Formal Verification of Differentially Private Mechanisms

Marco Gaboardi University at Buffalo, SUNY

Goal of formal verification: building programs that are correct.

Why correctness matters?

Why correctness matters?

An example: DARPA HACMS (High Assurance Cyber Military Systems)

What does "correct" mean?

In traditional program verification, a program is **correct** if it respects the specification:

- What is computed (functional aspects)
- How it is computed (non-functional aspects).

What does correct mean for differentially private applications?

Desiderata: building private, accurate, and efficient implementations that are secure and resilient to attacks.

Byproduct

Systems that can help with the design of differentially private data analysis.

Outline

- Few words on program verification,
- Challenges in the verification of differential privacy,
- Verification methods developed so far,
- Looking forward.

A 10 thousand ft view on program verification...

Verification tools

An example

Consider a simple program squaring a given number m:

An example

A proof of correctness can be given as follows:

```
-{{ X = m }} ->>
  \{ 0 = 0 * m \land X = m \}
Y ::= 0;;
  \{ 0 = Y * m \land X = m \}
Z ::= 0;;
  \{ Z = Y * m \land X = m \}
WHILE Y ≠ X DO
     {{ Z = Y*m ∧ X = m ∧ Y ≠ X }} ->>
     \{ Z+X = (Y+1) * m \land X = m \}
  Z ::= Z + X;
     \{\!\!\{ Z = (Y+1) * m \land X = m \}\!\!\}
  Y ::= Y + 1
     \{\!\!\{ Z = Y * m \land X = m \}\!\!\}
END
   \{\{ Z = Y * m \land X = m \land \neg (Y \neq X) \}\} \rightarrow >>
   { Z = m*m }
```

A lot of techniques to make this approach automated Questions that program verification can help with

- Are our algorithms bug-free?
- Do implementations respect the algorithms?
- Is the system architecture bug-free?
- Is the code efficient?
- Is the actual machine code correct?
- Do the optimization preserve correctness?
- Is the full stack attack-resistant?

Some successful stories - I

- CompCert a fully verified C compiler,
- Sel4, CertiKOS formal verification of OS kernel
- A formal proof of the Odd order theorem,
- A formal proof of Kepler conjecture.

Years of work from very specialized researchers!

Some successful stories - II

- Automated verification for Integrated Circuit Design.
- Automated verification for Floating point computations,
- Automated verification of Boeing flight control -Astree,
- Automated verification of Facebook code Infer.

The years of work go in the design of the techniques!

How things can go wrong in Differential Privacy....

The challenges of differential privacy

Given ε,δ ≥ 0, a mechanism M: db →O is (ε,δ)-differentially private iff ∀b1, b2 :db differing in one record and ∀S⊆O: Pr[M(b1)∈ S] ≤ exp(ε) · Pr[M(b2)∈ S] + δ

- Relational reasoning,
- Probabilistic reasoning,
- Quantitative reasoning

Example 1: the sparse vector case

Algorithm 1 An instantiation of the SVT proposed in this paper.	Algorithm 2 SVT in Dwork and Roth 2014 [8].
Input: $D, Q, \Delta, \mathbf{T} = T_1, T_2, \cdots, c.$	Input: D, Q, Δ, T, c .
1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap}(\Delta/\epsilon_1)$	1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap}(c\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0	2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0
3: for each query $q_i \in Q$ do	3: for each query $q_i \in Q$ do
4: $\nu_i = \text{Lap}(2c\Delta/\epsilon_2)$	4: $\nu_i = \text{Lap}\left(2c\Delta/\epsilon_1\right)$
5: if $q_i(D) + \nu_i \ge T_i + \rho$ then	5: if $q_i(D) + \nu_i \ge T + \rho$ then
6: Output $a_i = \top$	6: Output $a_i = \top$, $\rho = \text{Lap}(c\Delta/\epsilon_2)$
7: $\operatorname{count} = \operatorname{count} + 1$, Abort if $\operatorname{count} \ge c$.	7: $\operatorname{count} = \operatorname{count} + 1$, Abort if $\operatorname{count} \ge c$.
8: else	8: else
9: Output $a_i = \bot$	9: Output $a_i = \bot$
Algorithm 3 SVT in Roth's 2011 Lecture Notes [15].	Algorithm 4 SVT in Lee and Clifton 2014 [13].
Input: D, Q, Δ, T, c .	Input: D, Q, Δ, T, c .
1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap}(\Delta/\epsilon_1)$,	1: $\epsilon_1 = \epsilon/4$, $\rho = Lap(\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0	2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0
3: for each query $q_i \in Q$ do	3: for each query $q_i \in Q$ do
4: $\nu_i = \operatorname{Lap}\left(c\Delta/\epsilon_2\right)$	4: $ u_i = Lap\left(\Delta/\epsilon_2\right) $
5: if $q_i(D) + \nu_i \ge T + \rho$ then	5: if $q_i(D) + \nu_i \ge T + \rho$ then
6: Output $a_i = q_i(D) + \nu_i$	6: Output $a_i = \top$
7: $\operatorname{count} = \operatorname{count} + 1$, Abort if $\operatorname{count} \ge c$.	7: $\operatorname{count} = \operatorname{count} + 1$, Abort if $\operatorname{count} \ge c$.
8: else	8: else
9: Output $a_i = \bot$	9: Output $a_i = \bot$
Algorithm 5 SVT in Stoddard et al. 2014 [18].	Algorithm 6 SVT in Chen et al. 2015 [1].
Input: D, Q, Δ, T .	Input: $D, Q, \Delta, \mathbf{T} = T_1, T_2, \cdots$.
1: $\epsilon_1 = \epsilon/2$, $\rho = Lap(\Delta/\epsilon_1)$	1: $\epsilon_1 = \epsilon/2$, $\rho = Lap(\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$	2: $\epsilon_2 = \epsilon - \epsilon_1$
3: for each query $q_i \in Q$ do	3: for each query $q_i \in Q$ do
4: $\nu_i = 0$	4: $ u_i = Lap\left(\Delta/\epsilon_2\right) $
5: if $q_i(D) + \nu_i \ge T + \rho$ then	5: if $q_i(D) + \nu_i \ge T_i + \rho$ then
6: Output $a_i = \top$	6: Output $a_i = \top$
7:	7:
8: else	8: else
9: Output $a_i = \bot$	9: Output $a_i = \bot$

Min Lyu, Dong Su, Ninghui Li:

Understanding the Sparse Vector Technique for Differential Privacy. PVLDB (2017)

Example 2: the rounding case

- Attack based on irregularities of floating point implementations of the Laplace mechanism,
- A solution: snapping mechanism
- How about other mechanisms?

Ilya Mironov: On significance of the least significant bits for differential privacy. ACM CCS 2012

Example 3: the floating point case

- Timing attack based on x86 difference of addition/multiplication running time difference,
- A solution: a constant time library.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, Hovav Shacham: **On Subnormal Floating Point and Abnormal Timing.** IEEE Symposium on Security and Privacy 2015

What we have so far...

A 10 thousand ft view on program verification

Verification tools

- They handle well logical formulas, numerical formulas and their combination,
- They offer limited support for probabilistic reasoning.

We need a good abstraction of the problem.

Compositional Reasoning about the Privacy Budget Sequential Composition Let M_i be ϵ_i -differentially private $(1 \le i \le k)$. Then $M(x) = (M_1(x), \dots, M_k(x))$ is $\sum_{i=0}^k \epsilon_i$.

- We can reason about the privacy budget,
- If we have basic components for privacy we can just focus on counting,
- It requires a limited reasoning about probabilities,
- Implemented in different tools, e.g.
 PINQ(McSherry'10), Airavat (Roy'10), etc.

Compositional reasoning about sensitivity

$$GS(f) = \max_{v \sim v'} |f(v) - f(v')|$$

- It allows to decompose the analysis/construction of a DP program,
- It requires a limited reasoning about probabilities,
- Similar reasoning as basic composition.
- Implemented using type-checking in Fuzz (Reed&Pierce'10),
- Recently extended to AdaptiveFuzz (Winograd-cort&co'l7).

- Generalize pointwise-observations to other relations allowing more general relational reasoning,
- More involved reasoning about divergences,
- Formal proof of the correctness of sparse vector,
- Implemented in EasyCrypt and HOARe² (Barthe&al'13,'15)
- Recently extended to zCDP, RDP (Sato&al'17)
- New, fully automated version (Albarghouthi&Hsu'17)

Semi-automated DP proofs using Randomness Assignments

- Permits to build more flexible reasoning about correspondences between the programs, and the privacy budget,
- requires few annotations and can be combined with other tools making it almost automated,
- the proof of sparse vector only requires 2 lines of annotations,
- implemented in LightDP (Zhang&Kifer'17)

Other works

- Bisimulation based methods (Tschantz&al Xu&al)
- Fuzz with distributed code (Eigner&Maffei)
- Satisfiability modulo counting (Friedrikson&Jha)
- Bayesian Inference (BFGGHS)
- Accuracy bounds (BGGHS)
- Continuous models (Sato)
- zCDP (BGHS)
-
- Many other systems.

Looking forward...

Basic Mechanism Implementation

- We aim at verifying end-to-end a basic, realistic mechanism (from the algorithm to the code),
- We focus on a mechanism for the local model of differential privacy (simpler mechanisms, practically relevant),
- We are looking at mechanisms that have good privacyutility tradeoff, and are efficient,
- We focus first on a machine independent approach, and add consider more concrete models later.

Private Heavy Hitter

- We focus on algorithms for the heavy hitter problem: practically relevant and a availability of several different algorithms,
- We are implementing the TreeHist algorithm by Bassily&al'17 which provides a good accuracy and is efficient.
- The privacy guarantee is obtained through a simple randomized response mechanism,
- It makes non trivial transformations both on the client and server side.

Our approach

Expected Outcomes

- Many months of work!
- Increasing the confidence on the correctness of the mechanism implementation,
- Development of techniques for proving correct basic mechanisms from the local model.

