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Security and Reliability: A Broad Range of
Environments

Targeted attacks on industrial control systems (ICS)
are growing in frequency and severity

- 7,200 Internet-facing control system devices in U.S.

Network cells can suffer degraded performance or
outage without raising any explicit alarms

— explosion of mobile data traffic from use of tablets, smartphones,
and netbooks for day-to-day tasks

Critical information is migrating into the cloud

— SLAs include no clauses with procedures to follow in case of
forensic investigation



E—————————————————
Data Analytics for Secure and Reliable
Systems

Modern technologies generate a wealth of data
— Part of their functionality
— Byproduct of their operation

- Analyze the entirety of the data that a system produces
— Audit and monitor
- Keep system within intended behavioral boundaries



Threat/Failure Detection Analysis

Traditionally relies on signature-based detectors
- blind to zero-day attacks
— do not detect new types of failures

Alternative: anomaly-based detection (AD) sensors
— model normal behavior of systems

- natively well-suited for detecting zero-day attacks and new types
of failures

-~ becoming a necessity, rather than an option

BUT....



Motivation — AD Sensors

Major hurdles in the deployment, operation, and
maintenance of AD systems:
- Real training data is polluted
Manual labeling is difficult
— Must adapt to the system under protection
Calibration by a human expert
- False positives
Manual inspection is needed
- Protected system evolves over time
Operator must keep AD sensor up-to-date



Outline

Hands-free accurate anomaly detection

Communication pattern monitoring for industrial control
systems

Anomaly detection in operational cellular networks



Anomaly Detection

Trained on a stream of continuous data
Creates a self-contained AD model
Classifies a new data point as either normal or abnormal

Training

AD model

Testing normal
phase abnormal



Anomaly Detection

O Fundamental problem: quality of models

O Attacks and abnormalities
m pollute training data

m poison normality model Traini
rainin
IO O ®

ENE

O Goal: remove them from training dataset

O Related ML algorithms: ensemble methods [Dietterich00],
MetaCost [Domingos99], meta-learning [Stolfo00]



Training Strategies: Sanitization

Divide training data into multiple micro-datasets with the

same time granularity

Build micro-models for each micro-dataset

Test all models against a smaller dataset
- Hypothesis: attacks and non-regular data cause localized

"pollution”
Build sanitized and abnormal

models

— use a voting algorithm
-V = voting threshold

Published at HotDep07,S&P08: Cretu et al.
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Evaluatlon Dataset
300/100/100 hours of real network traffic

Three different http traces

Implementation using two content-based AD:
- Anagram [Wang06] - n-gram analysis
- Payl [Wang0535] - byte frequency distributions
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AD Sensors Comparison

www 1 WWW lists

Sensor FP (%) TP (%) FP (%) TP (%) FP (%) TP (%)
Anagram 0.07 0 0.01 0 0.04 0

Anagram with 0.04 20.20 0.29 17.14 0.05 18.51
Snort

Anagram 0.10 100 0.34 100 0.10 100
with

sanitization

Payl 0.84 0 6.02 40 64.14 64.19
Payl with 6.64 76.76 | 10.43 61 2.40 86.54

sanitization




Automated Deployment of AD Sensors
_a) Anagram

_b) Payl
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Towards fully automated AD deployment and operation:

m identify the intrinsic characteristics of the training data (i.e.
self-calibration)

m automatically select an adaptive voting threshold (i.e. self-
sanitization)



Training Dataset Stabilization
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Voting Threshold Detection

p(vi) = L =20 e (v ber of pack

PV = B Po) V\Il ere P(V) - number of packets
na

Separation problem:

— find the smallest threshold (minimize V) that
— maximizes the level of normal data (maximize p(V))
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Overall Performance

www 1 lists
Parameters FP(%) TP (%) FP(%) TP (%)
N/A (no sanitization) 0.07 0 0.04 0
empirical 0.10 100 0.10 100
fully automated 0.16 92.92 0.10 100

Self-sanitize the training data and achieve performance
comparable to best empirical case

Published at RAID09: Cretu et al.



Anomaly Detection

Self-Adaptive AD Sensors
— Training dataset sanitization
- Self-calibration

— Cross-site sanitization (S&P08, Cretu et al.), extended by Boggs at
el. (RAID11)

— Model self-update (Cretu et al., NIPS Workshop 07 and RAID 09)

Beyond enterprise network-based intrusion detection....



Outline

Hands-free accurate anomaly detection

Communication pattern monitoring for industrial control
systems

Anomaly detection in operational cellular networks
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Industrial Control Systems (ICS)

Targeted attacks on ICS are growing
In frequency and severity
— 7,200 Internet-facing control system devices in

U.S. [1]
|CS use specialized but insecure [1] DHS ICS-CERT Monitor,
communication protocols October-December 2012

— Enterprise security tools cannot detect zero-
day attacks specific to these protocols

|ICS exhibit constrained behavior:
m Fixed topology

m Regular communication patterns

m Limited number of protocols

m Simpler protocols



Connection Model

Master Slave

D Cmd + Parameter
Dev X J‘ Dev Y
Response k

Slave can receive N command types

For the same command type,

— Parameters can vary, but not much

— Responses depend on the <Cmd, Parameter> pair
- Devices will have an ‘internal’ state

— May not be directly visible

— Operational modes, normal/compromised



Predictable Behavior of ICS Network

- Globally (across entire network)?

-~ No. Devices behavior change with different frequencies.
- At device level?

— Better, but still not deterministic as a device may communicate with
many devices

~-Dev217 ~~ Dev199 -+ Dev208 -~ Dev130
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Predlctable Behavior of ICS Network

Globally (across entire network)?

- No. Devices behavior change with different frequencies.
At device level?

— Better, but still not deterministic as a device may communicate with
many devices

At connection level?
— Stable, deterministic!
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How to Model Sequence Patterns?

Ly

Time

a b a b|c
|

>

c a b a b ¢ ¢

- What is the probability of seeing a certain command at time
t, given a history of commands of length m?



Learning Patterns of Commands and Data

Learning the normal sequence of commands = Learning
a Markov chain of order m

Challenges
— Packets can be missing
— Patterns may vary

Need for a probabilistic approach
— Learn the conditional probability distribution (CPD)

PT(Ut‘Ut—m T Ut—l)

Published at NDSS SENT13: Yoon and Ciocarlie



Learning Patterns Using Incremental PST

Probabilistic Suffix Tree (PST)

— A variable-order Markov model
— Bounded depth (the maximum order), L

Pr(o¢|o109--01-1) ~ Pr(o¢|ot_g -+ -0¢_1), k<L

— Efficiently represents CPD using tree structure

Batch learning is not applicable to network-level AD due to the
flow of packets

Incremental approach: update the tree whenever reading an
element, o

- Keep recently-read elements
— Update the counts for recent history of length /.. L



Incremental PST Example
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A MODBUS connection

-~ Base pattern: 1-2-1-2-4-4

— Normal sequence

— Most likelihoods are close to 1.0

— Near zero values due to missing packets

© 2016 SRI International



False Positive Due to Missing Packets

Base pattern: 1 2 1 2 4 4 | (MaxDepth) =3

>
1-0-1-0-4-4 - 1-0-2-4 - 1 Time
\_'_I

Pr(2[4-1-2) = 1.69%

Missing one packet can cause multiple false positives
— In this example, missing ‘1’ causes two false positives



Incremental PST with Prediction
If PT(O’th't_L T O't_l) < 0

— assume an element is missing and try to restore it!

First, find what we should have seen.

oy = argmax Pr(olos_p - 04_1)

O
Then, use it to calculate the new likelihood

O't%LO't—L—I—l e Op1] —s Ot—[41" " Ot_10ML
Lengt'h:L

——————————————————————————————————————————————————————————————————————————

——————————————————————————————————————————————————————————————————————————



Incremental PST with Prediction Example

Incremental PST
O s 008

Pr (Cmd|History)
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Significantly reduced FP rate, unless consecutive
packets are missing.



False Positive Rates of Modbus Traffic

FPR Con&ction Witl'r\laewnand patterns
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Real Modbus traffic
m 2 masters, 25 slaves, 86 connections (43 pairs)
m 4 cmd types
m No attack/anomaly is known; some packets are missing



Evaluation — synthetic data

Generate a random base pattern

Then, generate a random sequence based on the
pattern

— With a missing probability, a command can be dropped
— With an attack probability, a random short sequence is inserted

Input parameters

— Min, max of base pattern length
— # of command types

— Missing, attack probabilities



Evaluation
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Evaluation
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Communication pattern monitoring for ICS

A new probabilistic-suffix-tree-based approach for ICS
anomaly detection, which extracts the normal patterns of

command and data sequences from |ICS
communications

A false positive rate reduction mechanism, instrumental
for ICS environments

An implementation of the proposed approached applied
to both real and simulated datasets



Outline

Hands-free accurate anomaly detection

Communication pattern monitoring for industrial control
systems

Anomaly detection in operational cellular networks
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Problem: SON Coordination/Verification

Networks can suffer degradations if actions that change
network-element configurations are not coordinated

Mitigation: SON verification

— must occur fast in order to correlate the detection results and
diagnose the system

Key problem: modeling network/subnetwork state

Published at MONAMI14, IWSON14: Ciocarlie et al.



L G
Clustering Module —
uses Probabilistic Topic Modeling

Discover and annotate large - Discover “topics”/states in a

archives of documents with cellular network
thematic information . Determine the number of
clusters automatically using a
Hierarchical Dirichlet Process
(HDP) approach
Topics Documens Jovichiaparions &
E"’,ﬂ EE% Seeklng Life’s Bare (Genetlc) Necessmes
— - )
oo 82 il
— (Tt B VO — L
N

Communications of the ACM, April 2012, Vol 55, No.4, p.78
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Cluster Interpretation Module
uses KP| Characteristics

“

- Automatically classifies each cluster as either normal or
abnormal based on KPI characteristics

- KPIs that should not increase (e.g., drop call rate)
or decrease (e.g., call success rate) beyond a certain threshold

VERY GOOD for DCR
KPI
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DCR KPI
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Detection Module

T
uses Topic Modeling

At every timestamp t, a set of cluster mixture weights is
generated indicating the state of the network

—

Cluster O
predominant state

1.0 I T T T T
08 -

06 i .

1 Time t,
02 i

oo 0 1 ? 3 4

Probability
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E—————————————————
Diagnosis of Network-Level Anomalies
Using Markov Logic Networks (MLNSs)

MLNs combine first-order logic and probabilistic models in a
Slngle representatlon (Richardson and Domingos, 2006)

MLNSs are first-order knowledge bases with a weight attached
to each rule

- Weights can be learned over time as examples arise
— Contradictions OK; missing data OK

MLNs compute the “most likely explanation” for an event given
the data

SRI has a very efficient state-of-the-art MLN solver called the
Probabilistic Consistency Engine (PCE)



Combine MLN and Topic Modeling

Use network state information as extracted by topic
modeling in the MLN inference

— Use Principal Component Analysis (PCA) to identify groups of
cells that exhibit similar behavior

-~ Reason over groups of cells to reduce the number of entities

The MLN provides the most likely explanation for the
state of the network

— Reasoning over configuration management (CM) and external
factor information



Real Dataset

3G dataset for January-March 2013, 1583 timestamps

_ ™~ 9000 cells (~ 4000 valid)

— 11 non-periodic KPIs (3G_CS_CSSR, 3G_CS_DCR,
3G_Cell_Availability, 3G_CS_CSSR_Ph1, 3G_CS_CSSR_Ph2,

3G_CS CSSR Ph3,3G_PS CSSR, 3G_PS DCR, DCR_CS voice,
Retainability PS_Rel99, RNC_305a)

Example:
3G_CS DCR

oEB8EY
T

3G_CS_DCR
I

0

Shortcomings
- Many data points are missing

— No ground truth information associated with the provided dataset
— Hourly KPI and daily CM data
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Hierarchical Dirichlet Process

in Networlk
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MLN Inference

Input

sort Group_t;
sort Precip_t;

const G1, G2, G3, ...

# A1l anomalies

assert anomaly(G258);
assert anomaly(G259);
assert anomaly(G265);
assert anomaly(G316);
assert anomaly(G325);
assert anomaly(G344);
assert anomaly(G365);
assert anomaly(G386);
assert anomaly(G401);
assert anomaly(G438);

G486: Group_t;

add wcel_angle_changed(G10) 36.0;
add wcel_angle_changed(G364) 2.0;
add wcel_angle_changed(G9) 40.5;
add wcel_angle_changed(G31) 21.0;
add wcel_angle_changed(G290) 1.0;
add wcel_angle_changed(G229) 3.0;
add wcel_angle_changed(G45) 8.0;
add wcel_angle_changed(G68) 6.5;
add wcel_angle_changed(G294) 5.0;
add wcel_angle_changed(G83) 8.5;
add wcel_angle_changed(G72) 13.0;

add [G]
add [G]
add [G]
add [G]
add [G]
add [G]
hw_event(G) 5.0;

Anomalies
from Topic
~Modeling

CM data (e.g.
- wecel_angle
change)

(precip(G, LIGHT-SNOW) and anomaly(G)) implies weather_event(G) 0.1;
(precip(G, SNOW) and anomaly(G)) implies weather_event(G) 0.5;
(precip(G, HEAVY-SNOW) and anomaly(G)) implies weather_event(G) 2.0;
(wcel_angle_changed(G) and anomaly(G)) implies cm_event(G) 4.0;
cm_event(G) implies not weather_event(G) 1.0;

(Canomaly(G) and (not weather_event(G)) and (not cm_event(G))) implies

Rules 'and weights

Output

8 results:

[x <- G325]
[x <- G265]
[x <- G316]
[x <- G365]
[x <- G344]
[x <- G386]
[x <- G259]
[x <- G258]
0 results:

0 results:

476 results:

[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x
[x

G119]

G2] 1.
G3] 1.
G4] 1.

G376]
G377]
G378]
G379]
G380]
G381]
G382]
G383]
G385]
G387]
G388]
G389]
G392]
G393]

[SESESESESISESES)

.968:
955:
940:
.937:
.876:
.828:
768:
.749:

(cm_event(G325))
(cm_event(G265))
(cm_event(G316))
(cm_event(G365))
(cm_event(G344))
(cm_event(G386))
(cm_event(G259))
(cm_event(G258))

1.000: (normal(G119))
000: (normal(G2))
000: (normal(G3))
000: (normal(G4))

PRRPRPEPRPRPREPRPRPRRRER

.000:
000:
.000:
.000:
.000:
000:
.000:
.000:
.000:
000:
000:
.000:
.000:
.000:

(normal(G376))
(normal(G377))
(hormal(G378))
(normal(G379))
(normal(G380))
(normal(G381))
(normal(G382))
(normal(G383))
(normal(G385))
(normal(G387))
(normal(G388))
(normal(G389))
(normal(G392))
(normal(G393))

Groups of
cells

" affected by
CM changes

Normal
~ groups of
cells
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Cells Diagnosed by MLN

Percentage of cells representing cm_events [%]

o

Change in wcel_angle

/

o i

© o0

o

02/01/2013

02/08/2013 02/15/2013 02/22/2013

Timestamp

Percentage of cells
diagnosed as anomalous due
to CM changes

0.3

0.2

Percentage of cells representing weather_events [%]
0.1

o
(=)

T
02/01/2013

02/08/2013

02/15/2013

Timestamp

02/22/2013

Percentage of cells diagnosed as

anomalous due to weather

events
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Operational Cellular Networks

SON verification

- Tested on KPI, CM and weather data from a real operational cell
network

— Topic modeling detects anomalies at a large scale

- MLN performs diagnosis within groups of cells



Recap

New methods for detecting intrusions, performance
degradation, and other anomalous behaviors

— capture the normal behavior of a system

— detect departures from normality and attribute causes

Industrial control systems

— probabilistic-suffix-tree-based approach to extract normal patterns
of command and data sequences

Mobile broadband networks

— model cell behavior based on key performance indicators to
identify partial and complete degradations

— model the state of the network within a larger scope to verify
configuration management parameters changes
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