Towards Practical Differential Privacy for SQL Queries

Noah Johnson, Joseph P. Near, Dawn Song UC Berkeley

Outline

- 1. **Discovering** real-world requirements
- 2. Elastic sensitivity & calculating sensitivity of SQL queries
- 3. Our experience: lessons & challenges

Part 1 Discovering Real-world Requirements

Our collaboration with Uber

- Uber's goal: deploy differential privacy
 - Internally (for some analysts)
 - Externally (for partners & regulators)
- Our goals
 - Explore real-world requirements for differential privacy
 - Build open-source systems

Previous work on differential privacy for analytics: insufficient for real-world applications

Previous work: either...

- Theoretical (does not explore practical applications)
- Targets specialized analytics tasks
 - Google RAPPOR: browsing statistics
 - Apple: keyboard & emoji trends

Result: little use in real-world analytics environments

• No practical, scalable systems for DP in analytics

Empirical study: understanding real-world data analytics

- Conducted large-scale empirical study of real-world analytics queries
- Dataset: 8 million SQL queries written by data analysts at Uber
 - Covers wide range of use cases: fraud detection, marketing, business metrics, etc.
- Goal: identify **DP requirements** for **real-world workload**

Empirical study results

The most common aggregations are **COUNT**, **SUM**, **AVG**, **MAX**, and **MIN**:

Most existing DP mechanisms support only counting queries

Empirical study results

62% of queries use JOIN, and some queries use many joins:

Very few existing mechanisms support join

Empirical study results

Many different databases in use

Existing approaches require modifying/replacing DB

Part 2 Elastic Sensitivity & Analyzing SQL Queries

Global sensitivity vs. local sensitivity for joins

Global sensitivity

- Unbounded for queries with joins
 - Single added join key in one table could match an unbounded number of keys in another

Local sensitivity

- Bounded for queries with joins
 - Data in true database bounds number of possible new matches
- Computationally expensive
 - Must consider every possible change to true database

Elastic sensitivity

Upper bound on local sensitivity

• Efficient, compositional calculation from query

Supports queries with equijoins

- Insight: increase in size of joined relation tightly bounded by multiplicities of join keys
- Key multiplicities **queried from database** in advance

Supports more than just count

- Works well for COUNT
- Works less well for SUM

Example: elastic sensitivity of join

SELECT COUNT(*) FROM A **JOIN** B ON A.k = B.k

Duplicate join key 1 causes **duplicate rows** in joined relation

Maximum change in COUNT: add another 1 to A

Local sensitivity = 2

In general: local sensitivity bounded by maximum multiplicities of k in A and B

A static analysis framework for SQL queries

Built a practical framework for analyzing real-world queries

Challenge: these queries are complex

Our framework:

- Solve complexity once
- Enable many different analyses

```
daily as (
  date_trunc('{{interval}}', request_at)::date as day
  .city_id as city_id
  ,city_name
   , count(d
                   client_uuid) as total_eaters
                   case when promo_trip = 1 then client_uuid end) as total_eaters_on_promo
case when first_trip = 1 then client_uuid end) as first_eaters
   .count(
  ,count(
                               first_trip = 1 and promo_trip = 1 then client_uuid end) as first_eaters_on_promo
   .count(
      e.client_uuid
       ,e.request_at
      ,e.uuid
       ,e.city_id
       ,c.city_name
                 en e.rank = 1 then 1 else 0 end as first_trip
       ,e.promo_trip
                    t.client_uuid
                    ,t.request_timestamp_local as request_at
                    ,t.uuid
                    ,t.city_id
                    ,ronk() over (partition by t.client_uuid order by t.request_timestamp_local asc) as rank
se when ap.trip_uuid is not null then 1 else 0 end as promo_trip
            From fact_trip t
                 dim_client cl on t.client_uuid = cl.user_uuid and cl.is_uber_email = 'False'
                 join analytics_promotion ap on t.uuid = ap.trip_uuid
               t.city_id in ({{city_ids}})
              d t.vehicle_view_id in ({{eats_vvid}})
              d t.status = 'completed'
             nd t.request_timestamp_local between '2014-08-01' and '{{end}}'
               oup by 1,2,3,4,6
      ) e
  join dim_city c on e.city_id = c.city_id and c.city_id in ({{city_ids}})
     d e.request_at between '{{start}}' and '{{end}}'
  ) all_by_client
 oup by 1, 2, 3
trips taken in the past 30 days
130_daily as (
  ,city_id
  .count(di
              tinct (case when l30_trips >= 1 then client_uuid end)) as oneplus
```

Differential privacy for SQL queries using Elastic Sensitivity

Empirical evaluation results

Dataset: 9862 Uber queries, run on production database

Part 3 Lessons Learned & Future Challenges

Value of close collaboration

- Opportunity to examine real use cases
 - Dataset of queries: what analysts actually *did*
- Insight into **privacy goals** in the real world
 - e.g. concern about external *and* internal sharing
- Discover requirements & infrastructure restrictions
 - e.g. we *really can't* modify the database engine

Challenges of close collaboration

- Analysts skeptical about need for privacy protections
 - Concerned about utility
 - Believe privacy is already protected
 - e.g. machine learning teams believe models protect privacy
- Privacy team unsure of privacy goals
 - Belief that de-identification is enough, or
 - Differential privacy seen as a silver bullet
 - Would like to "have differential privacy" all in one go
- Infrastructure teams want a one-size-fits-all solution
 - Multiple solutions = more work

Conclusions

- Perfect deployment will take time, experimentation
 - Early versions will be limited
 - There will be bugs
- We can accelerate the process
 - Encouragement
 - Constructive engagement
- We should encourage transparency
 - Secrecy encourages bugs, discourages adoption

https://github.com/uber/sql-differential-privacy

https://arxiv.org/abs/1706.09479

jnear@berkeley.edu

Thank you!