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Part 1
Discovering Real-world
Requirements



Our collaboration with Uber

* Uber’s goal: deploy differential privacy
* Internally (for some analysts)
* Externally (for partners & regulators)

* Our goals
* Explorereal-world requirements for differential privacy
* Build open-source systems



Previous work on differential privacy for analytics:
insufficient for real-world applications

Previous work: either...
* Theoretical (does not explore practical applications)

* Targets specialized analytics tasks
* Google RAPPOR: browsing statistics
e Apple: keyboard & emoji trends

Result: little use in real-world analytics environments
* No practical, scalable systems for DP in analytics



Empirical study: understanding real-world data analytics

* Conducted large-scale empirical study of real-world
analytics queries

* Dataset: 8 million SQL queries written by data analysts at
Uber

* Coverswide range of use cases: fraud detection, marketing,
business metrics, etc.

e Goal: identify DP requirements for real-world workload



Empirical study results

The most common aggregations are
COUNT, SUM, AVG, MAX, and MIN:
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=» Most existing DP mechanisms support only counting queries



Empirical study results

62% of queries use JOIN, and some queries use many joins:
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=» Very few existing mechanisms support join



Empirical study results

Many different databases in use
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=» Existing approaches require modifying/replacing DB



Part 2
Elastic Sensitivity &
Analyzing SQL Queries



Global sensitivity vs. local sensitivity for joins

Global sensitivity

* Unbounded for queries with joins

* Single added join key in one table could match an unbounded number
of keys in another

Local sensitivity
* Bounded for queries with joins
e Datain true database bounds number of possible new matches
 Computationally expensive
* Must consider every possible change to true database



Elastic sensitivity

Upper bound on local sensitivity
* Efficient, compositional calculationfrom query

Supports queries with equijoins

* Insight: increasein size of joined relation tightly bounded by
multiplicities of join keys

* Key multiplicities queried from database in advance
Supports more than just count

e Works well for COUNT
 Works less well for SUM



Example: elastic sensitivity of join

SELECT COUNT(*) FROM A JOIN B ON A.k =B.k

kvl
1 a 1

A JOIN B

1 a
1 a
1b
1b

A JOIN B

Duplicate join key 1 causes
duplicate rowsin joined
relation

Maximum change in COUNT:
add another 1 to A

Local sensitivity = 2

In general: local sensitivity
bounded by maximum
multiplicities of kin Aand B



A static analysis framework for SQL queries
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Differential privacy for SQL queries using Elastic
Sensitivity
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Empirical evaluation results
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Dataset: 9862 Uber queries, run on production database



Part 3
Lessons Learned &
Future Challenges



Value of close collaboration

* Opportunityto examine real use cases
* Datasetof queries: what analystsactually did

* Insight into privacy goals in the real world
e e.g. concern about external and internal sharing

* Discover requirements & infrastructure restrictions
* e.g. we really can’t modify the database engine



Challenges of close collaboration

* Analysts skeptical about need for privacy protections
* Concerned about utility
* Believe privacy is already protected
* e.g. machinelearningteams believe models protect privacy

* Privacy team unsure of privacy goals
» Belief that de-identificationis enough, or
» Differential privacy seen as a silver bullet
* Would like to “have differential privacy” allin one go

* Infrastructure teams want a one-size-fits-all solution
* Multiple solutions=more work



Conclusions

e Perfect deploymentwill take time, experimentation
e Earlyversions will be limited
 Therewill be bugs

* We can accelerate the process
* Encouragement
* Constructive engagement

* We should encourage transparency
» Secrecy encourages bugs, discourages adoption

6? https://github.com/uber/sql-differential-privacy
I:D https://arxiv.org/abs/1706.09479

& jnear@berkeley.edu Thank you!



