
Run-Length FM-index

Veli Mäkinen
Department of Computer Science, Univ. of Helsinki, Finland.

Gonzalo Navarro
Department of Computer Science, Univ. of Chile, Chile.

Abstract

The FM-index is a succinct text index needing only O(Hkn) bits of space, where n is the
text size and Hk is the kth order entropy of the text. FM-index assumes constant alphabet;
it uses exponential space in the alphabet size, σ. In this paper we show how the same ideas
can be used to obtain an index needing O(Hkn) bits of space, with the constant factor
depending only logarithmically on σ. Our space complexity becomes better as soon as
σ log σ > log n, which means in practice for all but very small alphabets, even with huge
texts. We retain the same search complexity of the FM-index.

FM-index

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which produces
a permutation of the original text, denoted by T bwt = bwt(T). String T bwt is a result of
the following forward transformation: (1) Append to the end of T a special end marker $,
which is lexicographically smaller than any other character; (2) form a conceptual matrix M
whose rows are the cyclic shifts of the string T$, sorted in lexicographic order; (3) construct
the transformed text L by taking the last column of M. The first column is denoted by F .

The suffix array A of text T$ is essentially the matrix M: A[i] = j iff the ith row of M
contains string tjtj+1 · · · tn$t1 · · · tj−1. Given the suffix array, the search for the occurrences
of the pattern P = p1p2 · · · pm is trivial. The occurrences form an interval [sp, ep] in A such
that suffixes tA[i]tA[i]+1 · · · tn, sp ≤ i ≤ ep, contain the pattern as a prefix. This interval
can be searched for using two binary searches in time O(m log n) [5].

The suffix array of text T is represented implicitly by T bwt. The novel idea of the FM-
index is to store T bwt in compressed form, and to simulate a backward search in the suffix
array as follows:

Algorithm FM Search(P [1, m],T bwt[1, n])
(1) c = P [m]; i = m;
(2) sp = CT [c] + 1; ep = CT [c + 1];
(3) while (sp ≤ ep) and (i ≥ 2) do
(4) c = P [i − 1];
(5) sp = CT [c] + Occ(T bwt , c, sp − 1)+1;

(6) ep = CT [c] + Occ(T bwt , c, ep);
(7) i = i − 1;
(8) if (ep < sp) then return “not found” else return “found (ep − sp + 1) occs”.

17

� ′

′

The above algorithm finds the interval [sp, ep] of A containing the occurrences of the
pattern P . It uses the array CT and function Occ(X, c, i), where CT [c] equals the number of
occurrences of characters {$, 1, . . . , c− 1} in the text T and Occ(X, c, i) equals the number
of occurrences of character c in the prefix X[1, i].

Ferragina and Manzini [3] go on to describe an implementation of Occ(T bwt, c, i) that
uses a compressed form of T bwt; they show how to compute Occ(T bwt, c, i) for any c and i
in constant time. However, to achieve this they need exponential space (in the size of the
alphabet).

Run-Length FM-Index

Our idea is to exploit run-length compression to represent T bwt. An array S contains one
character per run in T bwt, while an array B contains n bits and marks the beginnings of
the runs.

nDefinition 2 Let string T bwt = c�
1
1c�2 . . . c ′ consist of n′ runs, so that the i-th run consists2 n

of �i repetitions of character ci. Our representation of T bwt consists of string S = c1c2 . . . cn′
′−1of length n′, and bit array B = 10�1−110�2−1 . . . 10�n .

It is clear that S and B contain enough information to reconstruct T bwt: T bwt[i] =
S[rank(B, i)], where rank(B, i) is the number of 1’s in B[1 . . . i] (so rank(B, 0) = 0).
Function rank can be computed in constant time using o(n) extra bits [4, 6, 2]. Hence, S
and B give us a representation of T bwt that permits us accessing any character in constant
time and requires at most n′ log σ + n + o(n) bits. The problem, however, is not only how
to access T bwt, but also how to compute CT [c] + Occ(T bwt, c, i) for any c and i.

In the following we show that the above can be computed by means of a bit array B′,
obtained by reordering the runs of B in lexicographic order of the characters of each run.
Runs of the same character are left in their original order. The use of B′ will add n + o(n)
bits to our scheme. We also use CS, which plays the same role of CT , but it refers to string
S.

Definition 3 Let S = c1c2 . . . cn′ of length n′, and B = 10�1−110�2−1 . . . 10�n′−1. Let
p1p2 . . . pn′ be a permutation of 1 . . . n′ such that, for all 1 ≤ i < n′, either cpi < cpi+1 or

−1cpi = cpi+1 and pi < pi+1. Then, bit array B′ is defined as B′ = 10�p1 −110�p2−1 . . . 10�p
n .

We now give the theorems that cover different cases in the computation of CT [c] +
Occ(T bwt, c, i) (see [7] for proofs). They make use of select, which is the inverse of rank:
select(B′, j) is the position of the jth 1 in B′ (and select(B′, 0) = 0). Function select can
be computed in constant time using o(n) extra bits [4, 6, 2].

Theorem 4 For any c ∈ Σ and 1 ≤ i ≤ n, such that T bwt[i] �= c, it holds

CT [c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1

Theorem 5 For any c ∈ Σ and 1 ≤ i ≤ n, such that T bwt[i] = c, it holds

CT [c] + Occ(T bwt, c, i) = select(B′, CS [c] + Occ(S, c, rank(B, i)))
+i − select(B, rank(B, i)).

18

(′)

Since functions rank and select can be computed in constant time, the only obstacle to
use the theorems is the computation of Occ over string S.

Instead of representing S explicitly, we will store one bitmap Sc per text character c, so
that Sc[i] = 1 iff S[i] = c. Hence Occ(S, c, i) = rank(Sc, i). It is still possible to determine
in constant time whether T bwt[i] = c or not: an equivalent condition is Sc[rank(B, i)] = 1.

According to [8], a bit array of length n′ where there are f 1’s can be represented using
nlog + o(f) + O(log log n′) bits, while still supporting constant time access and constantf

time rank function for the positions with value 1. It can be shown (see [7]) that the overall
size of these structures is at most n′(log σ + 1.44 + o(1)) + O(σ log n′).

We have shown in [7] that the number of runs in T bwt is limited by 2Hkn+σk. By adding
up all our space complexities we obtain 2n(Hk(log σ+1.44+o(1))+1+o(1))+O(σ log n) =
2n(1 + Hk log σ)(1 + o(1)) bits of space if σ = o(n/ log n), for any fixed k.

References

[1] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. DEC
SRC Research Report 124, 1994.

[2] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[3] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc.
FOCS’00, pp. 390–398, 2000.

[4] G. Jacobson. Succinct Static Data Structures. PhD thesis, CMU-CS-89-112, Carnegie Mellon
University, 1989.

[5] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM J.
Comput., 22, pp. 935–948, 1993.

[6] I. Munro. Tables. In Proc. FSTTCS’96, pp. 37–42, 1996.

[7] V. Mäkinen and G. Navarro. New search algorithms and time/space tradeoffs for succinct suffix
arrays. Technical report C-2004-20, Dept. Computer Science, Univ. Helsinki, April 2004.

[8] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In Proc. SODA’02, pp. 233–242, 2002.

19

