

$\frac{JE}{TT}$. Definition: Parallel Composition

We say that a sanitization scheme *A* satisfies **parallel composition** if, given disjoint datasets $D_1, ..., D_n$, with corresponding outputs $A(D) = A(D_1), ..., A(D_n)$ satisfies the privacy guarantee of the original scheme.

- · Satisfied by:
 - Differential Privacy (McSherry SIGMOD'09)
 - Privacy budget treated independently for each dataset
 - Generalization-based k-anonymity, I-diversity with local recording
- Not satisfied by
 - Generalization-based anonymization with global recording
 - Differential Privacy (Dwork, McSherry, Nissim, Smith TCC'06): 2ϵ

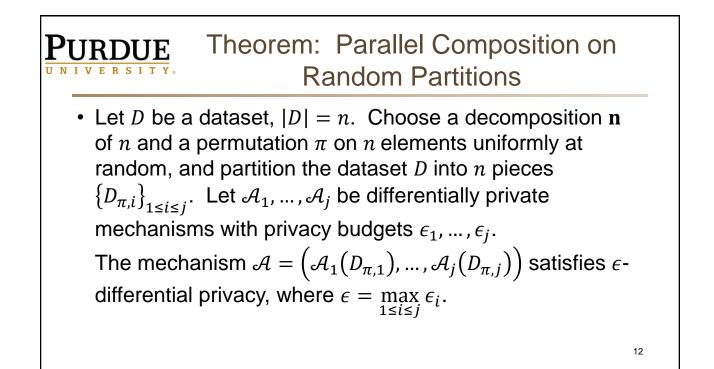
5

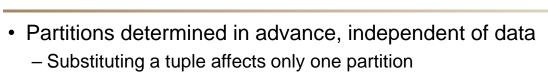
PURDUE UNIVERSITY.

Parallel Composition: Differential Privacy

Dwork, McSherry, Nissim, Smith TCC'06

Let *D* be partitioned into *d* disjoint regions, let $f : D^n \rightarrow \mathbb{R}^d$ be a function whose output coordinates $f(x)_i$ depend only on those elements in the *i*th region. We can bound $S(f) \leq 2 \max S(f_i)$.


McSherry SIGMOD'09


Let M_i each provide ϵ differential privacy. Let D_i be arbitrary disjoint subsets of the input domain D. The sequence of $M_i(X \cap D_i)$ provides ϵ -differential privacy.

6

<text><list-item><list-item><list-item><list-item><table-row><table-container>

PURPOSE Definition: Partitioned Preprocessing Choose a random partition {*d*} of *|D*| into positive integers, then partition *D* into pieces *D_i* of size *d_i* uniformly at random. We call *U_{i=1}ⁿ A(D_i)* a **partitioned preprocessing** dataset. Works for parallel composition techniques Including *e*-DP under substitution Potentially stronger against some types of attacks on generalization *A* (a) deFinetti Attack resistance arguments hold for non-parallel decomposable techniques E.g., global recoding (and potential utility benefits)

Proof Idea

- For partitions without the changed tuple, $D_{\pi,k}=D'_{\pi,k}$, so $P(\mathcal{A}_k(D_{\pi,k}) \in T_k) = P(\mathcal{A}_k(D'_{\pi,k}) \in T_k)$
- The changed partition *j* has a difference bounded by ε_j
 This bounds the total difference between A(D) and A(D')

PURDUE More Differences between Deletion and Substitution • What is the sensitivity of - |D|? • Deletion: 1 • Substitution: 0 - Average • Amplification (Li, Qardaji, Su '12) - Defined under deletion Is there a difference in the privacy semantics?

		F	Partitioned Preprocessing: Potential Utility Benefit						
Age	Gender	Zip	Cancer	Age	Gender	Zip	Cancer		
40-50	Male	92***	Yes	40-60	Male	925**	No		
40-50	Male	92***	No	40-60	Male	925**	No		
40-50	Male	92***	No	40-60	Male	925**	Yes		
40-50	Male	92***	Yes	40-60	Male	925**	No		
– "C • Eac – D	Dutliers" or h partitio	nly force on satisf entifying	cal recodir over-genera fies global which partit	alization recodin	g				

21

Partitioned Preprocessing: PURDUE Example Semantic Attacks: Determine likely distribution of sensitive values in an equivalence class Individual may belong to many equivalence classes - Attack gives information on one equivalence class • Attack increases $Pr(x.S = S_i)$ by only a (weighted) proportion of the increase in probability for that class Underlying % of Population k=20 Visible Distribution Partitions Partitions of Partitions 20 6, 5, 6, 1, 1, .244, .30, .295, Average 6+ 25,000 Suppressed .062, .048, .024 1 size Class Suppress: .016 24

PURDUE INIVERSITY.			Part	Partitioned Preprocessing: Example										
Original Record:														
ZIP	YOB	GEN	VISIT	HOSPITAL	COMP	CAT	Possible	Matches						
43125	1967	F	2005-08-31	Riverside Methodist	Mosquito Bite	Other		7,916						
Anonym	nized	d Ver	sions:											
ZIP	YO	YOB Visit D		e	Hospital			Matches						
43000 - 43240	40 1940 - 1979		9 2004-01-	01 - 2005-12-31	Riverside Methodist Hospital			2520						
43068 - 43156	43068 - 43156 1940		9 2004-01-	01 - 2005-12-31	Medium & Large Hospita		itals	3497						
43068 - 43156	68 - 43156 1900 - 1992		2 2004-01-	01 - 2005-12-31	Riverside Methodist Hospital			1068						
43119 - 43156	5 194	0 - 197	9 2004-01-	01 - 2008-02-31	Large Hospitals			421						
43119 - 43156	156 1900 - 1992		2 2005-07-	01 - 2005-12-31	Medium & Large Hospitals			169						
43068 - 43156	5 190	0 - 1992	2 2004-01-	01 - 2005-12-31	Large Hospitals			²⁵ 241						

<image><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>