
Prio: Private, Robust, and Efficient
Computation of Aggregate Statistics

Henry Corrigan-Gibbs and Dan Boneh  
Stanford University

Appeared at NSDI 2017

Twitter usage

Bl
oo

d
pr

es
su

re

Today: Non-private  
aggregation

StressTracker

Twitter usage

Bl
oo

d
pr

es
su

re

Today: Non-private  
aggregation

Each user has a  
private data point

StressTracker

StressTracker
Bl

oo
d

pr
es

su
re

Today: Non-private  
aggregation

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

Today: Non-private  
aggregation

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

B(
T)

=
c1
· T

+ c0

Today: Non-private  
aggregation

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

B(
T)

=
c1
· T

+ c0

Today: Non-private  
aggregation

The app provider learned
more than it needed

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

Today: Non-private  
aggregation

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This work: 
Private aggregation

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This work: 
Private aggregation

Clients send an  
encrypted share of their
data to each aggregator

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This work: 
Private aggregation

Clients send an  
encrypted share of their
data to each aggregator

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This work: 
Private aggregation

Clients send an  
encrypted share of their
data to each aggregator

Twitter usage

Bl
oo

d
pr

es
su

re

The aggregators 
learn no private client data

This work: 
Private aggregation

B(
T)

=
c1
· T

+ c0

StressTrackerApp store

Twitter usage

Private aggregation
f(x1, …, xN)x1 x3

xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 
1000s of submissions per second

Bl
oo

d
pr

es
su

re
200

100,000,000

StressTrackerApp store

Twitter usage

Bl
oo

d
pr

es
su

re
200

100,000,000

StressTrackerApp store

Twitter usage

Private aggregation
f(x1, …, xN)x1 xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 

Prio is the first system to achieve all four.

x3

Private aggregation
f(x1, …, xN)x1 xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 

Prio is the first system to achieve all four.

…and Prio supports a wide
range of aggregation  

functions f(·)

x3

Private aggregation
f(x1, …, xN)x1 xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 

Prio is the first system to achieve all four.

x3

Contributions

1. Secret-shared non-interactive proofs (SNIPs) 
– Client proves that its encoded submission is well-formed  
– We do not need the power of traditional “heavy” crypto tools 
 

2. Aggregatable encodings  
Can compute sums privately ⟹ Can compute f(·) privately 

 …for many f’s of interest 

Contributions

1. Secret-shared non-interactive proofs (SNIPs) 
– Client proves that its encoded submission is well-formed  
– We do not need the power of traditional “heavy” crypto tools 
 

2. Aggregatable encodings  
Can compute sums privately ⟹ Can compute f(·) privately 

 …for many f’s of interest 

See the paper

Related systems
• Additively homomorphic encryption  

P4P (2010), Private stream aggregation (2011), Grid aggregation (2011), 
PDDP (2012), SplitX (2013), PrivEx (2014), PrivCount (2016), 
Succinct sketches (2016), …

• Multi-party computation [GMW87], [BGW88] 
FairPlay (2004), Brickell-Shmatikov (2006), FairplayMP (2008), SEPIA (2010), 
Private matrix factorization (2013), JustGarble (2013), …

• Anonymous credentials/tokens 
VPriv (2009), PrivStats (2011), ANONIZE (2014), …

• Randomized response [W65], [DMNS06], [D06] 
RAPPOR (2014, 2016), …

Prio is the first system to achieve  
exact correctness, privacy, robustness, efficiency.

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Warm-up: Computing private sums

Warm-up: Computing private sums
• Every device i holds a value xi

• We want to compute  
f(x1, …, xN) = x1 + … + xN  

without learning any users’ private value xi.

Warm-up: Computing private sums
• Every device i holds a value xi

• We want to compute  
f(x1, …, xN) = x1 + … + xN  

without learning any users’ private value xi.

 
Example: Privately measuring traffic congestion.

xi = 1 if user i is on the Bay Bridge  
= 0 otherwise

The sum x1 + … + xN yields the number of app users 
on the Bay Bridge.

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Imagine: app store and
app

StressTracker

App store App

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Imagine: app store and
app

StressTracker

App store App

Imagine: app store and
app

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Imagine: app store and
app

StressTracker

App store App

Imagine: app store and
app

Spain Germany Iceland

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

Need all three shares to recover the shared value.

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

Need all three shares to recover the shared value.

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

15 -12 -2

Need all three shares to recover the shared value.

Server A Server B Server C

0 0 0

Private sums: 
A “straw-man”
scheme

15 -12 -2

1

Server A Server B Server C

15 -12 -2

Private sums: 
A “straw-man”
scheme

1

Server A Server B Server C

0

Private sums: 
A “straw-man”
scheme

15 -12 -2

Server A Server B Server C

0

Private sums: 
A “straw-man”
scheme

15 -12 -2

= (-10) + 7 + 3

Server A Server B Server C

0

Private sums: 
A “straw-man”
scheme

15 -12 -2

= (-10) + 7 + 3

Server A Server B Server C

0

-10

Private sums: 
A “straw-man”
scheme

15 -12 -2

7 3

= (-10) + 7 + 3

Server A Server B Server C

0

-10

Private sums: 
A “straw-man”
scheme

15 -12 -2

7 3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

15 -12 -2
7 3-10

0

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

15-10 -12+7 -2+3

0

Server A Server B Server C

…

Private sums: 
A “straw-man”
scheme

15-10+… -12+7+… -2+3+…

Server A Server B Server C

SB SCSA

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

SB SCSA

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values

and learn nothing else.

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values

and learn nothing else.

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values

and learn nothing else.

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Learn that three phones
are on the Bay Bridge—
don’t know which three

Computing private sums

Computing private sums
Exact correctness: If everyone follows the protocol,
servers compute the sum of all xis.

Privacy: Any proper subset of the servers learns
nothing but the sum of the xis.

Efficiency: Follows by inspection.

Computing private sums
Exact correctness: If everyone follows the protocol,
servers compute the sum of all xis.

Privacy: Any proper subset of the servers learns
nothing but the sum of the xis.

Efficiency: Follows by inspection.

Robustness: ???

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

x

15-10 -12+7 -2+3

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

x
x is supposed to be

a 0/1 value

15-10 -12+7 -2+3

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

x

15-10 -12+7 -2+3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

15-10 -12+7 -2+3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

An evil client needn’t
follow the rules!

15-10 -12+7 -2+3

+ + = 21

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

An evil client needn’t
follow the rules!

10 4 7

15-10 -12+7 -2+3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

10 4 7
15-10 -12+7 -2+3

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

garbage garbage garbage

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

garbage garbage garbage

Users have
incentives to cheat

Typical defenses 
(NIZKs) are costly

A single bad client
can undetectably
corrupt the sum

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Server A Server B Server C

0 0 0

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

+ () + () = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

In this example, the servers want to
ensure that their shares sum to 0 or 1  

…without learning x.

x = 1

Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc

Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc

For our running example: 
 Valid(x) = “x ∈ {0,1}”

Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc

Server A Server B Server C

0 0 0

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πb
πa

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πb
πa

πc

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,
Servers gossip

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Ok. Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Ok. Ok. Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

xa xb xc

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Fail Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Fail Fail Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0X X X

• Prio servers detect and reject malformed
client submissions

• In this example, each client can influence
the aggregate statistic by +/- 1, at most

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

We need a proof system

A “valid” x
xa

xb

xc

Prover Verifiers

πa, πb, πc

We need a proof system

A “valid” x
xa

xb

xc

Prover Verifiers

πa, πb, πc

Valid(x) holds?

We need a proof system

A “valid” x
xa

xb

xc

Prover Verifiers

πa, πb, πc

We need a proof system

A “valid” x
xa

xb

xc

Prover Verifiers

πa, πb, πc

Completeness. Honest prover convinces honest verifiers.

Soundness. Dishonest prover rarely convinces 
honest verifiers.

Zero knowledge. Any proper subset of the verifiers learns  
nothing about x, except that x is valid.

Traditional techniques

• Non-interactive proofs in ROM 
[FS86], [BFM88], [BDMP91], [CP92], [CS97], [M00], …

• zkSNARKs and KOE-based proofs 
[G10], [L12], [GGPR13], [BCGTV13], [PGHR13], …

• Multi-party computation  
[Y82], [GMW87], [BGW88], [CCD88], [CLOS02], [DPSZ12], [DKLPSS13], …

 
 

In our setting, SNIPs are a more efficient solution.

Traditional techniques

• Non-interactive proofs in ROM 
[FS86], [BFM88], [BDMP91], [CP92], [CS97], [M00], …

• zkSNARKs and KOE-based proofs 
[G10], [L12], [GGPR13], [BCGTV13], [PGHR13], …

• Multi-party computation  
[Y82], [GMW87], [BGW88], [CCD88], [CLOS02], [DPSZ12], [DKLPSS13], …

 
 

In our setting, SNIPs are a more efficient solution.

xa xb xc

Server A Server B Server C
How SNIPs work

xa xb xc

Server A Server B Server C
How SNIPs work

Could run secure
multiparty computation
to check that Valid(x) = 1. 

[GMW87], [BGW88]

xa xb xc

Server A Server B Server C
How SNIPs work

Could run secure
multiparty computation
to check that Valid(x) = 1. 

[GMW87], [BGW88]

xa xb xc

Server A Server B Server C
How SNIPs work

Server A Server B Server C
How SNIPs work

x

xa xb xc

Server A Server B Server C
How SNIPs work

x

Idea: Client generates the
transcripts that servers
would have observed in a
multi-party computation

See also [IKOS07]

xa

xb

xc

xa xb xc

Server A Server B Server C
How SNIPs work

x

Idea: Client generates the
transcripts that servers
would have observed in a
multi-party computation

See also [IKOS07]

xa

xb

xc

xa xb xc

Server A Server B Server C
How SNIPs work

x
xa

xb

xc

xa xb xc

Server A Server B Server C
How SNIPs work

x

xa xb xc

Server A Server B Server C
How SNIPs work

x

Servers check that the transcripts
are valid and consistent.

xa xb xc

Server A Server B Server C
How SNIPs work

x

Servers check that the transcripts
are valid and consistent.

πa πb πcxa xb xc

Server A Server B Server C
How SNIPs work

x

Servers check that the transcripts
are valid and consistent.

Checking a transcript is 
much easier than generating it!

πa πb πcxa xb xc

Server A Server B Server C
How SNIPs work

πa πb πcxa xb xc

Server A Server B Server C
How SNIPs work

πa πb πc

Da Db Dc

xa xb xc

Server A Server B Server C
How SNIPs work

πa πb πc

Da Db Dc

xa xb xc

“Randomized digest” 
of the transcript

Server A Server B Server C
How SNIPs work

πa πb πc

Da Db Dc

xa xb xc

Server A Server B Server C
How SNIPs work

Da Db Dc

[BFO12]

Server A Server B Server C
How SNIPs work

Da Db Dc

[BFO12]

• If x is valid, Da + Db + Dc = 0
• If x is invalid, Da + Db + Dc ≠ 0 with high probability
 
Servers run lightweight multi-party computation to check that  

Da + Db + Dc = 0
If so, servers accept x is valid.

Server A Server B Server C
How SNIPs work

Da Db Dc

[BFO12]

• If x is valid, Da + Db + Dc = 0
• If x is invalid, Da + Db + Dc ≠ 0 with high probability
 
Servers run lightweight multi-party computation to check that  

Da + Db + Dc = 0
If so, servers accept x is valid.

Server A Server B Server C
How SNIPs work

Da Db Dc

O(1) O(1)

O(1)

[BFO12]

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server[FS86], [CP92], [CS97], …

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

This work: SNIPs 0 0 Θ(M) O(1) 1x

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

This work: SNIPs 0 0 Θ(M) O(1) 1x

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

For specific Valid() circuits,
it is possible to eliminate

this cost [BGI16]

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

This work: SNIPs 0 0 Θ(M) O(1) 1x

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

[CLOS02], [DPSZ12], …

From sums to more complex aggregates
If you can compute private sums, you can compute many
other interesting aggregates
• Average
• Variance
• Standard deviation
• Most popular (approx)
• “Heavy hitters” (approx)
• Min and max (approx)
• Quality of arbitrary regression model (R2)
• Least-squares regression
• Stochastic gradient descent [Bonawitz et al. 2016]

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

E.g., for privately measuring
telemetry data.

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

one server

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

one server

five servers

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

NIZK

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

Prio

NIZK

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

Prio

NIZK

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

Prio

NIZK

50x performance
improvement

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

No robustness

Prio

NIZK

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

No robustness

Prio

NIZK

No privacy

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

No robustness

Prio

NIZK

No privacy

Five-server cluster in five
Amazon data centers

Within 10x of 
no privacy

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Discussion: Real-world considerations

Real-world considerations: Technical

Every company we spoke with said:
• Server resources are cheap, client resources are not
• Client bandwidth usage is the important quantity to minimize
• Need some defense against faulty/disruptive clients
• Privately collecting popular URLs is the interesting application  

– Existing solutions are good, but not great

Areas of vehement disagreement between companies:
• Non-colluding servers—realistic?
• Does SGX obviate the need for these cryptographic protocols?  

Real-world considerations: Technical

Every company we spoke with said:
• Server resources are cheap, client resources are not
• Client bandwidth usage is the important quantity to minimize
• Need some defense against faulty/disruptive clients
• Privately collecting popular URLs is the interesting application  

– Existing solutions are good, but not great

Areas of vehement disagreement between companies:
• Non-colluding servers—realistic?
• Does SGX obviate the need for these cryptographic protocols?  

Real-world considerations: Non-technical

Real-world considerations: Non-technical

“If we’re already collecting _________ without privacy protections,
why bother adding privacy protections?”
– Pitch: Collect new statistics that you couldn’t collect before  

“We don’t yet know what aggregates we want to collect.”
– Pitch: It’s possible to retain some flexibility 

(e.g., can later break out statistics by geographic area) 

Real-world considerations: Non-technical

“If we’re already collecting _________ without privacy protections,
why bother adding privacy protections?”
– Pitch: Collect new statistics that you couldn’t collect before  

“We don’t yet know what aggregates we want to collect.”
– Pitch: It’s possible to retain some flexibility 

(e.g., can later break out statistics by geographic area) 

Real-world considerations: Non-technical

“If we’re already collecting _________ without privacy protections,
why bother adding privacy protections?”
– Pitch: Collect new statistics that you couldn’t collect before  

“We don’t yet know what aggregates we want to collect.”
– Pitch: It’s possible to retain some flexibility 

(e.g., can later break out statistics by geographic area) 

“Please sign this stack of non-disclosure agreements…

Real-world considerations: Non-technical

“If we’re already collecting _________ without privacy protections,
why bother adding privacy protections?”
– Pitch: Collect new statistics that you couldn’t collect before  

“We don’t yet know what aggregates we want to collect.”
– Pitch: It’s possible to retain some flexibility 

(e.g., can later break out statistics by geographic area) 

“Please sign this stack of non-disclosure agreements…
and before we show you the non-disclosure agreements…

Real-world considerations: Non-technical

“If we’re already collecting _________ without privacy protections,
why bother adding privacy protections?”
– Pitch: Collect new statistics that you couldn’t collect before  

“We don’t yet know what aggregates we want to collect.”
– Pitch: It’s possible to retain some flexibility 

(e.g., can later break out statistics by geographic area) 

“Please sign this stack of non-disclosure agreements…
and before we show you the non-disclosure agreements…
you have to sign a preliminary non-disclosure agreement.”

Real-world considerations: Non-technical

“If we’re already collecting _________ without privacy protections,
why bother adding privacy protections?”
– Pitch: Collect new statistics that you couldn’t collect before  

“We don’t yet know what aggregates we want to collect.”
– Pitch: It’s possible to retain some flexibility 

(e.g., can later break out statistics by geographic area) 

“Please sign this stack of non-disclosure agreements…
and before we show you the non-disclosure agreements…
you have to sign a preliminary non-disclosure agreement.”

– ???

StressTracker
Bl

oo
d

pr
es

su
re

Today

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

Today

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

With Prio…

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

With Prio…

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

With Prio…

Twitter usage

Bl
oo

d
pr

es
su

re

With Prio…

B(
T)

=
c1
· T

+ c0

StressTrackerApp store

Twitter usage

Conclusions
• Wholesale collection of sensitive user data puts our

security at risk.
• Prio is the first system for aggregation that provides:

– exact correctness,
– privacy,
– robustness, and
– efficiency.

• To do so, Prio uses SNIPs and aggregatable encodings.
• These techniques together bring private aggregation

closer to practical.

Thank you!
Henry Corrigan-Gibbs

henrycg@cs.stanford.edu
 
https://crypto.stanford.edu/prio/

