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Private aggregation
f(x1, …, xN)x1 x3

xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 
1000s of submissions per second
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Contributions

1. Secret-shared non-interactive proofs (SNIPs) 
– Client proves that its encoded submission is well-formed  
– We do not need the power of traditional “heavy” crypto tools 
 

2. Aggregatable encodings  
Can compute sums privately  ⟹   Can compute f(·) privately 

    …for many f’s of interest 

See the paper



Related systems
• Additively homomorphic encryption  

P4P (2010), Private stream aggregation (2011), Grid aggregation (2011), 
PDDP (2012), SplitX (2013), PrivEx (2014), PrivCount (2016), 
Succinct sketches (2016), …

• Multi-party computation [GMW87], [BGW88] 
FairPlay (2004), Brickell-Shmatikov (2006), FairplayMP (2008), SEPIA (2010), 
Private matrix factorization (2013), JustGarble (2013), …

• Anonymous credentials/tokens 
VPriv (2009), PrivStats (2011), ANONIZE (2014), …

• Randomized response [W65], [DMNS06], [D06] 
RAPPOR (2014, 2016), …

Prio is the first system to achieve  
exact correctness, privacy, robustness, efficiency.
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Warm-up: Computing private sums
• Every device i holds a value xi 

• We want to compute  
f(x1, …, xN) = x1 + … + xN     

without learning any users’ private value xi.

 
Example: Privately measuring traffic congestion.

xi = 1  if user i is on the Bay Bridge  
= 0 otherwise

The sum x1 + … + xN yields the number of app users 
on the Bay Bridge.
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SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values 

and learn nothing else.

Private sums: 
A “straw-man” 
scheme

SA + SB + SC = 15 + -10 + …  

Learn that three phones 
are on the Bay Bridge—
don’t know which three
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Computing private sums
Exact correctness: If everyone follows the protocol, 
servers compute the sum of all xis.

Privacy: Any proper subset of the servers learns 
nothing but the sum of the xis.

Efficiency: Follows by inspection.

Robustness: ???
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F

Private sums: 
A “straw-man” 
scheme

garbage garbage garbage

Users have 
incentives to cheat

Typical defenses 
(NIZKs) are costly

A single bad client 
can undetectably 
corrupt the sum
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Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

In this example, the servers want to 
ensure that their shares sum to 0 or 1  

…without learning x.

x = 1



Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc



Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc

For our running example: 
  Valid(x) = “x ∈ {0,1}”



Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc



Server A Server B Server C

0 0 0

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc



Server A Server B Server C

0 0 0

πa

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc



Server A Server B Server C

0 0 0

πb
πa

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc



Server A Server B Server C

0 0 0

πb
πa

πc

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc



xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,
Servers gossip

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0Ok. Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0Ok. Ok. Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



Server A Server B Server C

xa xb xc

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0Fail Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0Fail Fail Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1



xa xb xc

Server A Server B Server C

0 0 0X X X
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client submissions
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the aggregate statistic by +/- 1, at most 
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We need a proof system

A “valid” x 
xa

xb

xc

Prover Verifiers

πa, πb, πc

Completeness. Honest prover convinces honest verifiers.

Soundness. Dishonest prover rarely convinces 
honest verifiers.

Zero knowledge. Any proper subset of the verifiers learns  
nothing about x, except that x is valid.
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Servers check that the transcripts 
are valid and consistent.

Checking a transcript is 
much easier than generating it!
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• If x is valid, Da + Db + Dc = 0
• If x is invalid,  Da + Db + Dc ≠ 0 with high probability
 
Servers run lightweight multi-party computation to check that  

Da + Db + Dc = 0
If so, servers accept x is valid.

Server A Server B Server C
How SNIPs work

Da Db Dc

O(1) O(1)

O(1)

[BFO12]
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From sums to more complex aggregates
If you can compute private sums, you can compute many 
other interesting aggregates
• Average
• Variance
• Standard deviation
• Most popular (approx)
• “Heavy hitters” (approx)
• Min and max (approx)
• Quality of arbitrary regression model (R2)
• Least-squares regression
• Stochastic gradient descent   [Bonawitz et al. 2016]

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …
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Conclusions
• Wholesale collection of sensitive user data puts our 

security at risk.
• Prio is the first system for aggregation that provides:

– exact correctness,
– privacy,
– robustness, and
– efficiency.

• To do so, Prio uses SNIPs and aggregatable encodings.
• These techniques together bring private aggregation 

closer to practical.

Thank you!
Henry Corrigan-Gibbs

henrycg@cs.stanford.edu
 
https://crypto.stanford.edu/prio/




