
Marco Gaboardi
University at Buffalo, SUNY

Formal Verification of Differentially
Private Mechanisms

Goal of formal verification:
building programs that are

correct.

Why correctness matters?

Infosec 
Institute

Why correctness matters?
An example:
DARPA HACMS (High Assurance Cyber Military Systems)

What does “correct” mean?

In traditional program verification, a program is
correct if it respects the specification:

• What is computed (functional aspects)

• How it is computed (non-functional aspects).

What does correct mean for

differentially private applications?

1 Introduction

A vast amount of individuals’ data is collected, stored and accessed every day: demographic data, hospital
records, location data, and much more. These data are valuable for scientific and medical research, for
decision making, etc. However, access to data carries concerns for the privacy of the individuals contributing
their data. These concerns restrict the way this vast amount of information can be used, and released.

Privacy

Ac
cu

rac
y Efficiency

Data

Analysis

Figure 1: Data analysis triangle:
privacy is the base, but accuracy
and efficiency are critical.

The research on privacy-preserving technology is very active and sev-
eral approaches have been proposed. An approach that emerged early in
the statistical literature is based on the idea of using randomness to pro-
tect sensitive information [66]. By using randomness one can guarantee
a protection to individual’s data in the form of uncertainty—an attacker
aiming to obtain some individual’s data can be confused by this uncer-
tainty. However, using randomness also changes the accuracy of the in-
formation extracted from the data, potentially compromising the validity
of conclusions drawn from the data analysis.

More generally, the Fundamental law of Information Reconstruc-
tion [26, 30] informally says that if an adversary can observe the results
of too many, too accurate statistics, then she can reconstruct with high
probability the entire data. This law gives a mathematical meaning to the
tension between the privacy of individuals and the accuracy of statistics. Implicit in the notion of accu-
racy of a data analysis is the number of data samples used: more samples typically means more accuracy,
whereas fewer samples may lead to more efficient analysis (in terms of acquiring or using data). The num-
ber of samples is also related to privacy: more samples make it easier to protect the privacy of an individual
sample.

We will focus on the three aspects of privacy, accuracy, and efficiency of data analyses. We see these
three aspects as edges of a “data analysis triangle” (Figure 1). Our main focus is privacy—the base of this
triangle—but the triangle (the data analysis) requires the other two edges: accuracy and efficiency. When
considering data analysis, we believe it is fundamental to consider all three of these aspects.

Designing, implementing, and reasoning about data analyses is difficult. Modern data analyses are often
based on subtle use of sophisticated algorithmic ideas using randomization, and concepts from probability
and learning theory. Reasoning about their properties can be tedious and error-prone. Moreover, due to the
quantitative and noisy nature of data analyses, it can be difficult to use implementations of a data analysis to
discover flaws in the analysis. For these reasons, several formal verification techniques have been developed
to help design, implement, and reason about data analyses. Type system based verification approaches are
particularly useful as they permit modular reasoning about program components. Approaches based on type
systems have helped verifying the privacy of several mechanisms, but many basic mechanisms still escape
this technique. Moreover, type system approaches (and other verification techniques) have so far focused
on privacy, mostly neglecting accuracy and efficiency. There is thus a gap between how researchers and
practitioners reason manually about their analyses and how formal verification can support this reasoning.

In order to fill this gap, we will develop foundational formal verification techniques to reason in a
combined way about privacy, accuracy, and efficiency. We will do so by extending type systems techniques
to reason about accuracy and efficiency in addition to privacy. We will also strengthen the support that these
techniques offer for privacy. Our long term goal is to provide a suite of verification techniques that can be
used by researchers and practitioners to guarantee private, accurate, and efficient analyses.
Broader Impacts: The proposed research will develop foundational methods for privacy-preserving tech-
nology. Additionally, the project will develop educational material and tools that will help students, re-
searchers, and practitioners approach the different aspects of data analysis in a combined way. The project
will support one graduate student.

1

Specification

Abstract? 
or  

Concrete?

Desiderata: building private,
accurate, and efficient

implementations that are secure
and resilient to attacks.

Byproduct

Systems that can help with the
design of differentially private

data analysis.

Outline

• Few words on program verification,

• Challenges in the verification of differential
privacy,

• Verification methods developed so far,

• Looking forward.

A 10 thousand ft view on program
verification…

P

yes?

no?

Verification
Tool

Proof

Proofs vs Formal Proofs

Verification tools

+ expert provided 
annotations

verification 
tools

(semi)-decision procedures 
(SMT solvers, ITP)

An example
Consider a simple program squaring a given number m:

An example
A proof of correctness can be given as follows:

A lot of techniques
to make this

approach automated

Questions that program
verification can help with

• Are our algorithms bug-free?

• Do implementations respect the algorithms?

• Is the system architecture bug-free?

• Is the code efficient?

• Is the actual machine code correct?

• Do the optimization preserve correctness?

• Is the full stack attack-resistant?

Some successful stories - 1

• CompCert - a fully verified C compiler,

• Sel4, CertiKOS - formal verification of OS
kernel

• A formal proof of the Odd order theorem,

• A formal proof of Kepler conjecture.

Years of work from very specialized researchers!

Some successful stories - II
• Automated verification for Integrated Circuit

Design.

• Automated verification for Floating point
computations,

• Automated verification of Boeing flight control -
Astree,

• Automated verification of Facebook code - Infer.

The years of work go in the design of the techniques!

Verification trade-offs

expressivity

required
expertise

granularity
of the analysis

How things can go wrong  
in Differential Privacy….

The challenges of differential
privacy

Given ε,δ ≥ 0, a mechanism M: db →O is
(ε,δ)-differentially private iff
∀b1, b2 :db differing in one record and ∀S⊆O:

Pr[M(b1)∈ S] ≤ exp(ε)· Pr[M(b2)∈ S] + δ

• Relational reasoning,

• Probabilistic reasoning,

• Quantitative reasoning  

Figure 1: A Selection of SVT Variants
Input/Output shared by all SVT Algorithms
Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no more than ∆, either a sequence of thresholds
T = T1, T2, · · · or a single threshold T (see footnote ∗), and c, the maximum number of queries to be answered with ⊤.
Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the set of all real numbers.

Algorithm 1 An instantiation of the SVT proposed in this paper.
Input: D,Q,∆,T = T1, T2, · · · , c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ − ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 2 SVT in Dwork and Roth 2014 [8].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (c∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ1)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤, ρ = Lap (c∆/ϵ2)
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1),
2: ϵ2 = ϵ − ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (c∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = qi(D) + νi
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 4 SVT in Lee and Clifton 2014 [13].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/4, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 5 SVT in Stoddard et al. 2014 [18].
Input: D,Q,∆, T .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ − ϵ1
3: for each query qi ∈ Q do
4: νi = 0
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Algorithm 6 SVT in Chen et al. 2015 [1].
Input: D,Q,∆,T = T1, T2, · · · .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6
ϵ1 ϵ/2 ϵ/2 ϵ/2 ϵ/4 ϵ/2 ϵ/2

Scale of threshold noise ρ ∆/ϵ1 c∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1
Reset ρ after each output of ⊤ (unnecessary) Yes

Scale of query noise νi 2c∆/ϵ2 2c∆/ϵ2 c∆/ϵ1 ∆/ϵ2 0 ∆/ϵ2
Outputting qi + νi instead of ⊤ (not private) Yes
Outputting unbounded ⊤’s (not private) Yes Yes

Privacy Property ϵ-DP ϵ-DP ∞-DP
(

1+6c
4 ϵ

)

-DP ∞-DP ∞-DP

Figure 2: Differences among Algorithms 1-6.

∗ Algorithms 1 and 6 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The other
algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having an SVT where
the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds T = T1, T2, · · · , we can
define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to obtain the same result. In this paper,
we decide to use thresholds to be consistent with the existing papers.

Example 1: the sparse vector case

Min Lyu, Dong Su, Ninghui Li:
Understanding the Sparse Vector Technique for Differential Privacy. PVLDB (2017)

Example 2: the rounding case

• Attack based on irregularities of floating point
implementations of the Laplace mechanism,

• A solution: snapping mechanism

• How about other mechanisms?
Ilya Mironov: 
On significance of the least significant bits for differential privacy. ACM CCS 2012

Example 3: the floating point case

• Timing attack based on x86 difference of
addition/multiplication running time difference,

• A solution: a constant time library.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, Hovav Shacham:
On Subnormal Floating Point and Abnormal Timing. IEEE Symposium on Security and Privacy 2015

What we have so far…

A 10 thousand ft view on program
verification

+ expert provided 
annotations

verification 
tools

(semi)-decision procedures 
(SMT solvers, ITP)

Verification tools

• They handle well logical formulas, numerical
formulas and their combination,

• They offer limited support for probabilistic
reasoning.

We need a good abstraction of the problem.

Compositional Reasoning
about the Privacy Budget

• We can reason about the privacy budget,

• If we have basic components for privacy we can just
focus on counting,

• It requires a limited reasoning about probabilities,

• Implemented in different tools, e.g.
PINQ(McSherry’10), Airavat (Roy’10), etc.

Sequential Composition

Let Mi be ✏i-di↵erentially private (1 i k).

Then M(x) = (M1(x), . . . ,Mk(x)) is
Pk

i=0 ✏i.

Compositional reasoning about
sensitivity

• It allows to decompose the  
analysis/construction of a DP program,

• It requires a limited reasoning about probabilities,

• Similar reasoning as basic composition.

• Implemented using type-checking in Fuzz (Reed&Pierce’10),

• Recently extended to AdaptiveFuzz (Winograd-cort&co’17).

GS(f) = max

v⇠v0
|f(v)� f(v0)|

Reasoning about DP  
via Approximate Probabilistic

• Generalize pointwise-observations to other relations allowing
more general relational reasoning,

• More involved reasoning about divergences,

• Formal proof of the correctness of sparse vector,

• Implemented in EasyCrypt and HOARe2 (Barthe&al’13,’15)

• Recently extended to zCDP, RDP (Sato&al’17)

• New, fully automated version (Albarghouthi&Hsu’17)

Semi-automated DP proofs using
Randomness Assignments

• Permits to build more flexible reasoning about correspondences
between the programs, and the privacy budget,

• requires few annotations and can be combined with other tools
making it almost automated,

• the proof of sparse vector only requires 2 lines of annotations,

• implemented in LightDP (Zhang&Kifer’17)

R

injective map  
producing the  
same output

Other works

• Bisimulation based methods (Tschantz&al - Xu&al)

• Fuzz with distributed code (Eigner&Maffei)

• Satisfiability modulo counting (Friedrikson&Jha)

• Bayesian Inference (BFGGHS)

• Accuracy bounds (BGGHS)

• Continuous models (Sato)

• zCDP (BGHS)

• ….

• Many other systems.

Looking forward…

Abstract? 
or  

Concrete?

Basic Mechanism Implementation

• We aim at verifying end-to-end a basic, realistic
mechanism (from the algorithm to the code),

• We focus on a mechanism for the local model of
differential privacy (simpler mechanisms, practically
relevant),

• We are looking at mechanisms that have good privacy-
utility tradeoff, and are efficient,

• We focus first on a machine independent approach, and
add consider more concrete models later.

Private Heavy Hitter

• We focus on algorithms for the heavy hitter problem:
practically relevant and a availability of several different
algorithms,

• We are implementing the TreeHist algorithm by
Bassily&al’17 which provides a good accuracy and is
efficient.

• The privacy guarantee is obtained through a simple
randomized response mechanism,

• It makes non trivial transformations both on the client
and server side.

Our approach

Formal Logic
based on coupling

Foundational
Cryptography Framework

Petcher&Morrisett’15

Appel&al

Coq 
proof assistant

Recently used
for HMAC

for
OpenSSL,  

(part of)TLS.

• Many months of work!

• Increasing the confidence on the correctness of the
mechanism implementation,

• Development of techniques for proving correct
basic mechanisms from the local model.

Expected Outcomes

Thanks

