Enabling data sharing with secure computation

Vlad Kolesnikov Bell Labs

DIMACS/Northeast Big Data Hub Workshop on Privacy and Security for Big Data Apr 25, 2017

Data sharing: service providers

Legislation may require user consent *each time* for Location-Based Service (E.g. SK Telecom, Korea)

Data sharing: service providers

Compliant location-based service:

Data sharing: private DB queries

I want to query patient records

HIPAA protects patient privacy. Only certain queries are OK. What is your query?

My queries are private

Data sharing: enterprise

Ad campaign: I have a list of my customers. Display an upgrade offer to those who have researched FIOS.

COMCAST

"Any task involving a Trusted Third Party can also be implemented using a cryptographic protocol **without any loss of security**."

[Yao86] [Goldreich Micali Wigderson 87]

Outline

- Privacy and security enables data sharing
- Secure multi-party computation (MPC)
 - Approaches and progress
- MPC for big(ger) data: private DB (if time)

Secure computation

Garbled circuit: computation under encryption [Yao86]

Alice encrypts Boolean wire signals

Garbled circuit: computation under encryption [Yao86]

Alice encrypts Boolean gates (truth tables) Goal: allow Bob to compute correct gate output key from input keys

Garbled circuit: computation under encryption [Yao86]

Decoding table for output wire

Alice and Bob run Oblivous Transfer (OT) Bob receives key, while Alice learns nothing.

MPC progress

Cost to sequence genome Estimates and chart by Dave Evans (UVA)

Cheating opportunities

Alice can send a GC implementing wrong F Bob cannot tell! Bob only decrypts - cheating not possible - only abort

Catch me if you can!

Publicly verifiable covert (PVC) MPC [K Malozemoff15]

Idea: Alice can cheat, but caught w prob 50% If caught, Bob gets irrefutable *publicly verifiable* **proof of cheating**.

Publicly verifiable covert (PVC) MPC [KM15]

Publicly verifiable covert (PVC) MPC [KM15]

Before

Nobody can cheat

After

Alice can cheat. Caught with prob ½. If caught, proof of cheating is published. Sufficient deterrent in most scenarios.

20X speed improvement ~30X, Free Hash [FGK17]

Free Hash [Fan Ganesh K17]

Idea [GMS08]: don't send circuits.

Instead:

- 1) choose seed s
- 2) generate GC(PRG(s)) 3) compute h=SHA(GC)

Free Hash: $h = \bigoplus \{GC | abels\}$

4) send h. A cannot later send a wrong GC

5) A send s to open circuits

6) A send GC to evaluate

Free GC hash definition

- GC hash definition weaker than standard collision resistance
- > Take advantage of the input to hash being a Garbled Circuit
- Given a correctly generated garbled circuit and hash (GC; h)
 - If A finds \widehat{GC} such that $H(\widehat{GC}) = H(GC)$
 - Then, w.h.p, the garbled circuit property of \widehat{GC} is broken
 - \widehat{GC} will fail to evaluate
- Verification of hash involves GC evaluation

Main idea for GC hash construction

- Garbled rows are encryptions of output labels
- Garbling of a gate relates garbled rows and input and output labels as preimage/image of a crypto function
- Change in a garbled row or input label creates unpredictable change in computed output label
- Hard to change *active* garbled rows and still get output label that you want
- During GC evaluation, once label is wrong, hard to make it right
- Idea: ensure all rows are active, i.e. GC evaluation involves *all* GC rows
 - *Not quite enough, but close. Not hard to work out precise requirements.

Thank you!