA sequences. The best compressors
for DNA are GenCompress [2] and DNACompress [1]. These algorithms, while achieving a
bit rate smaller than two bits per symbol, still do not compress much more than a standard
first order entropy coder. We pose this as a challenge to the compression community: is
there a clever algorithm which can compress DNA significantly better than a simple first
order arithmetic coder?

References

[1] Chen, X., Li, M., Ma, B., and Tromp, J. DNACompress: Fast and effective DNA sequence
compression. Bioinformatics 18, 12 (Dec. 2002), 1696–1698.

34

[2] Grumbach, S., and Tahi, F. A new challenge for compression algorithms: genetic sequences.
Information Processing and Management 30, 6 (1994), 875–886.

[3] Nevill-Manning, C. G., and Witten, I. H. Identifying hierarchical structure in sequences: A
linear-time algorithm. Journal of Artificial Intelligence Research 7 (Sept. 01 1997), 67–82.

35

Compression of Words over a Partially
Commutative Alphabet

Serap A. Savari†

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

Introduction

Multiprocessor configurations, distributed systems and communication networks are exam-
ples are systems consisting of a collection of distinct processes which communicate with one
another but are also partly autonomous. Here certain events are allowed to occur inde-
pendently while others must happen in a predetermined order. In other words, there is a
partial ordering of events rather than a total ordering [1].

The events of sequential processes are well modeled by a string of events. A recent
award-winning paper in the computer architecture literature [2] applies a grammar-based
data compression scheme to the sequence of events that occur while a computer program
runs and uses the hierarchical structure inferred by the algorithm to better understand
the program’s dynamic behavior and improve its performance. The implicit assumption
in using lossless data compression for this application is that there is a well-defined total
ordering of event occurrences. Trace theory [3] is one way to generalize the notion of a
string in order to model the executions of concurrent processes. The sequential observer of
a concurrent system is provided with a set of atomic actions together with a labeled and
undirected dependence relation or noncommutation graph indicating which actions can be
performed independently or concurrently. For a noncommutation graph G with vertex set
V two words are congruent if one can be transformed into the other by a sequence of steps
each of which consists of interchanging two consecutive letters that are nonadjacent vertices
in G. For example, if the noncommutation graph G is given by a—b—c—d, then the two
words dabac and abdca are equivalent since dabac ≡G adbac ≡G adbca ≡G abdca.
To generalize lossless data compression to concurrent systems, [4] introduces a compression
problem where it is only necessary to reproduce a string which is equivalent to the original
string and provides some heuristic compression schemes. We mention in passing that this
compression problem also arises in the compression of executable code [5]. In [6], we initiate
a study of this compression problem from an information theoretic perspective.

Let us assume we are given a discrete, memoryless source that emits symbols belonging
to the vertex set V , and let P (v) denote the probability of v ∈ V . Let G denote a graph
on vertex set V . Our goal is to minimize the average number of bits per symbol needed
to represent the congruence class containing a word emitted from the source as the word
length approaches infinity. We call the limit of the best achievable rate as L approaches

†This work was done while the author was with the Computing Sciences Research Center, Bell Labs,
Lucent Technologies.

36

∑

∑

∑ ∑

infinity the interchange entropy of the source, which exists and which we will denote by
Hι(G,P).

Basic Properties

Let E denote the edge set of a graph.

Proposition 1 (Monotonicity) If F and G are two graphs on the same vertex set and
E(F) ⊆ E(G), then for any probability distribution P we have Hι(F,P) ≤ Hι(G,P).

Proposition 2 (Subadditivity) Let F and G be two graphs on the same vertex set V
and define F ∪G to be the graph on V with edge set E(F)∪E(G). For any fixed probability
distribution P we have Hι(F ∪ G,P) ≤ Hι(F,P) + Hι(G,P).

Proposition 3 (Disjoint Components) Let the subgraphs Gj denote the connected com-
ponents of the graph G. For a probability distribution P on V (G) define the probability distri-
butions Pj(x) = P (x)[P (V (Gj))]−1, x ∈ V (Gj). Then Hι(G,P) = j P (V (Gj))Hι(Gj , Pj).

Theorem 6 Suppose V is of the form V = V1∪V2∪. . .∪Vk with |Vi| = mi, i ∈ {1, 2, . . . , k}
and label the elements of Vi as vi,j, i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . ,mi}. For the com-
plete k-partite graph Km1,m2,...,mk

there is an edge corresponding to every pair of vertices
{vi,j , vl,n}, vi,j ∈ Vi, vl,n ∈ Vl, l �= i, and no two vertices from the same subset Vi are adja-

micent for any i ∈ {1, 2, . . . , k}. Define Qi = P (vi,j), i ∈ {1, 2, . . . , k}. Thenj=1

H(P) − Hι(Km1,m2,...,mk
, P) =

⎛ ⎞
∞ mi

()S⎠log2(S) (1 − Qi)⎝Qi
S −

∑ P (vi,j)
1 − Qi + P (vi,j)

.
S=2 i:mi≥2 j=1

References

[1] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Comm. ACM, 21,
558–565, 1978.

[2] J. Larus, Whole program paths, ACM SIGPLAN Conf. Prog. Lang. Des. Implem. 259–269,
Atlanta, GA, May 1999.

[3] A. Mazurkiewicz, Trace theory, in W. Brauer et. al., ed., Petri Nets, Applications and Relation-
ship to other Models of Concurrency, Lecture Notes in Computer Science 255, 279–324, Springer,
Berlin, 1987.

[4] R. Alur, S. Chaudhuri, K. Etessami, S. Guha and M. Yannakakis, Compression of partially
ordered strings, Proc. CONCUR 2003 (14th International Conference on Concurrency Theory),
Marseille, France, September 2003.

[5] M. Drinić and D. Kirovski, PPMexe: PPM for compressing software, Proc. 1997 I.E.E.E. Data
Comp. Conf. 192–201, Snowbird, UT, March 2002.

[6] S. A. Savari, Compression of words over a partially commutative alphabet, IEEE Transactions
on Information Theory, 50(7):1425–1441, July 2004.

37

Delayed-Dictionary Compression for Packet
Networks

Yossi Matias
Tel Aviv University

Raanan Refua
Tel Aviv University

We consider data compression in packet networks, in which data is transmitted by partition-
ing it into packets. Packet compression allows better bandwidth utilization of a communi-
cation line resulting in much smaller amounts of packet drops, more simultaneous sessions,
and a smooth and fast behavior of applications.

Packet compression can be obtained by a combination of Header compression and pay-
load compression, which are complementary methods. In this work we focus on payload
compression only. We are particularly interested in dictionary-based compression. Many
dictionary compression algorithms were developed, following the seminal papers of Lempel
and Ziv.

In dictionary compression, an input sequence is encoded based on a dictionary that is
constructed dynamically according to the given text. The compression is done in a streaming
fashion, enabling to leverage on redundancy in the input sequence.

In many packet networks, including ATM, Frame Relay, Wireless, and others, packets are
sent via different routes, and may arrive reordered, due to different network characteristics,
or due to retransmissions in case of dropped packets. Since streaming compression assumes
that the compressed sequence arrives at the decoder at the order in which it was sent by
the encoder, the decoder must hold packets in a buffer until all preceding packets arrive.
This causes decoding latency, which may be unacceptable in some applications.

To alleviate decoding latency, standard packet compression techniques are based on a
packet-by-packet compression. For each packet, its payload is compressed using a dictionary
compression algorithm, independently to other packets. While the decoding latency is
addressed properly, this may often result with poor compression quality, since the inherent
redundancy within a packet is significantly smaller than the redundancy over many packets
in the stream.

We introduce a novel compression algorithm suitable for packet networks: the delayed-
dictionary compression (DDC). The DDC is a general framework that applies to any dictio-
nary algorithm; it considers the dictionary construction and the dictionary-based parsing
of the input text as separate processes, and it imposes a delay ∆ in the dictionary con-
struction. As a result, when decoding a packet, the decoder does not depend on any of
the preceding ∆ packets, eliminating or diminishing the problems of out-of-order packets
and packet drops compared to streaming compression, still with a good traffic compression
ratio.

38

Encoder Decoder

X Y X

Packets

Di

Rx1

Rx2Tx2

Tx1

[ACKs
Data]

Encoder

Packets

Rx1

Rx2Tx2

Tx1
Decoder

ACKs ACKs ACKs

∆Q

ctionary Dictionary

Figure 1: Internal structure of the Encoder and the Decoder: The encoder task transfers phrases to the
dictionary task by using a FIFO queue.

Compression Ratio

Stateless (∆=∞)

Confirmed-Dictionary
Compression (∆Conf)

DDC (∆)
Streaming (∆=0)

Av
Decoding
Latency

Figure 2: A tradeoff between the compression ratio and the average decoding latency. Streaming has
the best compression ratio and the worst decoding latency. DDC has compression ratio close to that of
streaming compression, and also has average decoding latency which is close to that of stateless. The
confirmed-dictionary compression algorithm ensures a zero decoding latency.

The internal architecture of the encoder and the decoder combined with the DDC
method is depicted in Fig. 1. The dictionary delay is implemented by a FIFO queue which
is initialized to ∆ dummy packets.

We focus on two alternative encoding methods for the DDC algorithm. The first adapts
to the network propagation delay and the probability for packet loss. The second, called
confirmed-dictionary compression, ensures zero decoding latency. The DDC at its most
powerful version ensures that the compression ratio will be at least as good as that of
stateless compression, and quite close to that of the streaming compression, with decoding
latency close to or equal to that of stateless compression.

A full tradeoff between compression ratio and decoding latency can be obtained using
the DDC algorithms, as illustrated in Fig. 2. On one extreme of the tradeoff is the streaming
compression, which is DDC with ∆ = 0, it has the best compression ratio and the worst
decoding latency. On the other extreme we have the DDC with confirmed dictionary, which
has zero decoding latency - as in stateless compression; its compression ratio is the worst
among the DDC algorithms, but is still better than that of stateless compression. Thus,
the DDC has the benefits of both stateless compression and streaming compression.

With the right choices of the dictionary delay parameter, it may have a decoding latency
which is close to that of stateless compression, and with compression ratio which is close
to that of streaming compression. For example, for a concatenation of the Calgary corpus
files, fragmented into packets with a payload of 125 bytes, in streaming the compression
ratio is 0.52 with an average decoding latency of 62 packets, while in DDC with a large
dictionary delay of 200 packets we obtain a compression ratio of 0.68 and only an average
decoding latency of 14.3 packets.

The DDC method is particularly good for low to medium speed communication links.
Its advantage is most significant for applications in which the latency is important, and in
which the order of decoded packets is not important.

We conducted various experiments to establish the potential benefit of DDC, by com-
paring the compression ratios of streaming compression versus stateless compression, and

39

0.90

0.80

Com
pres

sion
 rati

o

delayed-dictionary
compression ratio
stateless
compression ratio
streaming
compression ratio

0.70

0.60

0.50 0 10 20 100 300 500 1000 1200

Dictionary Delay ∆ (packets)

Figure 3: Compression ratio of DDC as a function of the dictionary delay in packets, compared to stateless
compression ratio and to streaming compression ratio. The ratio for streaming compression is very close to
the DDC ratio with zero dictionary delay. The data file in use is the concatenation of 18 Calgary corpus files,
|Header| = 20, |Payload| = 125. DDC obtains a good compression ratio even for large dictionary delays.

80

60

Tot
al A

v L
dec

 (pa
cke

ts)

40

20

0

DDC

Streaming

0 100 200 300 400 500

Dictionary Delay ∆ (packets)

Figure 4: The Effect of the Dictionary Delay on the Decoding Latency: Increasing the dictionary delay
will cause a decrease of the decoding latency Ldec. As can be seen, the average decoding latency in DDC is
smaller than that of streaming. In particular when ∆ = 500 packets in DDC do not wait at all while packets
in streaming wait on average for 62 packets. RT T = 5000msec.

by measuring the decoding latency of streaming compression. We used the Flexible Parsing
version of LZW as the compression algorithm for testing purposes. For network related
experiments we used the Planet Lab project over the Internet.

Using experimentation, we study the dependency of compression quality and the im-
posed dictionary delay, showing that the improvement in compression over stateless com-
pression could be significant even for a relatively large dictionary delay. The compression
ratios of stateless compression, streaming compression, and DDC, for small packets, are
depicted in Fig. 3.

We also consider the effect of the dictionary delay on the performance in terms of the
decoding latency. This effect is depicted in Fig. 4. A sufficiently large dictionary delay will
practically provide a practical zero decoding latency. We compare the decoding latencies of
streaming compression vs. DDC, showing that the latter is indeed considerably better. For
streaming compression, the maximal decoding latency is 4RTT (e.g., for RTT = 5000msec
and a payload size of 125 bytes the decoding latency is 963 packets) while in DDC we can
control it to be zero.

40

