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Goal of formal verification: 
building programs that are 

correct. 



Why correctness matters?



Infosec 
Institute

Why correctness matters?
An example:
DARPA HACMS (High Assurance Cyber Military Systems)



What does “correct” mean?

In traditional program verification, a program is 
correct if it respects the specification:

• What is computed (functional aspects)

• How it is computed (non-functional aspects).

What does correct mean for 

differentially private applications?



1 Introduction

A vast amount of individuals’ data is collected, stored and accessed every day: demographic data, hospital
records, location data, and much more. These data are valuable for scientific and medical research, for
decision making, etc. However, access to data carries concerns for the privacy of the individuals contributing
their data. These concerns restrict the way this vast amount of information can be used, and released.
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Figure 1: Data analysis triangle:
privacy is the base, but accuracy
and efficiency are critical.

The research on privacy-preserving technology is very active and sev-
eral approaches have been proposed. An approach that emerged early in
the statistical literature is based on the idea of using randomness to pro-
tect sensitive information [66]. By using randomness one can guarantee
a protection to individual’s data in the form of uncertainty—an attacker
aiming to obtain some individual’s data can be confused by this uncer-
tainty. However, using randomness also changes the accuracy of the in-
formation extracted from the data, potentially compromising the validity
of conclusions drawn from the data analysis.

More generally, the Fundamental law of Information Reconstruc-
tion [26, 30] informally says that if an adversary can observe the results
of too many, too accurate statistics, then she can reconstruct with high
probability the entire data. This law gives a mathematical meaning to the
tension between the privacy of individuals and the accuracy of statistics. Implicit in the notion of accu-
racy of a data analysis is the number of data samples used: more samples typically means more accuracy,
whereas fewer samples may lead to more efficient analysis (in terms of acquiring or using data). The num-
ber of samples is also related to privacy: more samples make it easier to protect the privacy of an individual
sample.

We will focus on the three aspects of privacy, accuracy, and efficiency of data analyses. We see these
three aspects as edges of a “data analysis triangle” (Figure 1). Our main focus is privacy—the base of this
triangle—but the triangle (the data analysis) requires the other two edges: accuracy and efficiency. When
considering data analysis, we believe it is fundamental to consider all three of these aspects.

Designing, implementing, and reasoning about data analyses is difficult. Modern data analyses are often
based on subtle use of sophisticated algorithmic ideas using randomization, and concepts from probability
and learning theory. Reasoning about their properties can be tedious and error-prone. Moreover, due to the
quantitative and noisy nature of data analyses, it can be difficult to use implementations of a data analysis to
discover flaws in the analysis. For these reasons, several formal verification techniques have been developed
to help design, implement, and reason about data analyses. Type system based verification approaches are
particularly useful as they permit modular reasoning about program components. Approaches based on type
systems have helped verifying the privacy of several mechanisms, but many basic mechanisms still escape
this technique. Moreover, type system approaches (and other verification techniques) have so far focused
on privacy, mostly neglecting accuracy and efficiency. There is thus a gap between how researchers and
practitioners reason manually about their analyses and how formal verification can support this reasoning.

In order to fill this gap, we will develop foundational formal verification techniques to reason in a
combined way about privacy, accuracy, and efficiency. We will do so by extending type systems techniques
to reason about accuracy and efficiency in addition to privacy. We will also strengthen the support that these
techniques offer for privacy. Our long term goal is to provide a suite of verification techniques that can be
used by researchers and practitioners to guarantee private, accurate, and efficient analyses.
Broader Impacts: The proposed research will develop foundational methods for privacy-preserving tech-
nology. Additionally, the project will develop educational material and tools that will help students, re-
searchers, and practitioners approach the different aspects of data analysis in a combined way. The project
will support one graduate student.
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Abstract? 
or  

Concrete?



Desiderata: building private, 
accurate, and efficient 

implementations that are secure 
and resilient to attacks.



Byproduct

Systems that can help with the 
design of differentially private 

data analysis.



Outline

• Few words on program verification,

• Challenges in the verification of differential 
privacy,

• Verification methods developed so far,

• Looking forward.



A 10 thousand ft view on program 
verification…
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Verification tools

+ expert provided 
annotations

verification 
tools

(semi)-decision procedures 
(SMT solvers, ITP)



An example
Consider a simple program squaring a given number m:



An example
A proof of correctness can be given as follows:

A lot of techniques 
to make this 

approach automated



Questions that program 
verification can help with

• Are our algorithms bug-free?

• Do implementations respect the algorithms?

• Is the system architecture bug-free?

• Is the code efficient?

• Is the actual machine code correct?

• Do the optimization preserve correctness?

• Is the full stack attack-resistant?



Some successful stories - 1

• CompCert - a fully verified C compiler,

• Sel4, CertiKOS - formal verification of OS 
kernel

• A formal proof of the Odd order theorem,

• A formal proof of Kepler conjecture.

Years of work from very specialized researchers!



Some successful stories - II
• Automated verification for Integrated Circuit 

Design.

• Automated verification for Floating point 
computations,

• Automated verification of Boeing flight control - 
Astree,

• Automated verification of Facebook code - Infer.

The years of work go in the design of the techniques!



Verification trade-offs

expressivity

required
expertise

granularity
of the analysis



How things can go wrong  
in Differential Privacy….



The challenges of differential 
privacy

Given ε,δ ≥ 0, a mechanism M: db →O is 
(ε,δ)-differentially private iff 
∀b1, b2 :db differing in one record and ∀S⊆O:

Pr[M(b1)∈ S] ≤ exp(ε)· Pr[M(b2)∈ S] + δ

• Relational reasoning,

• Probabilistic reasoning,

• Quantitative reasoning  



Figure 1: A Selection of SVT Variants
Input/Output shared by all SVT Algorithms
Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no more than ∆, either a sequence of thresholds
T = T1, T2, · · · or a single threshold T (see footnote ∗), and c, the maximum number of queries to be answered with ⊤.
Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the set of all real numbers.

Algorithm 1 An instantiation of the SVT proposed in this paper.
Input: D,Q,∆,T = T1, T2, · · · , c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ − ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 2 SVT in Dwork and Roth 2014 [8].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (c∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ1)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤, ρ = Lap (c∆/ϵ2)
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1),
2: ϵ2 = ϵ − ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (c∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = qi(D) + νi
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 4 SVT in Lee and Clifton 2014 [13].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/4, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 5 SVT in Stoddard et al. 2014 [18].
Input: D,Q,∆, T .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ − ϵ1
3: for each query qi ∈ Q do
4: νi = 0
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Algorithm 6 SVT in Chen et al. 2015 [1].
Input: D,Q,∆,T = T1, T2, · · · .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6
ϵ1 ϵ/2 ϵ/2 ϵ/2 ϵ/4 ϵ/2 ϵ/2

Scale of threshold noise ρ ∆/ϵ1 c∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1
Reset ρ after each output of ⊤ (unnecessary) Yes

Scale of query noise νi 2c∆/ϵ2 2c∆/ϵ2 c∆/ϵ1 ∆/ϵ2 0 ∆/ϵ2
Outputting qi + νi instead of ⊤ (not private) Yes
Outputting unbounded ⊤’s (not private) Yes Yes

Privacy Property ϵ-DP ϵ-DP ∞-DP
(

1+6c
4 ϵ

)

-DP ∞-DP ∞-DP

Figure 2: Differences among Algorithms 1-6.

∗ Algorithms 1 and 6 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The other
algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having an SVT where
the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds T = T1, T2, · · · , we can
define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to obtain the same result. In this paper,
we decide to use thresholds to be consistent with the existing papers.

Example 1: the sparse vector case

Min Lyu, Dong Su, Ninghui Li: 
Understanding the Sparse Vector Technique for Differential Privacy. PVLDB (2017)



Example 2: the rounding case

• Attack based on irregularities of floating point 
implementations of the Laplace mechanism,

• A solution: snapping mechanism

• How about other mechanisms?
Ilya Mironov: 
On significance of the least significant bits for differential privacy. ACM CCS 2012



Example 3: the floating point case

• Timing attack based on x86 difference of 
addition/multiplication running time difference,

• A solution: a constant time library.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, Hovav Shacham:
On Subnormal Floating Point and Abnormal Timing. IEEE Symposium on Security and Privacy 2015



What we have so far…



A 10 thousand ft view on program 
verification

+ expert provided 
annotations

verification 
tools

(semi)-decision procedures 
(SMT solvers, ITP)



Verification tools

• They handle well logical formulas, numerical 
formulas and their combination,

• They offer limited support for probabilistic 
reasoning.

We need a good abstraction of the problem.



Compositional Reasoning 
about the Privacy Budget

• We can reason about the privacy budget,

• If we have basic components for privacy we can just 
focus on counting,

• It requires a limited reasoning about probabilities,

• Implemented in different tools, e.g. 
PINQ(McSherry’10),  Airavat (Roy’10), etc.

Sequential Composition

Let Mi be ✏i-di↵erentially private (1  i  k).

Then M(x) = (M1(x), . . . ,Mk(x)) is
Pk

i=0 ✏i.



Compositional reasoning about 
sensitivity

• It allows to decompose the  
analysis/construction of a DP program,

• It requires a limited reasoning about probabilities,

• Similar reasoning as basic composition.

• Implemented using type-checking in Fuzz (Reed&Pierce’10),

• Recently extended to AdaptiveFuzz (Winograd-cort&co’17).

GS(f) = max

v⇠v0
|f(v)� f(v0)|



Reasoning about DP  
via Approximate Probabilistic 

• Generalize pointwise-observations to other relations allowing 
more general relational reasoning,

• More involved reasoning about divergences,

• Formal proof of the correctness of sparse vector,

• Implemented in EasyCrypt and HOARe2 (Barthe&al’13,’15)

• Recently extended to zCDP, RDP (Sato&al’17)

• New, fully automated version (Albarghouthi&Hsu’17)



Semi-automated DP proofs using 
Randomness Assignments

• Permits to build more flexible reasoning about correspondences 
between the programs, and the privacy budget,

• requires few annotations and can be combined with other tools 
making it almost automated,

• the proof of sparse vector only requires 2 lines of annotations,

• implemented in LightDP (Zhang&Kifer’17)

R

injective map  
producing the  
same output



Other works

• Bisimulation based methods (Tschantz&al - Xu&al)

• Fuzz with distributed code (Eigner&Maffei)

• Satisfiability modulo counting (Friedrikson&Jha)

• Bayesian Inference (BFGGHS)

• Accuracy bounds (BGGHS) 

• Continuous models (Sato)

• zCDP (BGHS)

• ….

• Many other systems.



Looking forward…



Abstract? 
or  

Concrete?



Basic Mechanism Implementation

• We aim at verifying end-to-end a basic, realistic 
mechanism (from the algorithm to the code),

• We focus on a mechanism for the local model of 
differential privacy (simpler mechanisms, practically 
relevant),

• We are looking at mechanisms that have good privacy-
utility tradeoff, and are efficient,

• We focus first on a machine independent approach, and 
add consider more concrete models later.



Private Heavy Hitter

• We focus on algorithms for the heavy hitter problem: 
practically relevant and a availability of several  different 
algorithms,

• We are implementing the TreeHist algorithm by 
Bassily&al’17 which provides a good accuracy and is 
efficient.

• The privacy guarantee is obtained through a simple 
randomized response mechanism,

• It makes non trivial transformations both on the client 
and server side.



Our approach

Formal Logic 
based on coupling 

Foundational
Cryptography Framework

Petcher&Morrisett’15

Appel&al

Coq 
proof assistant

Recently used 
for HMAC

for 
OpenSSL,  

(part of )TLS.



• Many months of work!

• Increasing the confidence on the correctness of the 
mechanism implementation,

• Development of techniques for proving correct 
basic mechanisms from the local model.

Expected Outcomes



Thanks




