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Partitioning and Privacy

• When can we treat the databases independently?
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Definition:  Parallel Composition

We say that a sanitization scheme A satisfies parallel 
composition if, given disjoint datasets D1,…,Dn, with 
corresponding outputs 𝐴 𝐷 = 𝐴 𝐷1 , … , 𝐴(𝐷𝑛) satisfies the 
privacy guarantee of the original scheme.

• Satisfied by:
– Differential Privacy (McSherry SIGMOD’09)

• Privacy budget treated independently for each dataset

– Generalization-based k-anonymity, l-diversity with local recording

• Not satisfied by
– Generalization-based anonymization with global recording

– Differential Privacy (Dwork, McSherry, Nissim, Smith TCC’06):  2𝜖
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Dwork, McSherry, Nissim, Smith 

TCC’06

Let 𝐷 be partitioned into 𝑑
disjoint regions, let 𝑓 ∶ 𝐷𝑛 →
ℝ𝑑 be a function whose 
output coordinates 𝑓 𝑥 𝑖
depend only on those 
elements in the 𝑖th region.  
We can bound 𝑆 𝑓 ≤
2max

𝑖
𝑆 𝑓𝑖 .

McSherry SIGMOD’09

Let 𝑀𝑖 each provide 𝜖-

differential privacy.  Let 𝐷𝑖
be arbitrary disjoint subsets 

of the input domain 𝐷. The 

sequence of 𝑀𝑖(𝑋 ∩ 𝐷𝑖)
provides 𝜖-differential 

privacy.
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Parallel Composition:

Differential Privacy
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Why the discrepancy?

• Definition of “differ on a single entry”

– Deletion (TAMC’08) - easy to show 𝜖

– Substitution (TCC’06) - easy to show 2𝜖

– Modifying values – Is this 𝜖 or 2𝜖?

• Disjoint datasets (’09 𝜖) vs. Partitioned dataset (’06 2𝜖)

– We narrow this gap
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Definition:  Partitioned Preprocessing

Choose a random partition {di} of |D| into positive integers, then 
partition D into pieces Di of size di uniformly at random.  We call 
𝑖=1ڂ
𝑛 𝐴(𝐷𝑖) a partitioned preprocessing dataset.

• Works for parallel composition techniques
– Including 𝜖-DP under substitution

• Potentially stronger against some types of attacks on generalization
– Minimality

– deFinetti

• Attack resistance arguments hold for non-parallel decomposable 
techniques
– E.g., global recoding (and potential utility benefits)
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Theorem:  Parallel Composition on 

Random Partitions

• Let 𝐷 be a dataset, 𝐷 = 𝑛.  Choose a decomposition 𝐧
of 𝑛 and a permutation 𝜋 on 𝑛 elements uniformly at 

random, and partition the dataset 𝐷 into 𝑛 pieces 

𝐷𝜋,𝑖 1≤𝑖≤𝑗
.  Let 𝒜1, … ,𝒜𝑗 be differentially private 

mechanisms with privacy budgets 𝜖1, … , 𝜖𝑗.

The mechanism 𝒜 = 𝒜1 𝐷𝜋,1 , … ,𝒜𝑗 𝐷𝜋,𝑗 satisfies 𝜖-

differential privacy, where 𝜖 = max
1≤𝑖≤𝑗

𝜖𝑖.
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Proof Idea

• Partitions determined in advance, independent of data

– Substituting a tuple affects only one partition

• For partitions without the changed tuple, 𝐷𝜋,𝑘=𝐷′𝜋,𝑘, so

𝑃 𝒜𝑘(𝐷𝜋,𝑘) ∈ 𝑇𝑘 = 𝑃 𝒜𝑘(𝐷
′
𝜋,𝑘) ∈ 𝑇𝑘

• The changed partition 𝑗 has a difference bounded by 𝜖𝑗
– This bounds the total difference between 𝒜 𝐷 and 𝒜 𝐷′
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More Differences between

Deletion and Substitution

• What is the sensitivity of

– |D| ?

• Deletion:  1

• Substitution:  0

– Average

• Amplification (Li, Qardaji, Su ‘12)

– Defined under deletion

Is there a difference in the privacy semantics?
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Partitioned Preprocessing:

Potential Utility Benefit

• Some benefits of local recoding
– “Outliers” only force over-generalization in a single partition

• Each partition satisfies global recoding
– Difficulty identifying which partition an item belongs to provides 

defense against attacks
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Age Gender Zip Cancer

40-50 Male 92*** Yes

40-50 Male 92*** No

40-50 Male 92*** No

40-50 Male 92*** Yes

Age Gender Zip Cancer

40-60 Male 925** No

40-60 Male 925** No

40-60 Male 925** Yes

40-60 Male 925** No
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Partitioned Preprocessing:

Example
Semantic Attacks: Determine likely distribution of sensitive 
values in an equivalence class

• Individual may belong to many equivalence classes
– Attack gives information on one equivalence class

• Attack increases Pr(x.S = Si) by only a (weighted) proportion 
of the increase in probability for that class

k=20 Underlying 

Partitions

Visible 

Partitions

Distribution 

of Partitions

% of Population

Average

25,000 

size

20 6 + 

Suppressed 

Class

6, 5, 6, 1, 1, 

1

.244, .30, .295, 

.062, .048, .024 

Suppress: .016 
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Partitioned Preprocessing:

Example

ZIP YOB GEN VISIT HOSPITAL COMP CAT Possible Matches

43125 1967 F 2005-08-31 Riverside 

Methodist

Mosquito Bite Other 7,916

ZIP YOB Visit Date Hospital Matches

43000 - 43240 1940 - 1979 2004-01-01 - 2005-12-31 Riverside Methodist Hospital 2520

43068 - 43156 1940 - 1979 2004-01-01 - 2005-12-31 Medium & Large Hospitals 3497

43068 - 43156 1900 - 1992 2004-01-01 - 2005-12-31 Riverside Methodist Hospital 1068

43119 - 43156 1940 - 1979 2004-01-01 - 2008-02-31 Large Hospitals 421

43119 - 43156 1900 - 1992 2005-07-01 - 2005-12-31 Medium & Large Hospitals 169

43068 - 43156 1900 - 1992 2004-01-01 - 2005-12-31 Large Hospitals 241

• Original Record:

• Anonymized Versions:
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Still working…

• Implications of partitioned preprocessing on differential 
privacy
– Near-optimal use of privacy budget

• Use noise from random partitioning to satisfy differential privacy

– Potential operational value?

– Amplification of privacy budget through sampling

• Thank You
– Chris Clifton, clifton@cs.purdue.edu

– Keith Merrill, merrill2@brandeis.edu

– Shawn Merrill, smerrill@cs.purdue.edu
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