Nash-solvability and Boolean duality

Vladimir Gurvich

Let $I = \{1, ..., n\}$ and $A = \{a_1, ..., a_p\}$ be sets of players (voters) and outcomes (candidates), respectively.

A utility function is a mapping $u: I \times A \to \mathbb{R}$; the value u(i, a) is interpreted as the profit of player $i \in I$ in case when outcome $a \in A$ is realized.

Furthermore, let X_i be a (finite) set of strategies of player $i \in I$.

A game form is a mapping $g: X \to A$, where $X = X_1 \times ... \times X_n$ is the set of strategy profiles (situations) $x = (x_1, ..., x_n)$.

A game in normal form is a pair (g, u).

A Nash equilibrium is a strategy profile $x \in X$ such that $u(i,x) \geq u(i,x')$ for every $i \in I$ and each $x' \in X$ such that $x'_j = x_j$ for all $j \in I \setminus \{i\}$. In other words, no player $i \in I$ can make profit by substituting a new strategy x'_i for x_i if all other players $j \in I \setminus \{i\}$ keep the same strategies.

Game form g is called Nash-solvable if the corresponding game (g, u) has a Nash equilibrium for every utility function u.

Given a game form g, let us assign a Boolean variable to each outcome $a \in A$ and for every coalition $K \subseteq I$ define a Boolean function F_K by the following monotone DNF: $F_K = \bigvee_{x_K} \wedge_{x_{I \setminus K}} g(x_K, x_{I \setminus K})$, where $x_K = (x_i; i \in K)$ and $x_{I \setminus K} = (x_i; i \notin K)$ are strategies of coalitions K and $I \setminus K$ respectively.

Theorem. A two-person (n = 2) game forms is Nash-solvable if and only if Boolean functions F_1 and F_2 are dual, $F_1^d = F_2$.

In particular, this result implies that, for n=2, Nash-solvability for arbitrary u is equivalent to Nash-solvability for zero-sum u (that is, u(1,a) + u(2,a) = 0 for all $a \in A$) that take only values +1 (win) and -1 (lose).

Interestingly, for n > 2 duality $F_K^d = F_{I \setminus K}$ for all (or some) coalitions $K \subseteq I$ is not necessary nor sufficient for Nash-solvability.

In this talk we consider applications of the above old theorem to positional game forms with perfect information modeled by digraphs. In case of acyclic digraphs, Nash-solvability is well-known. This result is referred to as Zermelo (1912), von Neumann (1944), and Kuhn (1953) Theorem. Yet, if digraph G contains directed cycles (dicycles) then not much is known.

Every terminal (dead-end) position of G is, by definition, an outcome. Also dicycles are outcomes. We consider two cases:

(i) Each dicycle is a separate outcome.

Then, we obtain necessary and sufficient conditions of Nash-solvability for n=2 assuming also that digraph G=(V,E) is bi-directed: $(u,v) \in E$ iff $(v,u) \in E$; Boros, VG, Makino, and Shao, RRR-30-2007.

(ii) All dicycles form one outcome.

Nash-solvability in this case is an open problem. Yet, for n=2 it easily follows from the above theorem. This observation is due to Gimbert and Sorensen, 2008.