
Towards	Practical	
Differential	Privacy	for	

SQL	Queries
Noah	Johnson,	Joseph	P.	Near,	Dawn	Song

UC	Berkeley

Outline

1. Discovering	real-world	requirements

2. Elastic	sensitivity	&	calculating	sensitivity	of	SQL	queries

3. Our	experience:	lessons	&	challenges

Part	1
Discovering	Real-world	
Requirements

Our	collaboration	with	Uber

• Uber’s	goal:	deploy	differential	privacy
• Internally	(for	some	analysts)
• Externally	(for	partners	&	regulators)

• Our	goals
• Explore	real-world	requirements	for	differential	privacy
• Build	open-source	systems

Previous	work	on	differential	privacy	for	analytics:	
insufficient	for	real-world	applications

Previous	work:	either…
• Theoretical	(does	not	explore	practical	applications)
• Targets	specialized	analytics	tasks

• Google	RAPPOR:	browsing	statistics
• Apple:	keyboard	&	emoji	trends

Result: little	use	in	real-world	analytics	environments
• No	practical,	scalable	systems	for	DP	in	analytics

Empirical	study:	understanding	real-world	data	analytics

• Conducted	large-scale	empirical	study of	real-world	
analytics	queries

• Dataset:	8	million	SQL	queries	written	by	data	analysts	at	
Uber
• Covers	wide	range	of	use	cases:	fraud	detection,	marketing,	
business	metrics,	etc.

• Goal:	identify	DP	requirements	for real-world	workload

Empirical	study	results

The	most	common	aggregations	are	
COUNT,	SUM,	AVG,	MAX,	and	MIN:

0%
10%

20%

30%
40%

COUNT SUM AVG MAX MIN MEDIAN STDDEV
0.1%0.2%3.8%4.6%6.5%

22.6%

39.3%

èMost	existing	DP	mechanisms	support	only	counting	queries

Jo
in

s
in

 q
ue

ry

95

53

33

16

0

queries
1 1000 1000000

62%	of	queries	use	JOIN,	and	some	queries	use	many	joins:

Empirical	study	results

è Very	few	existing	mechanisms	support	join

Empirical	study	results

è Existing	approaches	require	modifying/replacing	DB

qu

er
ie

s

1

1000

1000000

Vertica Postgres MySQL Hive Presto Other

29,38739,52181,66094,206
1,494,680

6,362,631

Many	different	databases	in	use

Part	2
Elastic	Sensitivity	&	
Analyzing	SQL	Queries

Global	sensitivity	vs.	local	sensitivity	for	joins

Global	sensitivity
• Unbounded for	queries	with	joins

• Single	added	join	key	in	one	table	could	match	an	unbounded	 number	
of	keys	in	another

Local	sensitivity
• Bounded for	queries	with	joins

• Data	in	true	database	bounds	 number	of	possible	new	matches
• Computationally	expensive

• Must	consider	every	possible	change	to	true	database

Elastic	sensitivity

Upper	bound	on	local	sensitivity	
• Efficient,	compositional	calculation	from	query

Supports	queries	with	equijoins
• Insight:	increase	in	size	of	joined	relation	tightly	bounded	by	
multiplicities	of	join	keys

• Key	multiplicities	queried	from	database	in	advance

Supports	more	than	just	count
• Works	well	for	COUNT
• Works	less	well	for	SUM

Example:	elastic	sensitivity	of	join

SELECT COUNT(*)	FROM A	JOIN B	ON	A.k =	B.k

k v
1 a

A

k
1
1

B

k v
1 a
1 a

A	JOIN	B

Duplicate	join	key	1	causes
duplicate	rows	in	joined	
relation

k v
1 a
1 b

A

k
1
1

B

k v
1 a
1 a
1 b
1 b

A	JOIN	B

Maximum	change	in	COUNT:	
add	another	1	to	A

Local	sensitivity	=	2

In	general:	local	sensitivity	
bounded	by	maximum	
multiplicities of	k	in	A	and	B

A	static	analysis	framework	for	SQL	queries

Built	a	practical	framework	for	
analyzing	real-world	queries

Challenge:	these	queries	are	
complex

Our	framework:
• Solve	complexity	once
• Enable	many	different	analyses

Analysis	framework

Elastic	sensitivity	analysis

Database

SQL
Query

Sensitive	results

Output	
perturbation

Elastic	
sensitivity

Differentially	private
results

Differential	privacy	for	SQL	queries	using	Elastic	
Sensitivity

Empirical	evaluation	results

Dataset:	9862	Uber	queries,	run	on	production	database

Part	3
Lessons	Learned	&	
Future	Challenges

Value	of	close	collaboration

• Opportunity	to	examine	real	use	cases
• Dataset	of	queries:	what	analysts	actually	did

• Insight	into	privacy	goals	in	the	real	world
• e.g.	concern	about	external	and internal	sharing

• Discover	requirements&	infrastructure	restrictions
• e.g.	we	really	can’t modify	the	database	engine

Challenges	of	close	collaboration

• Analysts skeptical	about	need	for	privacy	protections
• Concerned	about	utility
• Believe	privacy	is	already	protected
• e.g.	machine	learning	teams	believe	models	protect	privacy

• Privacy	team	unsure	of	privacy	goals
• Belief	that	de-identification	is	enough,	or
• Differential	privacy	seen	as	a	silver	bullet
• Would	like	to	“have	differential	privacy”	all	in	one	go

• Infrastructure	teams	want	a	one-size-fits-all	solution
• Multiple	solutions	=	more	work

Conclusions

• Perfect	deployment	will	take	time,	experimentation
• Early	versions	will	be	limited
• There	will	be	bugs

• We	can	accelerate the	process
• Encouragement
• Constructive	engagement

• We	should	encourage	transparency
• Secrecy	encourages	bugs,	discourages	adoption

https://github.com/uber/sql-differential-privacy

https://arxiv.org/abs/1706.09479

jnear@berkeley.edu Thank you!

