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Part	1
Discovering	Real-world	
Requirements



Our	collaboration	with	Uber

• Uber’s	goal:	deploy	differential	privacy
• Internally	(for	some	analysts)
• Externally	(for	partners	&	regulators)

• Our	goals
• Explore	real-world	requirements	for	differential	privacy
• Build	open-source	systems



Previous	work	on	differential	privacy	for	analytics:	
insufficient	for	real-world	applications

Previous	work:	either…
• Theoretical	(does	not	explore	practical	applications)
• Targets	specialized	analytics	tasks

• Google	RAPPOR:	browsing	statistics
• Apple:	keyboard	&	emoji	trends

Result: little	use	in	real-world	analytics	environments
• No	practical,	scalable	systems	for	DP	in	analytics



Empirical	study:	understanding	real-world	data	analytics

• Conducted	large-scale	empirical	study of	real-world	
analytics	queries

• Dataset:	8	million	SQL	queries	written	by	data	analysts	at	
Uber
• Covers	wide	range	of	use	cases:	fraud	detection,	marketing,	
business	metrics,	etc.

• Goal:	identify	DP	requirements	for real-world	workload



Empirical	study	results

The	most	common	aggregations	are	
COUNT,	SUM,	AVG,	MAX,	and	MIN:
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èMost	existing	DP	mechanisms	support	only	counting	queries



Jo
in

s 
in

 q
ue

ry

95

53

33

16

0

# queries
1 1000 1000000

62%	of	queries	use	JOIN,	and	some	queries	use	many	joins:

Empirical	study	results

è Very	few	existing	mechanisms	support	join



Empirical	study	results

è Existing	approaches	require	modifying/replacing	DB
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Many	different	databases	in	use



Part	2
Elastic	Sensitivity	&	
Analyzing	SQL	Queries



Global	sensitivity	vs.	local	sensitivity	for	joins

Global	sensitivity
• Unbounded for	queries	with	joins

• Single	added	join	key	in	one	table	could	match	an	unbounded	 number	
of	keys	in	another

Local	sensitivity
• Bounded for	queries	with	joins

• Data	in	true	database	bounds	 number	of	possible	new	matches
• Computationally	expensive

• Must	consider	every	possible	change	to	true	database



Elastic	sensitivity

Upper	bound	on	local	sensitivity	
• Efficient,	compositional	calculation	from	query

Supports	queries	with	equijoins
• Insight:	increase	in	size	of	joined	relation	tightly	bounded	by	
multiplicities	of	join	keys

• Key	multiplicities	queried	from	database	in	advance

Supports	more	than	just	count
• Works	well	for	COUNT
• Works	less	well	for	SUM



Example:	elastic	sensitivity	of	join

SELECT COUNT(*)	FROM A	JOIN B	ON	A.k =	B.k

k v
1 a

A

k
1
1

B

k v
1 a
1 a

A	JOIN	B

Duplicate	join	key	1	causes
duplicate	rows	in	joined	
relation
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Maximum	change	in	COUNT:	
add	another	1	to	A

Local	sensitivity	=	2

In	general:	local	sensitivity	
bounded	by	maximum	
multiplicities of	k	in	A	and	B



A	static	analysis	framework	for	SQL	queries

Built	a	practical	framework	for	
analyzing	real-world	queries

Challenge:	these	queries	are	
complex

Our	framework:
• Solve	complexity	once
• Enable	many	different	analyses



Analysis	framework

Elastic	sensitivity	analysis

Database
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results

Differential	privacy	for	SQL	queries	using	Elastic	
Sensitivity



Empirical	evaluation	results

Dataset:	9862	Uber	queries,	run	on	production	database



Part	3
Lessons	Learned	&	
Future	Challenges



Value	of	close	collaboration

• Opportunity	to	examine	real	use	cases
• Dataset	of	queries:	what	analysts	actually	did

• Insight	into	privacy	goals	in	the	real	world
• e.g.	concern	about	external	and internal	sharing

• Discover	requirements&	infrastructure	restrictions
• e.g.	we	really	can’t modify	the	database	engine



Challenges	of	close	collaboration

• Analysts skeptical	about	need	for	privacy	protections
• Concerned	about	utility
• Believe	privacy	is	already	protected
• e.g.	machine	learning	teams	believe	models	protect	privacy

• Privacy	team	unsure	of	privacy	goals
• Belief	that	de-identification	is	enough,	or
• Differential	privacy	seen	as	a	silver	bullet
• Would	like	to	“have	differential	privacy”	all	in	one	go

• Infrastructure	teams	want	a	one-size-fits-all	solution
• Multiple	solutions	=	more	work



Conclusions

• Perfect	deployment	will	take	time,	experimentation
• Early	versions	will	be	limited
• There	will	be	bugs

• We	can	accelerate the	process
• Encouragement
• Constructive	engagement

• We	should	encourage	transparency
• Secrecy	encourages	bugs,	discourages	adoption

https://github.com/uber/sql-differential-privacy

https://arxiv.org/abs/1706.09479

jnear@berkeley.edu Thank you!


