
Delayed-Dictionary Compression for Packet
Networks

Yossi Matias
Tel Aviv University

Raanan Refua
Tel Aviv University

We consider data compression in packet networks, in which data is transmitted by partition-
ing it into packets. Packet compression allows better bandwidth utilization of a communi-
cation line resulting in much smaller amounts of packet drops, more simultaneous sessions,
and a smooth and fast behavior of applications.

Packet compression can be obtained by a combination of Header compression and pay-
load compression, which are complementary methods. In this work we focus on payload
compression only. We are particularly interested in dictionary-based compression. Many
dictionary compression algorithms were developed, following the seminal papers of Lempel
and Ziv.

In dictionary compression, an input sequence is encoded based on a dictionary that is
constructed dynamically according to the given text. The compression is done in a streaming
fashion, enabling to leverage on redundancy in the input sequence.

In many packet networks, including ATM, Frame Relay, Wireless, and others, packets are
sent via different routes, and may arrive reordered, due to different network characteristics,
or due to retransmissions in case of dropped packets. Since streaming compression assumes
that the compressed sequence arrives at the decoder at the order in which it was sent by
the encoder, the decoder must hold packets in a buffer until all preceding packets arrive.
This causes decoding latency, which may be unacceptable in some applications.

To alleviate decoding latency, standard packet compression techniques are based on a
packet-by-packet compression. For each packet, its payload is compressed using a dictionary
compression algorithm, independently to other packets. While the decoding latency is
addressed properly, this may often result with poor compression quality, since the inherent
redundancy within a packet is significantly smaller than the redundancy over many packets
in the stream.

We introduce a novel compression algorithm suitable for packet networks: the delayed-
dictionary compression (DDC). The DDC is a general framework that applies to any dictio-
nary algorithm; it considers the dictionary construction and the dictionary-based parsing
of the input text as separate processes, and it imposes a delay ∆ in the dictionary con-
struction. As a result, when decoding a packet, the decoder does not depend on any of
the preceding ∆ packets, eliminating or diminishing the problems of out-of-order packets
and packet drops compared to streaming compression, still with a good traffic compression
ratio.

38

Encoder Decoder

X Y X

Packets

Di

Rx1

Rx2Tx2

Tx1

[ACKs
Data]

Encoder

Packets

Rx1

Rx2Tx2

Tx1
Decoder

ACKs ACKs ACKs

∆Q

ctionary Dictionary

Figure 1: Internal structure of the Encoder and the Decoder: The encoder task transfers phrases to the
dictionary task by using a FIFO queue.

Compression Ratio

Stateless (∆=∞)

Confirmed-Dictionary
Compression (∆Conf)

DDC (∆)
Streaming (∆=0)

Av
Decoding
Latency

Figure 2: A tradeoff between the compression ratio and the average decoding latency. Streaming has
the best compression ratio and the worst decoding latency. DDC has compression ratio close to that of
streaming compression, and also has average decoding latency which is close to that of stateless. The
confirmed-dictionary compression algorithm ensures a zero decoding latency.

The internal architecture of the encoder and the decoder combined with the DDC
method is depicted in Fig. 1. The dictionary delay is implemented by a FIFO queue which
is initialized to ∆ dummy packets.

We focus on two alternative encoding methods for the DDC algorithm. The first adapts
to the network propagation delay and the probability for packet loss. The second, called
confirmed-dictionary compression, ensures zero decoding latency. The DDC at its most
powerful version ensures that the compression ratio will be at least as good as that of
stateless compression, and quite close to that of the streaming compression, with decoding
latency close to or equal to that of stateless compression.

A full tradeoff between compression ratio and decoding latency can be obtained using
the DDC algorithms, as illustrated in Fig. 2. On one extreme of the tradeoff is the streaming
compression, which is DDC with ∆ = 0, it has the best compression ratio and the worst
decoding latency. On the other extreme we have the DDC with confirmed dictionary, which
has zero decoding latency - as in stateless compression; its compression ratio is the worst
among the DDC algorithms, but is still better than that of stateless compression. Thus,
the DDC has the benefits of both stateless compression and streaming compression.

With the right choices of the dictionary delay parameter, it may have a decoding latency
which is close to that of stateless compression, and with compression ratio which is close
to that of streaming compression. For example, for a concatenation of the Calgary corpus
files, fragmented into packets with a payload of 125 bytes, in streaming the compression
ratio is 0.52 with an average decoding latency of 62 packets, while in DDC with a large
dictionary delay of 200 packets we obtain a compression ratio of 0.68 and only an average
decoding latency of 14.3 packets.

The DDC method is particularly good for low to medium speed communication links.
Its advantage is most significant for applications in which the latency is important, and in
which the order of decoded packets is not important.

We conducted various experiments to establish the potential benefit of DDC, by com-
paring the compression ratios of streaming compression versus stateless compression, and

39

0.90

0.80

Com
pres

sion
 rati

o

delayed-dictionary
compression ratio
stateless
compression ratio
streaming
compression ratio

0.70

0.60

0.50 0 10 20 100 300 500 1000 1200

Dictionary Delay ∆ (packets)

Figure 3: Compression ratio of DDC as a function of the dictionary delay in packets, compared to stateless
compression ratio and to streaming compression ratio. The ratio for streaming compression is very close to
the DDC ratio with zero dictionary delay. The data file in use is the concatenation of 18 Calgary corpus files,
|Header| = 20, |Payload| = 125. DDC obtains a good compression ratio even for large dictionary delays.

80

60

Tot
al A

v L
dec

 (pa
cke

ts)

40

20

0

DDC

Streaming

0 100 200 300 400 500

Dictionary Delay ∆ (packets)

Figure 4: The Effect of the Dictionary Delay on the Decoding Latency: Increasing the dictionary delay
will cause a decrease of the decoding latency Ldec. As can be seen, the average decoding latency in DDC is
smaller than that of streaming. In particular when ∆ = 500 packets in DDC do not wait at all while packets
in streaming wait on average for 62 packets. RT T = 5000msec.

by measuring the decoding latency of streaming compression. We used the Flexible Parsing
version of LZW as the compression algorithm for testing purposes. For network related
experiments we used the Planet Lab project over the Internet.

Using experimentation, we study the dependency of compression quality and the im-
posed dictionary delay, showing that the improvement in compression over stateless com-
pression could be significant even for a relatively large dictionary delay. The compression
ratios of stateless compression, streaming compression, and DDC, for small packets, are
depicted in Fig. 3.

We also consider the effect of the dictionary delay on the performance in terms of the
decoding latency. This effect is depicted in Fig. 4. A sufficiently large dictionary delay will
practically provide a practical zero decoding latency. We compare the decoding latencies of
streaming compression vs. DDC, showing that the latter is indeed considerably better. For
streaming compression, the maximal decoding latency is 4RTT (e.g., for RTT = 5000msec
and a payload size of 125 bytes the decoding latency is 963 packets) while in DDC we can
control it to be zero.

40

