Never Ending Learning

Tom Mitchell

Machine Learning Department Carnegie Mellon University

New paradigm for Machine Learning:

Never-ending learning agents

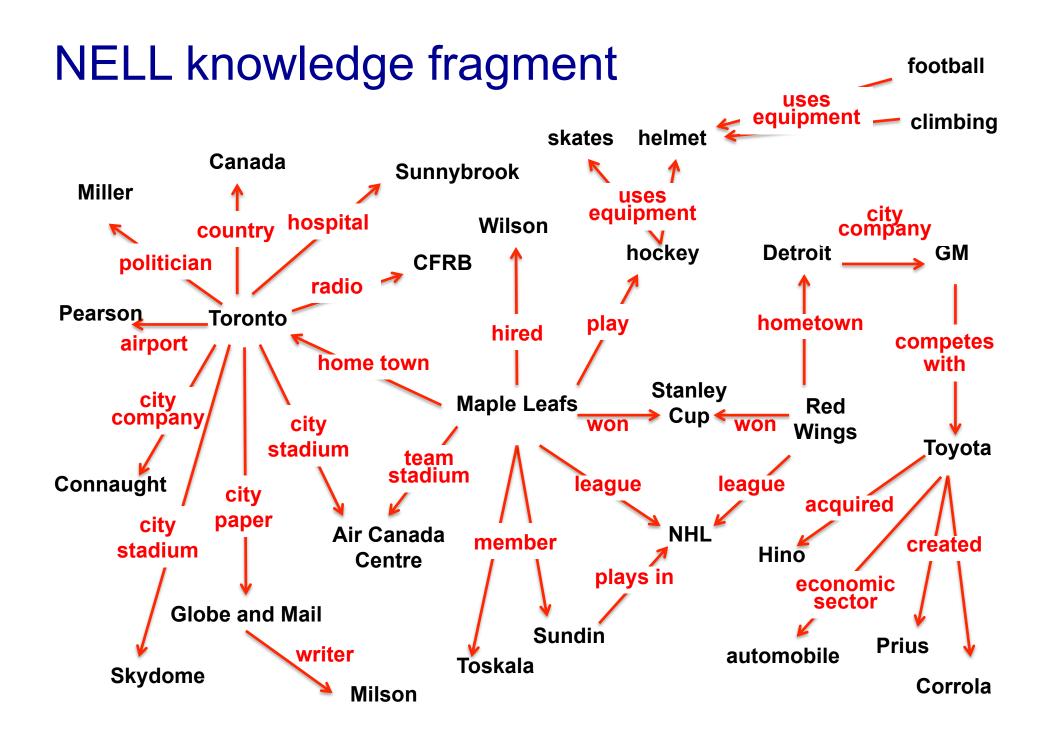
- Persistent software individual
- Learns many functions / knowledge types
- Learns easier things first, then more difficult
- The more it learns, the more it can learn next
- Learns from experience, and from advice

NELL: Never-Ending Language Learner

Inputs:

- initial ontology
- dozen examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:


- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate the ontology
 - 2. learn to read (perform #1) better than yesterday

NELL today

Running 24x7, since January, 12, 2010

Result:

- KB with > 50 million candidate beliefs, growing daily
- learning to read better each day
- learning to reason, as well as read
- automatically extending its ontology

NELL Today

• <u>http://rtw.ml.cmu.edu</u> ← follow NELL here

NELL on demand

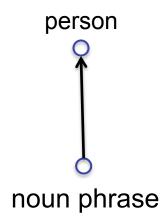
. . .

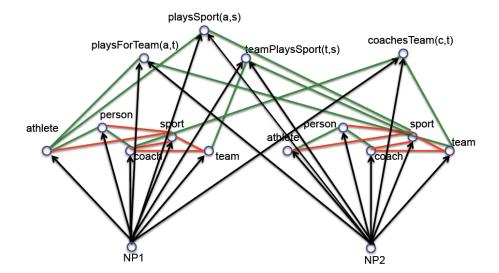
eg. "<u>diabetes</u>", "<u>Avandia</u>", "<u>tea</u>", "<u>IBM</u>", "<u>love</u>" "<u>baseball</u>"
"<u>BacteriaCausesCondition</u>" "<u>kitchenItem</u>" "<u>ClothingGoesWithClothing</u>"

Recently-Learned Facts witter

instance	iteration	date learned cont
sacramento convention center is a stadium or event venue	737	04-jun-2013
john kenneth macalister is a <u>criminal</u>	737	04-jun-2013
birth_control_drugs is a personal care product	737	04-jun-2013
almond_chocolate is a kind of candy	742	18-jun-2013
garlic_shoots is an agricultural product	739	09-jun-2013
<u>hagar has husband abraham</u>	742	18-jun-2013
dave murray is a musician who plays the guitar	739	09-jun-2013
hart is a city located in the state or province georgia	742	18-jun-2013
wood prarie farm is a farm in the state or province maine	742	18-jun-2013
pepper is an agricultural product that is usually cooked with canola oil	737	04-jun-2013

How does NELL work?

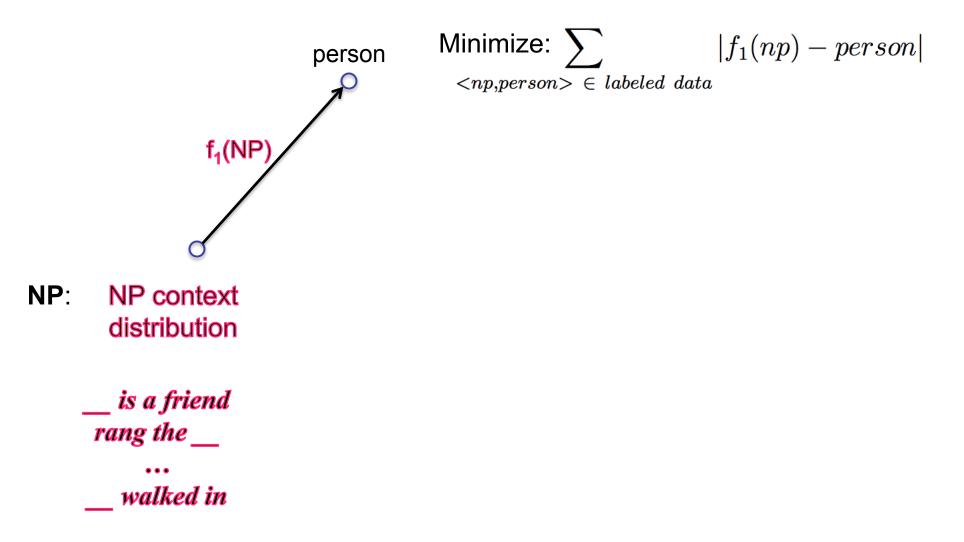

Semi-Supervised Bootstrap Learning it's underconstrained!!

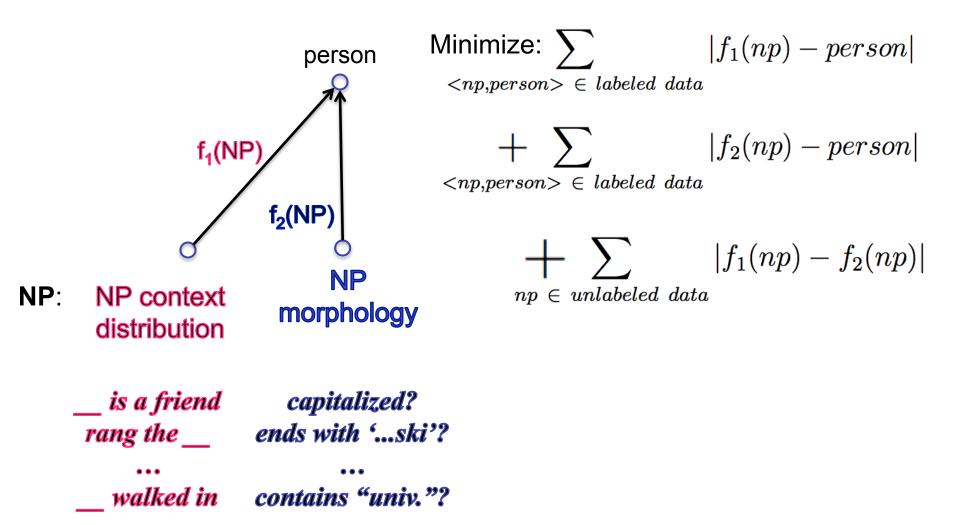

Paris Pittsburgh Seattle Montpelier San Francisco Berlin denial anxiety selfishness London

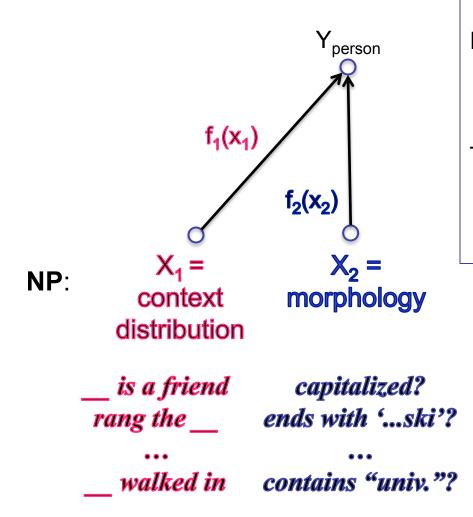
mayor of arg1 live in arg1

arg1 is home of traits such as arg1

Key Idea 1: Coupled semi-supervised training of many functions

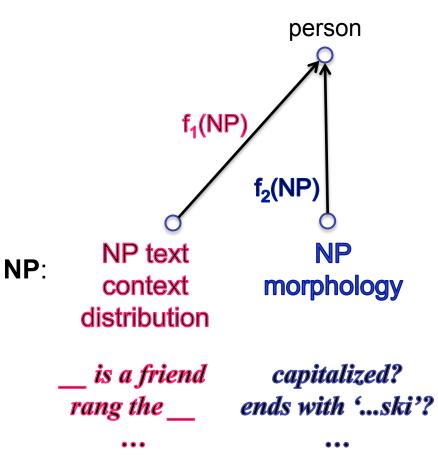



hard (underconstrained) semi-supervised learning problem


much easier (more constrained) semi-supervised learning problem

Supervised training of 1 function:

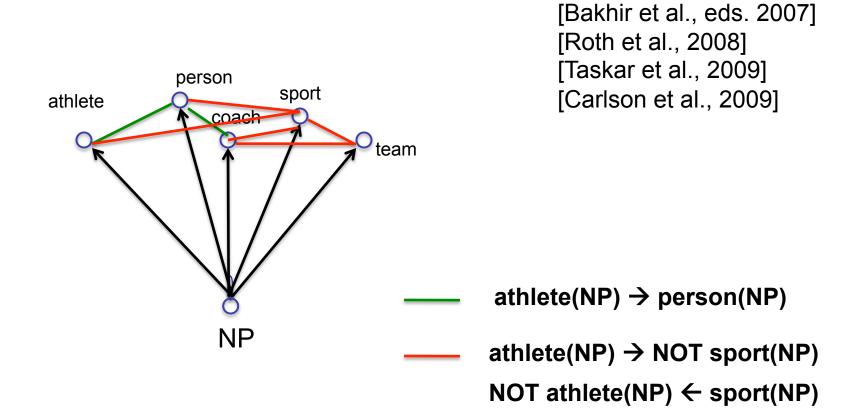
Coupled training of 2 functions:



Theorem (Blum & Mitchell, 1998):

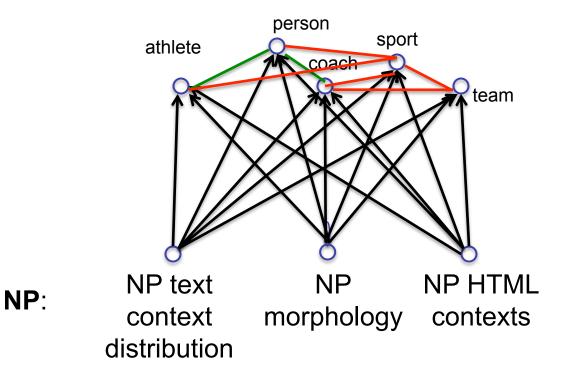
If f_1 ,and f_2 are PAC learnable from noisy <u>*labeled*</u> data, and X_1 , X_2 are conditionally independent given Y,

Then f_1 , f_2 are PAC learnable from polynomial <u>unlabeled</u> data plus a weak initial predictor

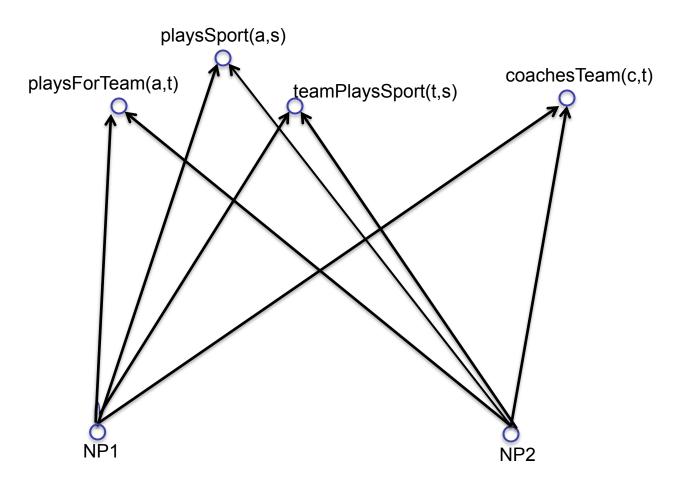


walked in contains "univ."?

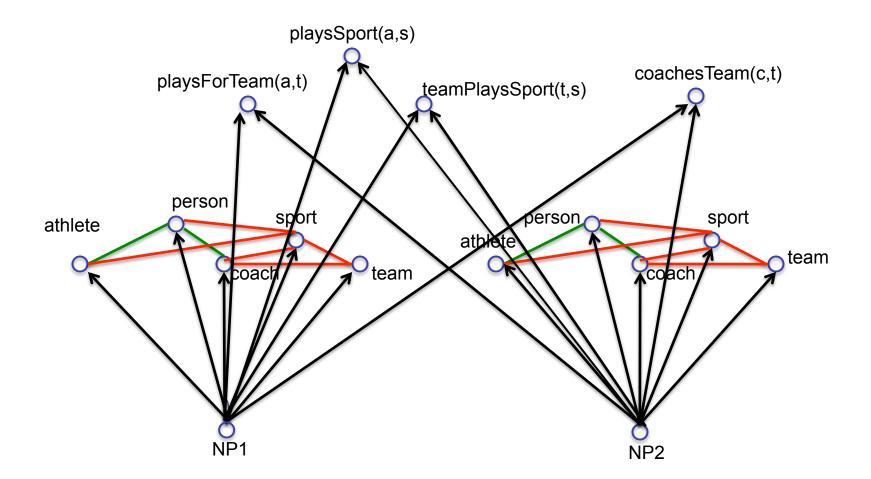
[Blum & Mitchell; 98] [Dasgupta et al; 01] [Ganchev et al., 08] [Sridharan & Kakade, 08] [Wang & Zhou, ICML10]


[Blum & Mitchell; 98] [Dasgupta et al; 01] [Ganchev et al., 08] [Sridharan & Kakade, 08] [Wang & Zhou, ICML10] person f₁(NP) f₃(NP) f₂(NP) NP text NP NP HTML NP: morphology context contexts distribution www.celebrities.com: is a friend capitalized? ______ ends with '...ski'? rang the contains "univ."? walked in

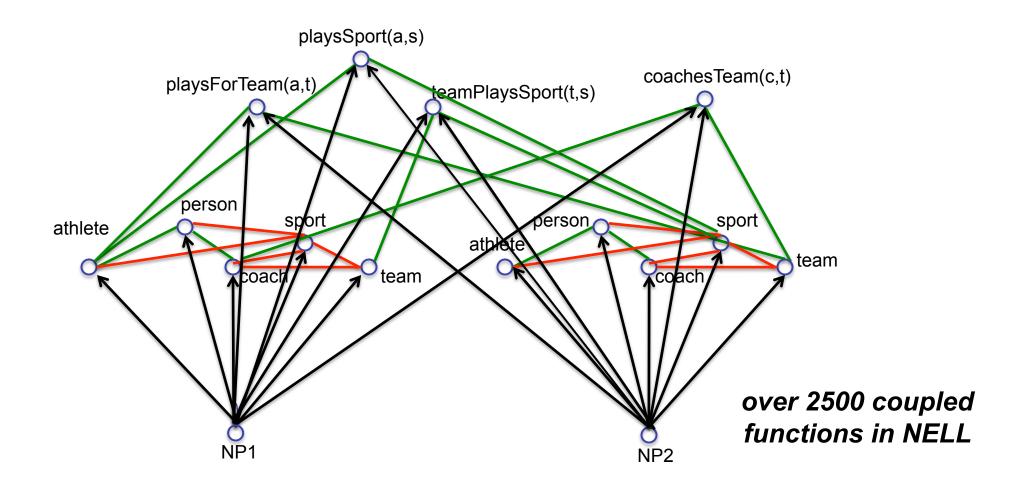
Type 2 Coupling: Multi-task, Structured Outputs



[Daume, 2008]

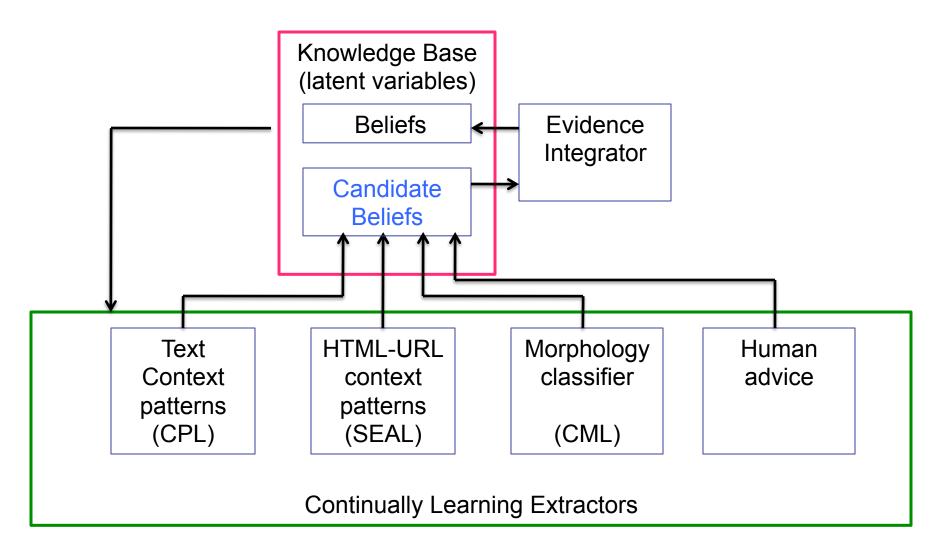

Multi-view, Multi-Task Coupling

Type 3 Coupling: Learning Relations

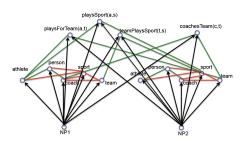


Type 3 Coupling: Argument Types

Type 3 Coupling: Argument Types


playsSport(NP1,NP2) → athlete(NP1), sport(NP2)

NELL: Learned reading strategies


Plays_Sport(a	rg1,arg2):			
arg1_was_	_playing_arg2_arg2_megas	Predicate	Feature	Weight
arg2_playe arg1_is_th arg2_grea arg2_legen arg2_oper arg2_oper arg2_grea arg2_grea arg2_grea arg2_profe arg2_icon arg1_retire arg2_arch arg2_pros	playing_arg2_arg2_friegas er_named_arg1_arg2_prod e_tiger_woods_of_arg2_ar ts_as_arg1_arg1_plays_arg nds_arg1_arg1_arg1_plays_arg nds_arg1_arg1_arg2_players_ ations_chief_arg1_arg2_players_ golfing_personalities_includ ts_like_arg1_arg2_players_ t_arg1_arg2_champ_arg1 essionals_such_as_arg1_arg arg1_arg2_stars_like_arg1 es_from_arg2_arg2_phenor itects_robert_trent_jones_ar _arg1_arg2_stars_venus_a arg1_arg2_stars_venus_a erstar_arg1_arg2_legend_a	mountain mountain mountain musicArtist musicArtist musicArtist musicArtist newspaper newspaper newspaper newspaper university university university	LAST=peak LAST=mountain FIRST=mountain LAST=band POS=DT_NNS POS=DT_JJ_NN LAST=sun LAST=sun LAST=college PREFIX=uc LAST=state LAST=university	1.791 1.093 -0.875 1.853 1.412 -0.807 1.330 -0.318 -0.798 2.076 1.999 1.992 1.745
• = ·	ers_is_arg1_arg2_pro_arg1	university	FIRST=college	-1.381
	ara1 ara2 idol ara1 ara1	visualArtMovemen	e	1 282
Predicate	Web URL		Extraction Template	
academicField athlete bird bookAuthor	http://scholendow.ais.msu.edu/stude http://www.quotes-search.com/d_oc http://www.michaelforsberg.com/sto http://lifebehindthecurve.com/	occupation.aspx?o=+athlete -		

Initial NELL Architecture

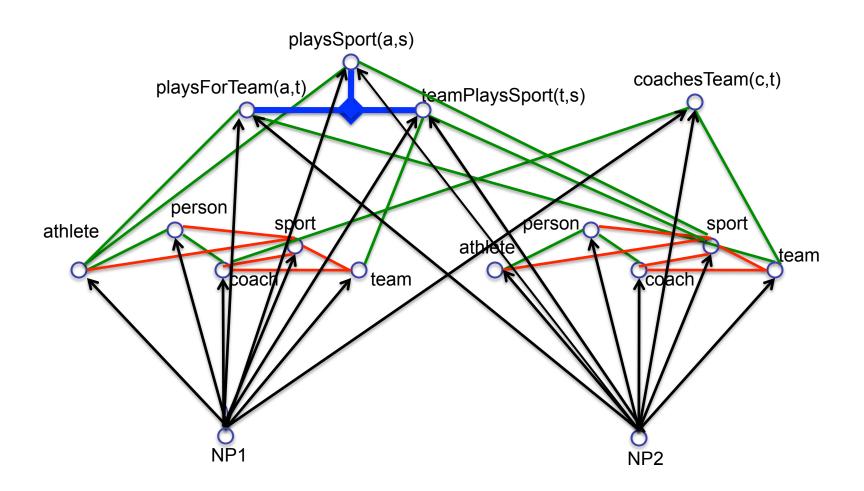
If coupled learning is the key, how can we get new coupling constraints?

Key Idea 2:

Discover New Coupling Constraints

• first order, probabilistic horn clause constraints:

0.93 athletePlaysSport(?x,?y) ← athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)


- connects previously uncoupled relation predicates
- infers new beliefs for KB
- modified version of FOIL [Quinlan]
- restricted rule language: form connected KB subgraphs

Example Learned Horn Clauses

- 0.95 athletePlaysSport(?x,basketball) ← athleteInLeague(?x,NBA)
- 0.93 athletePlaysSport(?x,?y) ← athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)
- 0.91 teamPlaysInLeague(?x,NHL) ← teamWonTrophy(?x,Stanley_Cup)
- 0.90 athleteInLeague(?x,?y) ←athletePlaysForTeam(?x,?z), teamPlaysInLeague(?z,?y)
- 0.88 cityInState(?x,?y) ← cityCapitalOfState(?x,?y), cityInCountry(?y,USA)
- 0.62* newspaperInCity(?x,New_York) ← companyEconomicSector(?x,media) generalizations(?x,blog)

Learned Probabilistic Horn Clause Rules

0.93 playsSport(?x,?y) \leftarrow playsForTeam(?x,?z), teamPlaysSport(?z,?y)

Key Idea 3: Automatically extend ontology

Ontology Extension (1)

Goal:

• Add new relations to ontology

Approach:

- For each pair of categories C1, C2,
 - co-cluster pairs of known instances, and text contexts that connect them

Example Discovered Relations

[Mohamed et al. EMNLP 2011]

Category Pair	Text contexts	Extracted Instances	Suggested Name
MusicInstrument Musician	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	sitar , George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton	Master
Disease Disease	ARG1 is due to ARG2 ARG1 is caused by ARG2	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia	IsDueTo
CellType Chemical	ARG1 that release ARG2 ARG2 releasing ARG1	epithelial cells, surfactant neurons, serotonin mast cells, histomine	ThatRelease
Mammals Plant	ARG1 eat ARG2 ARG2 eating ARG1	koala bears, eucalyptus sheep, grasses goats, saplings	Eat
River City	ARG1 in heart of ARG2 ARG1 which flows through ARG2	Seine, Paris Nile, Cairo Tiber river, Rome	InHeartOf

NELL: sample of self-added relations

- athleteWonAward
- animalEatsFood
- languageTaughtInCity
- clothingMadeFromPlant
- beverageServedWithFood
- fishServedWithFood
- athleteBeatAthlete
- athleteInjuredBodyPart
- arthropodFeedsOnInsect
- animalEatsVegetable
- plantRepresentsEmotion
- foodDecreasesRiskOfDisease

- clothingGoesWithClothing
- bacteriaCausesPhysCondition
- buildingMadeOfMaterial
- emotionAssociatedWithDisease
- foodCanCauseDisease
- agriculturalProductAttractsInsect
- arteryArisesFromArtery
- countryHasSportsFans
- bakedGoodServedWithBeverage
- beverageContainsProtein
- animalCanDevelopDisease
- beverageMadeFromBeverage

Ontology Extension (2)

[Burr Settles]

Goal:

Add new subcategories

Approach:

- For each category C,
 - train NELL to read the relation SubsetOf_C: $C \rightarrow C$

*no new software here

NELL: example self-discovered subcategories

Animal:

• Pets

 Hamsters, Ferrets, Birds, Dog, Cats, Rabbits, Snakes, Parrots, Kittens, ...

Predator

 Bears, Foxes, Wolves, Coyotes, Snakes, Racoons, Eagles, Lions, Leopards, Hawks, Humans, ...

Learned reading patterns for Subset(arg1,arg2) "arg1 and other medium sized arg2" "arg1 and other jungle arg2" "arg1 and other magnificent arg2" "arg1 and other pesky arg2" "arg1 and other mammals and arg2" "arg1 and other lce Age arg2" "arg1 or other biting arg2" "arg1 and other marsh arg2" "arg1 and other migrant arg2" "arg1 and other monogastric arg2" "arg1 and other mythical arg2" "arg1 and other nesting

NELL: example self-discovered subcategories

Animal:

• Pets

 Hamsters, Ferrets, Birds, Dog, Cats, Rabbits, Snakes, Parrots, Kittens, ...

Predator

 Bears, Foxes, Wolves, Coyotes, Snakes, Racoons, Eagles, Lions, Leopards, Hawks, Humans, …

Learned reading patterns:

"arg1 and other medium sized arg2" "arg1 and other jungle arg2" "arg1 and other magnificent arg2" "arg1 and other pesky arg2" "arg1 and other mammals and arg2" "arg1 and other Ice Age arg2" "arg1 or other biting arg2" "arg1 and other marsh arg2" "arg1 and other migrant arg2" "arg1 and other monogastric arg2" "arg1 and other mythical arg2" "arg1 and other nesting Chemical:

- Fossil fuels
 - Carbon, Natural gas, Coal, Diesel, Monoxide, Gases, …

Gases

 Helium, Carbon dioxide, Methane, Oxygen, Propane, Ozone, Radon...

Learned reading patterns:

"arg1 and other hydrocarbon arg2" "arg1 and other aqueous arg2" "arg1 and other hazardous air arg2" "arg1 and oxygen are arg2" "arg1 and such synthetic arg2" "arg1 as a lifting arg2" "arg1 as a tracer arg2" "arg1 as the carrier arg2" "arg1 as the inert arg2" "arg1 as the primary cleaning arg2" "arg1 and other noxious arg2" "arg1 and other trace arg2" "arg1 as the reagent arg2" "arg1 as the tracer

Key Idea 4: Cumulative, Staged Learning Learning X improves ability to learn Y

- 1. Classify noun phrases (NP's) by category
- 2. Classify NP pairs by relation
- 3. Discover rules to predict new relation instances
- 4. Learn which NP's (co)refer to which latent concepts
- 5. Discover new relations to extend ontology
- 6. Learn to infer relation instances via targeted random walks
- 7. Learn to assign temporal scope to beliefs
- 8. Learn to microread single sentences
- 9. Vision: co-train text and visual object recognition
- 10. Goal-driven reading: predict, then read to corroborate/correct
- 11. Make NELL a conversational agent on Twitter
- 12. Add a robot body to NELL

thank you

and thanks to: Darpa, Google, NSF, Intel, Yahoo!, Microsoft, Fullbright