Towards Practical
Differential Privacy for
SQL Queries

Noah Johnson, Joseph P. Near, Dawn Song
UC Berkeley

Outline

1. Discovering real-world requirements
2. Elasticsensitivity & calculating sensitivity of SQL queries

3. Our experience: lessons & challenges

Part 1
Discovering Real-world
Requirements

Our collaboration with Uber

* Uber’s goal: deploy differential privacy
* Internally (for some analysts)
* Externally (for partners & regulators)

* Our goals
* Explorereal-world requirements for differential privacy
* Build open-source systems

Previous work on differential privacy for analytics:
insufficient for real-world applications

Previous work: either...
* Theoretical (does not explore practical applications)

* Targets specialized analytics tasks
* Google RAPPOR: browsing statistics
e Apple: keyboard & emoji trends

Result: little use in real-world analytics environments
* No practical, scalable systems for DP in analytics

Empirical study: understanding real-world data analytics

* Conducted large-scale empirical study of real-world
analytics queries

* Dataset: 8 million SQL queries written by data analysts at
Uber

* Coverswide range of use cases: fraud detection, marketing,
business metrics, etc.

e Goal: identify DP requirements for real-world workload

Empirical study results

The most common aggregations are
COUNT, SUM, AVG, MAX, and MIN:

39.3%

40%
30%
20%
10%

0%

0.2% 0.1%
COUNT SUM AVG MAX MIN MEDIAN STDDEV

=» Most existing DP mechanisms support only counting queries

Empirical study results

62% of queries use JOIN, and some queries use many joins:

95

(o))
W

Joins in query
W
W

—_
[0}

o
—_

1000 1000000
queries

=» Very few existing mechanisms support join

Empirical study results

Many different databases in use

6,362,631

1,494,680

1000000 94,206 81,660

39,521 29,387

1000

queries

Vertica Postgres MySQL Hive Presto Other

=» Existing approaches require modifying/replacing DB

Part 2
Elastic Sensitivity &
Analyzing SQL Queries

Global sensitivity vs. local sensitivity for joins

Global sensitivity

* Unbounded for queries with joins

* Single added join key in one table could match an unbounded number
of keys in another

Local sensitivity
* Bounded for queries with joins
e Datain true database bounds number of possible new matches
 Computationally expensive
* Must consider every possible change to true database

Elastic sensitivity

Upper bound on local sensitivity
* Efficient, compositional calculationfrom query

Supports queries with equijoins

* Insight: increasein size of joined relation tightly bounded by
multiplicities of join keys

* Key multiplicities queried from database in advance
Supports more than just count

e Works well for COUNT
 Works less well for SUM

Example: elastic sensitivity of join

SELECT COUNT(*) FROM A JOIN B ON A.k =B.k

kvl
1 a 1

A JOIN B

1 a
1 a
1b
1b

A JOIN B

Duplicate join key 1 causes
duplicate rowsin joined
relation

Maximum change in COUNT:
add another 1 to A

Local sensitivity = 2

In general: local sensitivity
bounded by maximum
multiplicities of kin Aand B

A static analysis framework for SQL queries

daily C

Built a practical framework for

,city_id city_id

. - ,City_name
,count(client_uuid) total_eaters
a n a I ZI n re a I —WO rl d u e rI eS ,count(promo_trip - 1 client_uuid)} total_eaters_on_promo
»count(first_trip - 1 client_uuid)] first_eaters

,count(first_trip = 1 promo_trip - 1 client_uuid D) first_eaters_on_promo
C

e.client_uuid

Challenge: these queries are e

.city_name
e.rank 1) first_trip

complex X

t.client_uuid

,t.request_timestamp_local request_at
,t.uuid
,t.city_id
. ,rankQ) C t.client_uuid t.request_timestamp_local D) rank
' l r ra I I IeWO r b ap.trip_uuid null 1 promo_trip
[]
fact_trip t
dim_client cl t.client_uuid - cl.user_uuid cl.is_uber_email - 'False'
. = E] - =
° SO Ive CO I eX I t o n Ce analytics_promotion ap on t.uuid - ap.trip_uuid
mp Y »

t.city_id in ({{city_ids}})
t.vehicle_view_id ({{eats_vvid}})

* Enable many different analyses T

1,2 6

de
dim_city c e.city_id - c.city_id c.city_id ({{city_ids}})
1-1
e.request_at "{{start}}' '{{end}}'
) all_by_client

1, 2,3

, 130_daily

,city_id
,count(130_trips client_uuid 5)) oneplus

Differential privacy for SQL queries using Elastic
Sensitivity

Differentially private
Database Sensitive results results

-~

)

—>

—> OUtpUt' » =1 - :
perturbation :

Analysis framework

Elastic sensitivity analysis

Elastic
sensitivity

Median Error (%)

Empirical evaluation results

No Joins

10,000 1,000,000
Trip Population Size

(@

100,000,000

High utility (< 10% error)
10,000 [°] [+ (o]
1,000 ®

100

10

18 e

Median Error (%)

With Joins

&,

°® foee)

100 10.000 1,000,000 100,000.000

Trip Population Size
(b)

Dataset: 9862 Uber queries, run on production database

Part 3
Lessons Learned &
Future Challenges

Value of close collaboration

* Opportunityto examine real use cases
* Datasetof queries: what analystsactually did

* Insight into privacy goals in the real world
e e.g. concern about external and internal sharing

* Discover requirements & infrastructure restrictions
* e.g. we really can’t modify the database engine

Challenges of close collaboration

* Analysts skeptical about need for privacy protections
* Concerned about utility
* Believe privacy is already protected
* e.g. machinelearningteams believe models protect privacy

* Privacy team unsure of privacy goals
» Belief that de-identificationis enough, or
» Differential privacy seen as a silver bullet
* Would like to “have differential privacy” allin one go

* Infrastructure teams want a one-size-fits-all solution
* Multiple solutions=more work

Conclusions

e Perfect deploymentwill take time, experimentation
e Earlyversions will be limited
 Therewill be bugs

* We can accelerate the process
* Encouragement
* Constructive engagement

* We should encourage transparency
» Secrecy encourages bugs, discourages adoption

6? https://github.com/uber/sql-differential-privacy
I:D https://arxiv.org/abs/1706.09479

& jnear@berkeley.edu Thank you!

