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Security and Reliability: A Broad Range of 
Environments

• Targeted attacks on industrial control systems (ICS) 
are growing in frequency and severity
− 7,200 Internet-facing control system devices in U.S.

• Network cells can suffer degraded performance or 
outage without raising any explicit alarms
− explosion of mobile data traffic from use of tablets, smartphones, 

and netbooks for day-to-day tasks

• Critical information is migrating into the cloud
− SLAs include no clauses with procedures to follow in case of 

forensic investigation
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Data Analytics for Secure and Reliable 
Systems

• Modern technologies generate a wealth of data
− Part of their functionality
− Byproduct of their operation

• Analyze the entirety of the data that a system produces
− Audit and monitor
− Keep system within intended behavioral boundaries
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Threat/Failure Detection Analysis

• Traditionally relies on signature-based detectors
− blind to zero-day attacks
− do not detect new types of failures 

• Alternative: anomaly-based detection (AD) sensors 
− model normal behavior of systems
− natively well-suited for detecting zero-day attacks and new types 

of failures
− becoming a necessity, rather than an option

BUT….
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Motivation – AD Sensors

• Major hurdles in the deployment, operation, and 
maintenance of AD systems:
− Real training data is polluted

• Manual labeling is difficult
− Must adapt to the system under protection

• Calibration by a human expert
− False positives

• Manual inspection is needed
− Protected system evolves over time

• Operator must keep AD sensor up-to-date
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Outline

• Hands-free accurate anomaly detection

• Communication pattern monitoring for industrial control 
systems

• Anomaly detection in operational cellular networks
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• Trained on a stream of continuous data 
• Creates a self-contained AD model
• Classifies a new data point as either normal or abnormal

Anomaly Detection

…….. Training	
phase

AD model

Testing	
phase

normal
abnormal
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Anomaly Detection

p Fundamental problem: quality of models
p Attacks and abnormalities

n pollute training data
n poison normality model

p Goal: remove them from training dataset

p Related ML algorithms: ensemble methods [Dietterich00],
MetaCost [Domingos99], meta-learning [Stolfo00]

…….. Training	
phase
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Training Strategies: Sanitization

• Divide training data into multiple micro-datasets with the 
same time granularity

• Build micro-models for each micro-dataset
• Test all models against a smaller dataset

− Hypothesis: attacks and non-regular data cause localized 
"pollution“

• Build sanitized and abnormal
models
− use a voting algorithm
− V = voting threshold

9

M1 M2 MK

Voting 
algorithm

Abnormal
model

Sanitized 
modelTraining phase

μM1 μM2 μMK

Voting 
algorithm

Abnormal 
model

Sanitized 
modelTraining phase

Micro-datasets
……..

Training dataset

Published at HotDep07,S&P08: Cretu et al.
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Evaluation Dataset
• 300/100/100 hours of real network traffic
• Three different http traces
• Implementation using two content-based AD:

− Anagram [Wang06] - n-gram analysis
− Payl [Wang05] - byte frequency distributions
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AD Sensors Comparison

Sensor
www1 www lists

FP (%) TP (%) FP (%) TP (%) FP (%) TP (%)

Anagram 0.07 0 0.01 0 0.04 0

Anagram with 
Snort

0.04 20.20 0.29 17.14 0.05 18.51

Anagram 
with 
sanitization

0.10 100 0.34 100 0.10 100

Payl 0.84 0 6.02 40 64.14 64.19

Payl with 
sanitization

6.64 76.76 10.43 61 2.40 86.54

11
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Automated Deployment of AD Sensors
a) Anagram                                                b) Payl

p Towards fully automated AD deployment and operation:
n identify the intrinsic characteristics of the training data (i.e. 

self-calibration)
n automatically select an adaptive voting threshold (i.e. self-

sanitization)
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Training Dataset Stabilization

• Compute the likelihood of 
seeing new traffic

• Linear least squares 
approximation detects the 
stabilization point
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• where P(V) – number of packets 
deemed normal

• Separation problem:
− find the smallest threshold (minimize V) that
− maximizes the level of normal data (maximize p(V))

Voting Threshold Detection
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Overall Performance

Parameters
www1 lists

FP (%) TP (%) FP (%) TP (%)

N/A (no sanitization) 0.07 0 0.04 0
empirical 0.10 100 0.10 100
fully automated 0.16 92.92 0.10 100

15

p Self-sanitize the training data and achieve performance 
comparable to best empirical case

Published at RAID09: Cretu et al.
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Anomaly Detection

• Self-Adaptive AD Sensors
− Training dataset sanitization 
− Self-calibration 
− Cross-site sanitization (S&P08, Cretu et al.), extended by Boggs at 

el. (RAID11)
− Model self-update (Cretu et al., NIPS Workshop 07 and RAID 09)

• Beyond enterprise network-based intrusion detection….
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Outline

• Hands-free accurate anomaly detection

• Communication pattern monitoring for industrial control 
systems

• Anomaly detection in operational cellular networks
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Communication Pattern Monitoring for 
Industrial Control Systems
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Industrial	Control	Systems	(ICS)
• Targeted attacks on ICS are growing 

in frequency and severity
− 7,200	Internet-facing	control	system	devices	in	

U.S. [1]

• ICS use specialized but insecure
communication protocols 
− Enterprise	security	tools	cannot detect	zero-

day	attacks specific	to	these	protocols

[1]	DHS	ICS-CERT	Monitor,	
October-December	2012

p ICS exhibit constrained behavior:
n Fixed topology
n Regular communication patterns
n Limited number of protocols
n Simpler protocols
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Connection	Model

Dev X Dev Y

Master Slave
Cmd + Parameter

Response

• Slave can receive N command types
• For the same command type, 

− Parameters	can	vary,	but	not	much
− Responses	depend	on	the	<Cmd,	Parameter>	pair

• Devices will have an ‘internal’ state
− May	not	be	directly	visible
− Operational	modes,	normal/compromised
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Predictable	Behavior	of	ICS	Network
• Globally (across entire network)? 

− No. Devices behavior change with different frequencies.
• At device level? 

− Better, but still not deterministic as a device may communicate with 
many devices

Egress volume

Ingress volume
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Predictable	Behavior	of	ICS	Network
• Globally (across entire network)? 

− No. Devices behavior change with different frequencies.
• At device level? 

− Better, but still not deterministic as a device may communicate with 
many devices

• At connection level?
− Stable, deterministic! 

Command frequency 
distribution

Command sequence Can be modeled as 
sequence patterns
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How	to	Model	Sequence	Patterns?

• What	is	the	probability	of	seeing	a	certain	command	at	time	
tk given	a	history	of	commands	of	length	m?

a b a b c c a b a b c c

Time 

m

tk
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Learning	Patterns	of	Commands	and	Data

• Learning the normal sequence of commands = Learning 
a Markov chain of order m

• Challenges
− Packets	can	be	missing
− Patterns	may	vary

• Need for a probabilistic approach
− Learn	the	conditional	probability	distribution	(CPD)

Pr(�t|�t�m · · ·�t�1)

Published	at	NDSS	SENT13:	Yoon	and	Ciocarlie
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Learning	Patterns	Using	Incremental	PST
• Probabilistic Suffix Tree (PST)

− A variable-order Markov model
− Bounded depth (the maximum order), L

− Efficiently represents CPD using tree structure

• Batch learning is not applicable to network-level AD due to the 
flow of packets

• Incremental approach: update the tree whenever reading an 
element, σ
− Keep recently-read elements
− Update the counts for recent history of length 1.. L

Pr(�t|�1�2 · · ·�t�1) ⇠ Pr(�t|�t�k · · ·�t�1) , k ≤ L
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Incremental	PST	Example

• A MODBUS connection
− Base pattern: 1-2-1-2-4-4
− Normal sequence
− Most likelihoods are close to 1.0
− Near zero values due to missing packets
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False	Positive	Due	to	Missing	Packets

• Missing one packet can cause multiple false positives
− In	this	example,	missing	‘1’ causes	two	false	positives

1 2 1 2 4 4Base pattern: L (MaxDepth) = 3

1-2-1-2-4-4 - 1-2-2-4 - 1 Time 

Pr(2|4-1-2) = 1.69%
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Incremental	PST	with	Prediction
• If

− assume	an	element	is	missing	and	try	to	restore	it!

• First,	find	what	we	should	have	seen.

• Then,	use	it	to	calculate	the	new	likelihood
�ML = argmax

�
Pr(�|�t�L · · ·�t�1)

Pr(�t|�t�L · · ·�t�1) < ✓

�t�L�t�L+1 · · ·�t�1 �t�L+1 · · ·�t�1�ML

Length = L

Pr(�t|�t�L · · ·�t�1)
⇠ Pr(�ML|�t�L · · ·�t�1) · Pr(�t|�t�L+1 · · ·�t�1�ML)
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Incremental	PST	with	Prediction	ExampleIncremental PST

Incremental PST w/ Prediction

Significantly reduced FP rate, unless consecutive 
packets are missing.
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False	Positive	Rates	of	Modbus	Traffic
FPR Connection with regular command patterns

Connection no.Θ(Threshold)	=	10%,	L(MaxDepth)	=	5

p Real Modbus traffic
n 2	masters,	25	slaves,	86	connections	(43	pairs)
n 4	cmd	types
n No	attack/anomaly	is	known;	some	packets	are	missing
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Evaluation	– synthetic	data

• Generate a random base pattern

• Then, generate a random sequence based on the 
pattern
− With	a	missing	probability,	a	command	can	be	dropped
− With	an	attack	probability, a	random	short	sequence	is	inserted

• Input parameters
− Min,	max	of	base	pattern	length
− #	of	command	types
− Missing,	attack	probabilities
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Evaluation

Miss prob = 10%
MaxDepth(L) = 5

ROC curve

Signal-Noise Ratio 
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Evaluation

Miss prob = 50%
MaxDepth(L) = 5

ROC curve

Signal-Noise Ratio
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Communication	pattern	monitoring	for	ICS

• A new probabilistic-suffix-tree-based approach for ICS 
anomaly detection, which extracts the normal patterns of 
command and data sequences from ICS 
communications

• A false positive rate reduction mechanism, instrumental 
for ICS environments

• An implementation of the proposed approached applied 
to both real and simulated datasets
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Outline

• Hands-free accurate anomaly detection

• Communication pattern monitoring for industrial control 
systems

• Anomaly detection in operational cellular networks
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Anomaly Detection in Operational 
Cellular Networks
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Problem: SON Coordination/Verification
• Networks can suffer degradations if actions that change 

network-element configurations are not coordinated
• Mitigation: SON verification

− must occur fast in order to correlate the detection results and 
diagnose the system

• Key problem: modeling network/subnetwork state

Published	at	MONAMI14,	IWSON14:	Ciocarlie	et	al.
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Clustering Module 
uses Probabilistic Topic Modeling

• Discover and annotate large 
archives of documents with 
thematic information

• Discover “topics”/states in a 
cellular network

• Determine the number of 
clusters automatically using a 
Hierarchical Dirichlet Process 
(HDP) approach

38

Communications	of	the	ACM,	April	2012,	Vol 55,	No.4,	p.78	

Network	
KPIs

Clustering	
Module

Interpretation	
Module

Detection	
Module
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Cluster Interpretation Module 
uses KPI Characteristics
• Automatically classifies each cluster as either normal or 

abnormal based on KPI characteristics
− KPIs that should not increase (e.g., drop call rate) 

or decrease (e.g., call success rate) beyond a certain threshold

39
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Detection Module 
uses Topic Modeling
• At every timestamp tk a set of cluster mixture weights is 

generated indicating the state of the network

40

Cluster	0

Cluster	1

Cluster	2

Cluster	3

Cluster	4

Cluster	0		
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Time	tk
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Diagnosis of Network-Level Anomalies 
Using Markov Logic Networks (MLNs)
• MLNs combine first-order logic and probabilistic models in a 

single representation (Richardson and Domingos, 2006)
• MLNs are first-order knowledge bases with a weight attached 

to each rule
− Weights can be learned over time as examples arise
− Contradictions OK; missing data OK

• MLNs compute the “most likely explanation” for an event given 
the data

• SRI has a very efficient state-of-the-art MLN solver called the 
Probabilistic Consistency Engine (PCE)

∀x Smokes(x)⇒Cancer(x)
∀x, y Friends(x, y)⇒ Smokes(x)⇔ Smokes(y)( )1.1

5.1
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• Use network state information as extracted by topic 
modeling in the MLN inference
− Use Principal Component Analysis (PCA) to identify groups of 

cells that exhibit similar behavior 
− Reason over groups of cells to reduce the number of entities

• The MLN provides the most likely explanation for the 
state of the network
− Reasoning over configuration management (CM) and external 

factor information

Combine MLN and Topic Modeling
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Real Dataset
• 3G dataset for January-March 2013, 1583 timestamps

− ~ 9000 cells (~ 4000 valid)
− 11 non-periodic KPIs (3G_CS_CSSR, 3G_CS_DCR, 

3G_Cell_Availability, 3G_CS_CSSR_Ph1, 3G_CS_CSSR_Ph2, 
3G_CS_CSSR_Ph3, 3G_PS_CSSR, 3G_PS_DCR, DCR_CS_voice, 
Retainability_PS_Rel99, RNC_305a)

• Shortcomings
− Many data points are missing 
− No ground truth information associated with the provided dataset
− Hourly KPI and daily CM data

Example: 
3G_CS_DCR
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Hierarchical Dirichlet Process 
• 32 topic modeling states 

learned from the process
− 15 normal 
− 17 abnormal

• Example abnormal state: #8
− Corresponds to an anomaly 

condition in mid-Feb
− Shows abnormal condition with 

3G_CS_CSSR and 
3G_CS_CSSR_Ph1

Most of the cells 
in the network 
exhibit abnormal 
CSSR and 
CSSR_Ph1
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Loading 2013021021.mcsat
Input from file 2013021021.mcsat
Setting MCSAT parameters:
 max_samples was 100, now 10000

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 10000
 sa_probability = 0.500000
 samp_temperature = 0.910000
 rvar_probability = 0.200000
 max_flips = 1000
 max_extra_flips = 10

8 results:
[x <- G325] 0.968: (cm_event(G325))
[x <- G265] 0.955: (cm_event(G265))
[x <- G316] 0.940: (cm_event(G316))
[x <- G365] 0.937: (cm_event(G365))
[x <- G344] 0.876: (cm_event(G344))
[x <- G386] 0.828: (cm_event(G386))
[x <- G259] 0.768: (cm_event(G259))
[x <- G258] 0.749: (cm_event(G258))

0 results:

0 results:

476 results:
[x <- G119] 1.000: (normal(G119))
[x <- G2] 1.000: (normal(G2))
[x <- G3] 1.000: (normal(G3))
[x <- G4] 1.000: (normal(G4))
[x <- G376] 1.000: (normal(G376))
[x <- G377] 1.000: (normal(G377))
[x <- G378] 1.000: (normal(G378))
[x <- G379] 1.000: (normal(G379))
[x <- G380] 1.000: (normal(G380))
[x <- G381] 1.000: (normal(G381))
[x <- G382] 1.000: (normal(G382))
[x <- G383] 1.000: (normal(G383))
[x <- G385] 1.000: (normal(G385))
[x <- G387] 1.000: (normal(G387))
[x <- G388] 1.000: (normal(G388))
[x <- G389] 1.000: (normal(G389))
[x <- G392] 1.000: (normal(G392))
[x <- G393] 1.000: (normal(G393))

45

sort Group_t;
sort Precip_t;

const G1, G2, G3, ... G486: Group_t;

…
# All anomalies
assert anomaly(G258);
assert anomaly(G259);
assert anomaly(G265);
assert anomaly(G316);
assert anomaly(G325);
assert anomaly(G344);
assert anomaly(G365);
assert anomaly(G386);
assert anomaly(G401);
assert anomaly(G438);

….
add wcel_angle_changed(G10) 36.0;
add wcel_angle_changed(G364) 2.0;
add wcel_angle_changed(G9) 40.5;
add wcel_angle_changed(G31) 21.0;
add wcel_angle_changed(G290) 1.0;
add wcel_angle_changed(G229) 3.0;
add wcel_angle_changed(G45) 8.0;
add wcel_angle_changed(G68) 6.5;
add wcel_angle_changed(G294) 5.0;
add wcel_angle_changed(G83) 8.5;
add wcel_angle_changed(G72) 13.0;

…..

 add [G] (precip(G, LIGHT-SNOW) and anomaly(G)) implies weather_event(G) 0.1;
 add [G] (precip(G, SNOW) and anomaly(G)) implies weather_event(G) 0.5;
 add [G] (precip(G, HEAVY-SNOW) and anomaly(G)) implies weather_event(G) 2.0;
 add [G] (wcel_angle_changed(G) and anomaly(G)) implies cm_event(G) 4.0;
 add [G] cm_event(G) implies not weather_event(G) 1.0;
 add [G] (anomaly(G) and (not weather_event(G)) and (not cm_event(G))) implies 
hw_event(G) 5.0;

MLN Inference
Input Output

Groups of 
cells 
affected by 
CM changes

CM data (e.g.  
wcel_angle 
change)

Rules and weights

Anomalies 
from Topic 
Modeling

Normal 
groups of 
cells
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Operational Cellular Networks
• SON verification

− Tested on KPI, CM and weather data from a real operational cell 
network

− Topic modeling detects anomalies at a large scale

− MLN performs diagnosis within groups of cells 
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Recap

• New methods for detecting intrusions, performance 
degradation, and other anomalous behaviors
− capture the normal behavior of a system
− detect departures from normality and attribute causes

• Industrial control systems
− probabilistic-suffix-tree-based approach to extract normal patterns 

of command and data sequences
• Mobile broadband networks

− model cell behavior based on key performance indicators to 
identify partial and complete degradations

− model the state of the network within a larger scope to verify 
configuration management parameters changes



© 2016 SRI International

Headquarters
333	Ravenswood	Avenue
Menlo	Park,	CA	94025
+1.650.859.2000

Princeton,	NJ
201	Washington	Road
Princeton,	NJ	08540
+1.609.734.2553

Additional	U.S.	and	
international	locations

www.sri.com

Questions?


