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Human health research

There are many data sharing challenges in human health research

• Secondary use of clinical data for research

• Multi-site studies on QA or comparative effectiveness

• Joint (secondary) analyses on aggregated research data
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Institutions often want to share data

• Different research groups using the same type of measurements
want to do a joint analysis.

• Sharing requires lawyers at each institution to generate Data Use
Agreements.

• Resulting months of negotiation makes even small-scale
collaboration too complicated.
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Collaborative research systems

Research consortia are common in many research areas involving
human health:

• Foster collaborative research about a particular condition
(Alzheimer’s, autism, breast cancer, etc.)

• Automated sharing is challenging, but this is changing.

Goal: use privacy protections to encourage consortium growth.

Rutgers Sarwate



DIMACS > Human health research 4 / 23

Collaborative research systems

Research consortia are common in many research areas involving
human health:

• Foster collaborative research about a particular condition
(Alzheimer’s, autism, breast cancer, etc.)

• Automated sharing is challenging, but this is changing.

Goal: use privacy protections to encourage consortium growth.

Rutgers Sarwate



DIMACS > Human health research 4 / 23

Collaborative research systems

Research consortia are common in many research areas involving
human health:

• Foster collaborative research about a particular condition
(Alzheimer’s, autism, breast cancer, etc.)

• Automated sharing is challenging, but this is changing.

Goal: use privacy protections to encourage consortium growth.

Rutgers Sarwate



DIMACS > Human health research 4 / 23

Collaborative research systems

Research consortia are common in many research areas involving
human health:

• Foster collaborative research about a particular condition
(Alzheimer’s, autism, breast cancer, etc.)

• Automated sharing is challenging, but this is changing.

Goal: use privacy protections to encourage consortium growth.

Rutgers Sarwate



DIMACS > Human health research 5 / 23

COllaborative Informatics Neuroimaging Suite

• End-to-end system for managing data for studies on the brain

• Current usage: 37,903 participants in 42,961 scan sessions from
612 studies for a total of 486,955 clinical assessments.

• Data from 34 states, 38 countries

• Partners with research consortia such as the Autism Brain
Imaging Data Exchange (ABIDE)
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Example: schizophrenia research
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• Goal: build a system that can identify schizophrenia.
• Data: MRIs from multiple studies (healthy controls and

schizophrenics).
• Algorithm: classification using machine learning (e.g. support

vector machine).
• Privacy risk: each study has to allow access to sensitive subject

data.
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State of the art: ENIGMA

http://enigma.ini.usc.edu

“The ENIGMA Network brings together researchers in imaging
genomics to understand brain structure, function, and disease, based
on brain imaging and genetic data.”

• MA = meta analysis : focused on
• Goals: improve reproducibility, sample sizes
• Validation: found genetic variations associated with

neurophysiological characteristics (e.g. hippocampal/intercranial
volumes)
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Workflows in ENIGMA

http://enigma.ini.usc.edu

ENIGMA has 30+ working groups on diseases, genomics, population
variation, and methods. To do a study:

• Study proposal is approved by ENIGMA managers.

• Analyses performed on local sites and emailed to ENIGMA
manager as Excel spreadsheets.

• Manager has to perform “manual” meta-analysis.
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Low-hanging fruit: automate this

COINSTAC works in a different way: data is registered in the system
and analyses are performed/aggregated automatically through message
passing.

• Study is proposed specifying data needed.

• Local sites approve access to data.

• Analyses are run and aggregated automatically.

This can be significantly faster than the ENIGMA approach.
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The COINSTAC workflow

In COINSTAC, research groups install the software and register their
data in the system:

• Form ongoing and ad-hoc “consortia” (slow, requires approval)

• Once established, consortium members can initiate a joint analysis

• Computation is performed locally and messages passed between
sites

Rutgers Sarwate
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What’s in the medium term

COINSTAC prototype is currently “demo-able” but not up and
running.
• Compute more than summary statistics, ridge regression, etc.
• Improve user interface and usability for practitioners, including

visualization tools.
• Initial subject focus for new results: addiction studies.
• Incorporate/test differentially private methods for machine

learning.
Rutgers Sarwate
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Focusing on “old” algorithms

Because the focus is on usability, we are working on methods popular
in neuroimaging:

• Feature discovery: ICA, IVA, NMF, deep learning, etc.

• Regression and classification: ridge regression, LASSO, SVM, etc.

• Visualization: t-SNE, network visualization, etc.

Rutgers Sarwate
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COINSTAC vs. other health data systems

COINSTAC is a solution that works for typical neuroimaging research
initiatives.

1 Data is “big” from the perspective of the domain area.

2 Methods with asymptotic guarantees may not be ideal.

3 Strong formal privacy may be trumped by utility requirements.
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Sad news: no privacy is enough?

D2

D3

DN

D1

Aggregator

From the perspective of IRBs and other regulatory bodies,
decentralized/distributed algorithms may be “good enough.”

• Getting them to work on the computing infrastructure is itself
challenging.

• Threat models and surface are different than “typical” data
sharing scenarios.

• Provides a useful test case for “newer” privacy technologies:
differential privacy, multiparty computation.
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Making formal privacy guarantees

Currently working on making differentially private versions of existing
algorithms. Differential privacy involves introducing randomization
(e.g. noise) in computations.

• Small number of subjects → larger noise → more error.

• Neuroimaging data is high-dimensional: need some dimension
reduction.

• Preference for stronger (ε, 0) guarantees, but improved analyses
give (ε, δ).

Rutgers Sarwate
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Dealing with federated infrastructure

Uploading all the data to EC2 or Azure is not an acceptable (yet?)

• Local storage overhead can be challenging.

• Local processing costs are heterogeneous.

• Communication can act as a real bottleneck.
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Compromises, compromises

At the moment we are making many compromises:

• Utility first: practical values of ε for differential privacy are large.

• Low communication: focus on one-shot aggregation over iterative
methods.

• Simple tasks: stick with developing distributed methods for known
algorithms.
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Policy and privacy and systems, oh my!

Data sharing in health research may be different than open sharing or
industry/academia sharing.

• Different regulations around human subjects for experimental data
or for PHI in clinical data.

• Informed consent model allows subject-level and study-level
privacy preferences.

• Data sharing is contingent and possibly transient: revert to access
only.
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Recap

Shared-access models with “privacy protections” (formal or not) can
encourage researchers to join consortia.

• Benefits/risks align with the desires of data holders/researchers.

• Data holders retain control over access and allowed computations.

• Data users can use automated computations for hypothesis
generation.

Rutgers Sarwate
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Some lessons learned

• start small: variability of problem types is large

• challenging to bridge gaps between algorithmist and developer

• communication requirements are nontrivial
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Another application: secondary use of clinical data
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The iDASH center at UCSD is working on larger-scale human health
research involving clinical records.

• Goal: to make clinical data warehouse more useful to researchers

• Diverse range of problems in compression, genomics, NLP, etc.
with privacy

• Spurring research transition through data challenges, internships,
etc.

The features of these problems are very different!
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Moving the hub forward w.r.t. health

6=6= 6=

• Recognize that “medical data” is at best a placeholder and at
worst semantically void.

• Spend some time delineating the problem space and
domain-specific challenges.

• For theorists: can we get out of asymptopia?

• For practitioners: what do you want to do versus how do you
want to do it?
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