SRI International

Security, Reliability, and Accountability of Large Infrastructure Systems

Gabriela Ciocarlie, PhD Program Manager Cyber Analytics Group SRI NYC

Security and Reliability: A Broad Range of Environments

- Targeted attacks on industrial control systems (ICS) are growing in frequency and severity
 - 7,200 Internet-facing control system devices in U.S.
- Network cells can suffer degraded performance or outage without raising any explicit alarms
 - explosion of mobile data traffic from use of tablets, smartphones, and netbooks for day-to-day tasks
- Critical information is migrating into the cloud
 - SLAs include no clauses with procedures to follow in case of forensic investigation

Data Analytics for Secure and Reliable Systems

- Modern technologies generate a wealth of data
 - Part of their functionality
 - Byproduct of their operation

- Analyze the entirety of the data that a system produces
 - Audit and monitor
 - Keep system within intended behavioral boundaries

Threat/Failure Detection Analysis

- Traditionally relies on signature-based detectors
 - blind to zero-day attacks
 - do not detect new types of failures
- Alternative: anomaly-based detection (AD) sensors
 - model **normal behavior** of systems
 - natively well-suited for detecting zero-day attacks and new types of failures
 - becoming a necessity, rather than an option

BUT....

Motivation – AD Sensors

- Major hurdles in the deployment, operation, and maintenance of AD systems:
 - Real training data is polluted
 - Manual labeling is difficult
 - Must adapt to the system under protection
 - Calibration by a human expert
 - False positives
 - Manual inspection is needed
 - Protected system evolves over time
 - Operator must keep AD sensor up-to-date

Outline

- Hands-free accurate anomaly detection
- Communication pattern monitoring for industrial control systems
- Anomaly detection in operational cellular networks

Anomaly Detection

- Trained on a stream of continuous data
- Creates a self-contained AD model
- Classifies a new data point as either normal or abnormal

Anomaly Detection

- Fundamental problem: quality of models
- Attacks and abnormalities
 - pollute training data

Goal: remove them from training dataset

Related ML algorithms: ensemble methods [Dietterich00], MetaCost [Domingos99], meta-learning [Stolfo00]

Training Strategies: Sanitization

- Divide training data into multiple micro-datasets with the same time granularity
- Build micro-models for each micro-dataset
- Test all models against a smaller dataset
 - Hypothesis: attacks and non-regular data cause localized "pollution"
- Build sanitized and abnormal models
 - use a voting algorithm
 - V = voting threshold

Published at HotDep07,S&P08: Cretu et al.

Evaluation Dataset

- 300/100/100 hours of real network traffic
- Three different http traces
- Implementation using two content-based AD:
 - Anagram [Wang06] n-gram analysis
 - Payl [Wang05] byte frequency distributions

AD Sensors Comparison

Sensor	www1		WWW		lists	
	FP (%)	TP (%)	FP (%)	TP (%)	FP (%)	TP (%)
Anagram	0.07	0	0.01	0	0.04	0
Anagram with Snort	0.04	20.20	0.29	17.14	0.05	18.51
Anagram with sanitization	0.10	100	0.34	100	0.10	100
Payl	0.84	0	6.02	40	64.14	64.19
Payl with sanitization	6.64	76.76	10.43	61	2.40	86.54

Towards fully automated AD deployment and operation:

- identify the intrinsic characteristics of the training data (*i.e.* self-calibration)
- automatically select an adaptive voting threshold (*i.e.* selfsanitization)

Training Dataset Stabilization

 Compute the likelihood of seeing new traffic

 Linear least squares approximation detects the stabilization point

Voting Threshold Detection

•
$$p(V_i) = \frac{P(V_i) - P(0)}{P(1) - P(0)}$$
 where P(V) - number of packets

- Separation problem:
 - find the smallest threshold (minimize V) that
 - maximizes the level of normal data (maximize p(V))

Overall Performance

	WW	vw1	lists	
Parameters	FP (%)	TP (%)	FP (%)	TP (%)
N/A (no sanitization)	0.07	0	0.04	0
empirical	0.10	100	0.10	100
fully automated	0.16	92.92	0.10	100

Self-sanitize the training data and achieve performance comparable to best empirical case

Published at RAID09: Cretu et al.

Anomaly Detection

- Self-Adaptive AD Sensors
 - Training dataset sanitization
 - Self-calibration
 - Cross-site sanitization (S&P08, Cretu et al.), extended by Boggs at el. (RAID11)
 - Model self-update (Cretu et al., NIPS Workshop 07 and RAID 09)
- Beyond enterprise network-based intrusion detection....

Outline

- Hands-free accurate anomaly detection
- Communication pattern monitoring for industrial control systems
- Anomaly detection in operational cellular networks

SRI International

Communication Pattern Monitoring for Industrial Control Systems

Industrial Control Systems (ICS)

- Targeted attacks on ICS are growing in frequency and severity
 - 7,200 Internet-facing control system devices in U.S. [1]
- ICS use specialized but insecure communication protocols
 - Enterprise security tools cannot detect zeroday attacks specific to these protocols

ICS exhibit constrained behavior:

- Fixed topology
- Regular communication patterns
- Limited number of protocols
- Simpler protocols

[1] DHS ICS-CERT Monitor, October-December 2012

Connection Model

- Slave can receive N command types
- For the same command type,
 - Parameters can vary, but not much
 - Responses depend on the <Cmd, Parameter> pair
- Devices will have an 'internal' state
 - May not be directly visible
 - Operational modes, normal/compromised

Predictable Behavior of ICS Network

- Globally (across entire network)?
 - No. Devices behavior change with different frequencies.
- At device level?
 - Better, but still not deterministic as a device may communicate with many devices

Predictable Behavior of ICS Network

- Globally (across entire network)?
 - No. Devices behavior change with different frequencies.
- At device level?
 - Better, but still not deterministic as a device may communicate with many devices
- At connection level?
 - Stable, deterministic!

© 2016 SRI International

How to Model Sequence Patterns?

 What is the probability of seeing a certain command at time t_k given a history of commands of length m? Learning Patterns of Commands and Data

- Learning the normal sequence of commands = Learning a Markov chain of order *m*
- Challenges
 - Packets can be missing
 - Patterns may vary
- Need for a probabilistic approach
 - Learn the conditional probability distribution (CPD)

$$Pr(\sigma_t | \sigma_{t-m} \cdots \sigma_{t-1})$$

Published at NDSS SENT13: Yoon and Ciocarlie

Learning Patterns Using Incremental PST

- Probabilistic Suffix Tree (PST)
 - A variable-order Markov model
 - Bounded depth (the maximum order), L

 $Pr(\sigma_t | \sigma_1 \sigma_2 \cdots \sigma_{t-1}) \sim Pr(\sigma_t | \sigma_{t-k} \cdots \sigma_{t-1}), k \leq L$

- Efficiently represents CPD using tree structure
- Batch learning is not applicable to network-level AD due to the flow of packets
- **Incremental** approach: update the tree whenever reading an element, $\boldsymbol{\sigma}$
 - Keep recently-read elements
 - Update the counts for recent history of length 1.. L

Incremental PST Example

- A MODBUS connection
 - Base pattern: 1-2-1-2-4-4
 - Normal sequence
 - Most likelihoods are close to 1.0
 - Near zero values due to missing packets

False Positive Due to Missing Packets

Base pattern: 1 2 1 2 4 4 **L (MaxDepth) = 3**

Pr(2|4-1-2) = 1.69%

Missing one packet can cause multiple false positives

– In this example, missing '1' causes two false positives

Incremental PST with Prediction

- If $Pr(\sigma_t | \sigma_{t-L} \cdots \sigma_{t-1}) < \theta$
 - assume an element is missing and try to restore it!
- First, find what we should have seen.

$$\sigma_{ML} = \arg\max_{\sigma} Pr(\sigma | \sigma_{t-L} \cdots \sigma_{t-1})$$

• Then, use it to calculate the new likelihood

$$\sigma_{t} \downarrow_{L} \sigma_{t-L+1} \cdots \sigma_{t-1} \longrightarrow \sigma_{t-L+1} \cdots \sigma_{t-1} \sigma_{ML}$$

$$\underset{\text{Length} = L}{\underbrace{Pr(\sigma_{t} | \sigma_{t-L} \cdots \sigma_{t-1})}} \sim Pr(\sigma_{ML} | \sigma_{t-L} \cdots \sigma_{t-1}) \cdot Pr(\sigma_{t} | \sigma_{t-L+1} \cdots \sigma_{t-1} \sigma_{ML})$$

Incremental PST with Prediction Example

Significantly reduced FP rate, unless consecutive packets are missing.

© 2016 SRI International

- Real Modbus traffic
 - 2 masters, 25 slaves, 86 connections (43 pairs)
 - 4 cmd types
 - No attack/anomaly is known; some packets are missing

Evaluation – synthetic data

- Generate a random base pattern
- Then, generate a random sequence based on the pattern
 - With a missing probability, a command can be dropped
 - With an attack probability, a random short sequence is inserted
- Input parameters
 - Min, max of base pattern length
 - # of command types
 - Missing, attack probabilities

© 2016 SRI International

Evaluation

© 2016 SRI International

Communication pattern monitoring for ICS

- A new probabilistic-suffix-tree-based approach for ICS anomaly detection, which extracts the normal patterns of command and data sequences from ICS communications
- A false positive rate reduction mechanism, instrumental for ICS environments
- An implementation of the proposed approached applied to both real and simulated datasets

Outline

- Hands-free accurate anomaly detection
- Communication pattern monitoring for industrial control systems
- Anomaly detection in operational cellular networks

SRI International

Anomaly Detection in Operational Cellular Networks

Problem: SON Coordination/Verification

- Networks can suffer degradations if actions that change network-element configurations are not coordinated
- Mitigation: SON verification
 - must occur fast in order to correlate the detection results and diagnose the system
- Key problem: modeling network/subnetwork state

Published at MONAMI14, IWSON14: Ciocarlie et al.

Clustering Module Module Uses Probabilistic Topic Modeling

 Discover and annotate large archives of documents with thematic information

- Discover "topics"/states in a cellular network
- Determine the number of clusters automatically using a Hierarchical Dirichlet Process (HDP) approach

Clustering

Communications of the ACM, April 2012, Vol 55, No.4, p.78

Interpretat Module Detection Module

Cluster Interpretation Module

- uses KPI Characteristics
- Automatically classifies each cluster as either normal or abnormal based on KPI characteristics
 - KPIs that should not increase (e.g., drop call rate) or decrease (e.g., call success rate) beyond a certain threshold

Detection Module uses Topic Modeling

 At every timestamp t_k a set of cluster mixture weights is generated indicating the state of the network

Diagnosis of Network-Level Anomalies Using Markov Logic Networks (MLNs)

- MLNs combine first-order logic and probabilistic models in a single representation (Richardson and Domingos, 2006)
- MLNs are first-order knowledge bases with a weight attached to each rule
 - Weights can be learned over time as examples arise
 - Contradictions OK; missing data OK

$$1.5 \quad \forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

- MLNs compute the "most likely explanation" for an event given the data
- SRI has a very efficient state-of-the-art MLN solver called the Probabilistic Consistency Engine (PCE)

Combine MLN and Topic Modeling

- Use network state information as extracted by topic modeling in the MLN inference
 - Use Principal Component Analysis (PCA) to identify groups of cells that exhibit similar behavior
 - Reason over groups of cells to reduce the number of entities
- The MLN provides the most likely explanation for the state of the network
 - Reasoning over configuration management (CM) and external factor information

Real Dataset

- 3G dataset for January-March 2013, 1583 timestamps
 - ~ 9000 cells (~ 4000 valid)
 - 11 non-periodic KPIs (3G_CS_CSSR, 3G_CS_DCR, 3G_Cell_Availability, 3G_CS_CSSR_Ph1, 3G_CS_CSSR_Ph2, 3G_CS_CSSR_Ph3, 3G_PS_CSSR, 3G_PS_DCR, DCR_CS_voice, Retainability_PS_Rel99, RNC_305a)

- Shortcomings
 - Many data points are missing
 - No ground truth information associated with the provided dataset
 - Hourly KPI and daily CM data

Hierarchical Dirichlet Process

- 32 topic modeling states learned from the process
 - 15 normal
 - 17 abnormal
- Example abnormal state: #8
 - Corresponds to an anomaly condition in mid-Feb
 - Shows abnormal condition with 3G_CS_CSSR and 3G_CS_CSSR_Ph1

MLN Inference

Input

sort Group_t;
sort Precip_t;

Output

Rules and weights

© 2016 SRI International 46

Operational Cellular Networks

- SON verification
 - Tested on KPI, CM and weather data from a real operational cell network
 - Topic modeling detects anomalies at a large scale
 - MLN performs diagnosis within groups of cells

Recap

- New methods for detecting intrusions, performance degradation, and other anomalous behaviors
 - capture the normal behavior of a system
 - detect departures from normality and attribute causes
- Industrial control systems
 - probabilistic-suffix-tree-based approach to extract normal patterns of command and data sequences
- Mobile broadband networks
 - model cell behavior based on key performance indicators to identify partial and complete degradations
 - model the state of the network within a larger scope to verify configuration management parameters changes

Questions?

SRI International

Headquarters 333 Ravenswood Avenue Menlo Park, CA 94025 +1.650.859.2000

Princeton, NJ 201 Washington Road Princeton, NJ 08540 +1.609.734.2553

Additional U.S. and international locations

www.sri.com

© 2016 SRI International