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Kazuhisa Makino

Abstract. To each game form g an effectivity function (EFF) E, can be naturally
assigned. An EFF E will be called formal (respectively, formal-minor) if £ = E,
(respectively, E < E;) for a game form g.

(i) An EFF is formal if and only if is superadditive and monotone.

(ii) An EFF is formal-minor if and only if it is weakly superadditive.

Theorem (ii) looks more sophisticated, yet, it is simpler and instrumental in the
proof of (i). In addition, (ii) has important applications in social choice, game, and
even graph theories. Constructive proofs of (i) were given by Moulin, in 1983, and
by Peleg, in 1998. (Peleg’s proof works also in case of an infinite set of outcomes.)
Both constructions are elegant, yet, the set of strategies X; of each player ¢ € I in g
might be doubly exponential in size of the input EFF E. In this paper, we suggest
a third construction such that | X;| is only linear in the size of E.

One can verify in polynomial time whether an EFF is formal (or superadditive); in
contrast, verification of whether an EFF is formal-minor (or weakly superadditive)
is a CoNP-complete decision problem.

Keywords: effectivity function, monotone, superadditive, weakly superadditive,
self-dual, maximal; game form, tight, totally tight
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1 Introduction

The effectivity function (EFF) is an important concept of voting theory that describes the
distribution of power between the voters and candidates. This concept was introduced in
the early 80s by Abdou [1, 2], Moulin and Peleg [21], [20] Chapter 7, [22], [23] Chapter 6.
We also refer the reader to the book " Effectivity Functions in Social Choice” by Abdou and
Keiding [3] for numerous applications of EFFs in the voting and game theories.

An EFF can be viewed as a Boolean function whose set of variables is the mixture of the
voters (players) and candidates (outcomes); see Section 2.1.

A game form g can be viewed as a game in normal form in which no payoffs are defined
yet and only an outcome g(x) is associated with each strategy profile z. To every game form
g an EFF E, can be naturally assigned; see Section 4.

Some important properties of g depend only on its EFF E; for example, the existence of
the core or (in case of two players) Nash equilibria for an arbitrary payoff; see [20] Chapter
7, [23] Chapters 6, [3] Chapter 3, and [12, 13] and also [17] Section 4.

It is a natural and important problem to characterize the EFFs related to game forms.
Already in [21] it was mentioned that for each game form g its EFF E; is monotone and
superadditive. The inverse statement is true too, yet, it is more difficult.

An EFF E will be called formal (respectively, formal-minor) if £ = E; (respectively,
E < E,) for a game form g. The following two claims hold:

(i) An EFF is formal if and only if is superadditive and monotone;

(ii) An EFF is formal-minor if and only if it is weakly superadditive.

In both cases the EFFs must satisfy some natural "boundary conditions”; see Sections
2.2 and 2.3 for the definitions and more details.

Theorem (ii) looks more sophisticated, yet, it is simpler and instrumental in the proof
of (i). In addition, (ii) has important applications in social choice, game, and even graph
theories; see [20] Chapter 7 and [4, 5, 6].

Constructive proofs of (i) were given by Moulin, in 1983, and by Peleg, in 1998. (In
fact, Peleg proved a slightly more general statement that includes, in particular, the case of
infinite sets of outcomes.) Both constructions are interesting and elegant, yet, in both, the
set of strategies X; of each player ¢ € I in ¢ is doubly exponential in size of the input EFF
E. In this paper, we suggest a third construction such that |X;| is only linear in the size of
E.

Furthermore, an EFF E will be called T-formal (TT-formal) if E = E, for a tight (totally
tight (TT)) game form g; see Sections 8 and 9 for definitions. Obviously, the families of TT-
formal, T-formal, and formal EFF's are nested, since every T'T game form is tight; see Section
9.

Moulin’s results readily imply that an EFF is T-formal if and only if it is maximal,
superadditive, monotone, and satisfies the boundary conditions. In this paper, we add to
this list one more property, which also holds for each TT-formal EFF, and show that the
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extended list of properties is a characterization of the two-person TT-formal EFFs, leaving
the n-person case open.

2 Basic properties

2.1 Effectivity functions as Boolean functions of players and out-
comes

Given a set of players (or voters) I = {1,...,n} and a set of outcomes (or candidates)

= {ai,...,a,}, subsets K C [ are called coalitions and subsets B C A blocks. An
effectivity function (EFF) is defined as a mapping £ : 27 x 24 — {0,1}. We say that
coalition K C [ is effective (respectively, not effective) for block B C A if £(K,B) = 1
(respectively, £(K, B) = 0).

Since 27 x 24 = 2194 we can say that EFF £ is a Boolean function whose set of variables
I'U A (of cardinality n + p) is a mixture of the players and outcomes.

An EFF describes the distribution of power of voters and of candidates.

For two EFFs E and E’ on the same variables I U A, obviously, the implication £’ = 1
whenever £ = 1 is equivalent with the inequality £ < E'.

The “complementary” function, V(K, B) = £(K, A\ B), is called the veto function; by
definition, K is effective for B if and only if K can veto A\ B. Both names are frequent in
the literature [1, 2, 9, 14, 15, 16, 20, 21, 22, 23].

2.2 Boundary conditions

The complete (K = I, B = A) and empty (K = (), B = ()) coalitions and blocks will be
called boundary and play a special role. From now on, we assume that the following boundary
conditions hold for all considered EFF's:

E(K,0)=0 and E(K,A) =1V K C I;
E(I,B) =1unless B=0; E((,B) =0 unless B = A;
E(1,0) =0, E®A)=1.
In fact, the value of E(), A) is irrelevant. However, in Section 8 we will define self-duality
(maximality) of an EFF by the equation
E(K,B)+ E(I\K,A\B)=1forall K CI, BCA.

Thus, formally, since E(I,0)) = 0, we have to set E(), A) = 1, otherwise self-duality will
never hold.
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2.3 Monotonicity and the minimum monotone majorant of an ef-
fectivity function

An EFF is called monotone if the following implication holds:

E(K,B)=1, KCK' CI, BCBCA = &K, B)=1.

It is easy to see that the above definition is in agreement with the standard concept of
monotonicity of Boolean functions.

A (monotone) Boolean function can be given by the set of its (minimal) true vectors.
Respectively, a (monotone) EFF E can be given by the list {(K}, B;); j € J} of all (inclusion-
minimal) pairs K; C I and B; C A such that E(K;, B;) = 1. Let us remark that Kg =
{Kj; j € J} and By = {Bj; j € J} are multi-hypergraphs whose edges, labeled by the
indices j € J, might be not pairwise distinct.

It is also clear that for each EFF E there is a unique minimum monotone EFF EM such
that EM > E. This EFF is defined by formula:

EM(KM BM)=1 iff E(K,B)=1 forsome KC KM CI, BCBMCA

and is called the minimum monotone majorant of E.

3 Superadditive and weakly superadditive EFFs

3.1 Superadditivity

An EFF FE is called 2-superadditive if the following implication holds:
E(K1,B)) =&(Ky,Bs) =1, KiNKy =0 = E(Ki UKy, BiNBy) = 1.

More generally, an EFF F is called k-superadditive if, for every set of indices J of cardi-
nality |J| = k > 2, the following implication holds:

if E(K;,Bj)=1Vje J and coalitions {K;; j € J} are pairwise disjoint
(that is, Ky N K;» =0 V4,57 € J such that j' # j”) then

E(U K;, ﬂ Bj) =1.
JjeJ jeJ

In particular, () ics Bi # (), since otherwise the boundary condition F(K, @) = 0 would fail.
By induction on k, it is easy to show that 2-superadditivity implies k-superadditivity for all
k > 2. An EFF satisfying these properties is called superadditive.
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3.2 Weak superadditivity

Furthermore, an EFF E'is called weakly superadditive if for every set of indices J the following
implication holds:

if E(K;,B;) =1V j € J and coalitions {K; j € J} are pairwise disjoint then

() B; #0.

jeJ

Let us remark that weak superadditivity (in contrast to superadditivity) cannot be re-
duced to the case |J| = 2. For example, an EFF E such that

E({1},{ag,a3}) = E({2}, {as,a1}) = E({3}, {a1,a2}) = 1

is not weakly superadditive, since otherwise F(({1,2,3},0) = 1, yet, EFF E might be weakly
2-superadditive.

Finally, let us note that superadditivity implies weak superadditivity; indeed, otherwise
boundary conditions F(K,0)) = 0 would not hold. However, the inverse implication fails.
For example, an EFF F such that

B({1}, {as,a3}) = B2}, {az, a1 }) = 1, while E({1,2},{az}) =0

is not superadditive but might be weakly superadditive.

3.3 On complexity of verifying (weak) superadditivity

It is a CoNP-complete problem to verify whether a monotone EFF E is weakly superadditive;
see [5] Theorem 12, Lemma 28, and Remarks 10 and 29.

In contrast, one can easily verify in cubic time whether a (monotone) EFF E = {(K;, B;); j €
J} is superadditive. Indeed, as we know, superadditivity of E is equivalent with its 2-
superadditivity and the latter can be verified in cubic time just according to the definition.

3.4 On (weak) superadditivity of a minorant of an EFF

Proposition 1 If an EFF E is weakly superadditive and E' < E then EFF E' is weakly
superadditive, too.

Proof. Let J be a set of indices and E'(K;, Bj) = 1 for each j € J, where coalitions
{K;; j € J} are pairwise disjoint. Then E(K;, Bj) = 1 for each j € J, too, since E > E'.
Hence, (.., B; # 0, since E is weakly superadditive. Thus, E’ is weakly superadditive, too.
O

jeJ
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However, the above arguments do not extend to superadditivity, since

E(UKj, ﬂBj> —1land E'<E % F (UKj, ﬂBj> =1.

jeJ jeJ jet jeJ
For example, let us consider EFFs E and E’ such that

E({1},{az,a3}) = E({2}, {as,a}) = E'({1}, {az, a3}) = E'({2}, {as, a1 }) = 15
= E({17 2}7 {(l3}) > El({172}7 {GB}) = 0.

Obviously, EFF E’ is not superadditive, while EFF E might be superadditive and inequality
E’ < E might hold. Moreover, both £ and E’ can be monotone.

3.5 On superadditivity and weak superadditivity of the minimum
monotone majorant of an EFF

It is clear that superadditivity of an EFF E does not imply even weak 2-superadditivity of
a majorant E’ > E. Indeed, let us consider, for example, the ”absolutely minimal” EFF E
defined by formula: E(K,B) =1 if and only if B = A. (Recall that E((), A) = 1, by the
boundary conditions.) Obviously, £ is superadditive and inequality £ < E’ holds for every
EFF FE'.

However, both superadditivity and weak superadditivity of an EFF E are inherited by
the minimum monotone majorant £’ = EM of E.

Proposition 2 If EFF E is (weakly) superadditive then its minimum monotone majorant
EM s (weakly) superadditive, too.

Proof. Let J be a set of indices and EM (KM, B}) = 1 for each j € .J, where coalitions
{K ]M ; j € J} are pairwise disjoint. Then, by definition of EM | equality E(K;, B;) = 1 holds
for some K; € KM, B; € BM, and j € J. In particular, these coalitions {Kj; j € J} are
pairwise disjoint, too.

If F is weakly superadditive then (., B; # 0. Hence, (., B}’ # 0 and, thus, E™ is
weakly superadditive, too.

If E is superadditive then E(U,., K;,(c; Bj) = 1. Hence, by containments K; C K}
and B; € B} for j € J, by monotonicity of E, and by inequality £ > E, we conclude
that EM(U,c, K, N,es B}') = 1 and, thus, EY is superadditive, too. O

Yet, the inverse implication holds only for weak superadditivity.

Proposition 3 An EFF E is weakly superadditive whenever its minimum monotone majo-
rant EM is weakly superadditive.
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Proof. Let J be a set of indices and E(K;, Bj) = 1 for each j € J, where coalitions
{Kj; j € J} are pairwise disjoint. Then, EM(K;, B;) = 1, too, by inequality £ > F.
Hence, ﬂjeJ B; # 0, by weak superadditivity of EM. Thus, EFF E is weakly superadditive,
too. 0

Corollary 1 An EFF FE is weakly superadditive if and only if its minimum monotone ma-
jorant EM is weakly superadditive.

Proof. It follows immediately from Propositions 2 and 3. U

However, Proposition 3 does not extend to the case of superadditivity. For example, an
EFF FE such that

E({1},{as}) = E({2}, {as}) = E({1}, {a2, as}) = E({2}, {as, a1}) = 1,
and E({1,2}, {az}) = 0.

is not superadditive, while E™ might be superadditive.

4 Game forms and their effectivity functions

Let X; be a finite set of strategies of the player i € I and X = [[,.; Xi;. A game form is
defined as a mapping g : X — A that assigns an outcome a € A to each strategy profile
x=(x1,...,2,) € X3 X --- x X, = X. We will assume that mapping ¢ is surjective, that
is, g(X) = A; yet typically, ¢ is not injective, that is, the same outcome might be assigned
to several distinct strategy profiles.

A game form can be viewed as a game in normal form in which payoffs are not specified
yet. Given a game form g, let us introduce an EFF E as follows:

E,(K,B) =1 for a coalition K C I and block B C A if and only if there is a strategy
rx = {x;; i € K} of coalition K such that the outcome g(zx, k) is in B for every strategy
rpk = {x;; © € K} of the complementary coalition.

Remark 1 The EFF E, was introduced in [21], where it is called a-EFF of g and, respec-
tiely, notation a-E, is applied. The EFF [(3-E, is also defined in [21]. Yet, we find it
more convenient to substitute E, and Eg for a-E, and B-E,, where the dual EFF Eg will be
introduced in Section 8.

Let us recall that the boundary values E,(0), B) are not defined yet. By the boundary
conditions, we set E,(0, A) = 1 and E,((), B) = 0 whenever B # A.

Let us also notice that E,(1,0) = 0 and E,(I, B) = 1 for all non-empty B C A, since g
is surjective. Thus, all boundary conditions hold for EFF E|,.

Proposition 4 EFF E, is monotone and superadditive for every game form g.
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This statement was shown already by Abdou [1, 2], Moulin and Peleg [21].

Proof. First, let us consider monotonicity. If E (K, B) = 1 then, by definition, coalition
K has a strategy xx = {z;; ¢ € K} enforcing B. Furthermore, if K C K’ and B C B’
then K’ has a strategy xx = {x;; i € K'} enforcing B’. Indeed, g(z) € B C B’ whenever
coalitionists of K play in accordance with xg, while players of K’ \ K apply arbitrary
strategies. In this case, E(K’, B') = 1, too. Hence, E, is monotone.

Now, let us prove superadditivity. Let F(K;, By) = E(Ks, By) = 1 and K; N Ky = ).
By definition of E, coalition Kj; has a strategy zf; enforcing B;, where j = 1 or 2. Since
coalitions K; and K are disjoint, they can apply these strategies x g, and zx, simultaneously.
Obviously, the resulting strategy xx of the union K = K; U K5 enforces the intersection
B = BN Bs. O

5 Main theorems

It is natural to ask whether the inverse is true too. Positive answer was given in 1983 by
Moulin [20], Theorem 1 of Chapter 7.

Theorem 1 An EFF is formal if and only if it is monotone and superadditive.

In 1998, Peleg [24] proved a slightly more general claim. In particular, his proof works for
infinite sets of outcomes A. Both proofs are constructive. Yet, the number |X;| of strategies
of a player ¢ € I is doubly exponential in size of the (monotone) input EFF E. In this
paper, we suggest a third construction in which |X;| is only linear in size of E for every
player ¢ € I'; more precisely,

| Xi| = |A] + deg(i, Kg) < [A] +[J] = p+m.
Here the monotone EFF E = {(K;, B;); j € J} is given as in Section 3, Kg = {Kj; j € J}
is the corresponding multi-hypergraph of the coalitions, and deg(i, Kg) = #{j € J | i € K;}
is the degree of player 7 in K;.

The following statement will be instrumental in our proof of Theorem 1 and it is also of
independent interest.

Theorem 2 An EFF is formal-minor if and only if it is weakly superadditive.
In fact, we can immediately extend this statement as follows.

Theorem 3 The next four properties of an EFF E are equivalent:
(i) E is formal minor; (ii) E is weakly superadditive;

(iii) EM is formal-minor; (iv) EM is weakly superadditive.
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Proof. Equivalence of (i) and (ii) (as well as of (iii) and (iv), in particular) is claimed by
Theorem 2. Furthermore, (i) and (iii) are equivalent, too, by the definition of the minimum
monotone majorant E* and monotonicity of E,. ([l

Let us remark that Proposition 3 follows from Theorem 3.
We will prove Theorems 1 and 2 in the next two subsections.

In accordance with Section 3.3, it can be verified in polynomial time whether a (mono-
tone) EFF is formal or whether it is superadditive; in contrast, to verify whether a monotone
EFF is formal-minor or whether it is weakly superadditive is a CoNP-complete decision prob-
lem.

6 Main proofs

6.1 Proof of Theorem 2

Obviously, an EFF E is formal minor if and only if EM is. Since EM is monotone, it can
be conveniently specified by the list (K, B;),j € J, of all inclusion-minimal pairs such that
EM(K;, B;) = 1.

Clearly, E = EM whenever EFF E is monotone; otherwise the input size of E might be
much larger: E is specified by the list of all (not only inclusion-minimal) pairs (K, B;),j €
J', such that E(Kj;, B;) = 1. Yet, we can easily reduce this list J’' to J by leaving only
inclusion-minimal pairs and eliminating all other. This reduction, obviously, results in EM.
Thus, without loss of generality, we can assume that £ = E™, or in other words, that the
input EFF E is monotone and given by the list (K}, B;),j € J.

Given a monotone weakly superadditive EFF E,| we want to construct a game form g
such that E < FE,. To each player i € I let us give a set of strategies X; = {27 | i € K}.
In other words, given ¢ € I and j € J, strategy xi is unique whenever 7 € K; and it is not
defined otherwise. Thus, |X;| = deg(i,K), where K is the multi-hypergraph of coalitions
K={K;,je J} A

Given j € J, a (unique) strategy vx, = {z];i € K;} of coalition K is called proper.
If for each such strategy and each strategy xp g, of the complementary coalition, inclusion
9(zk,;,vnk,;) € B; holds then game form g will be called proper, too.

Let us show that the above condition is not contradictory whenever EFF E' is weakly

superadditive. Indeed, if a strategy profile x = (1, ..., ,) is proper with respect to several
coalitions {K;,j € J' C J} then, obviously, these coalitions are pairwise disjoint and, hence,

For each strategy profile x € X let us choose an outcome a from this intersection and fix
g(x) = a. If x is proper for no j € J then choose g(x) € A arbitrarily. This construction
defines a proper game form g : X — A. The desired inequality &/ < E, obviously holds for
each proper game form g¢. Indeed, let E(K,B) = 1; then E(K;, B;) = 1 for some j € J;
then g(ij,xI\Kj) € B; for every Tp\k; whenever xg, is the proper strategy of K. O
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a1 G2
a9 A3
a3 a4

a1 A2 G4 a1 G2|air G2 44 a1
a1 ag G4 ap az|dy a3 aq4 a1
a1 Q4 |Q1 G2 Q3 G4
Qg G2 | a4 a1 Az a3
az ag|asz a4 ap G2
a; G4 |G2 a3 a4 ag

Table 1: Two-person EFF E,.

Let us consider an example given by the upper left corner (the first two rows and columns)
of Table 1. In this example I = {1,2}, A = {ay, as, a3, a4}, and EFF E is given by the list:

E(1,{a1,a2,a4}) = E(1,{a1,a3,a4}) =

E2,{a1,aq,a3}) = E(2,{as,as,a4}) = 1.

Each of the four entries of the desired game form must be an outcome of the corresponding
intersection. The obtained EFF' £, is given by the list:

Ey(L{a1, a2}) = Eg(1,{a1, as}) = E4(2,{ar}) = Ey(2,{az,a3}) = 1.
Of course, E < E,, however, ' # E,. Similar observations were made by Moulin; see
[20] Theorem 1 of Chapter 7, pp. 166-168.

Remark 2 Let K = {Kj,j € J} and X = {zg,,j € J} be families of coalitions and their
strategies. If the coalitions of KC are pairwise disjoint (vice versa, pairwise intersect) then
the corresponding faces in the direct product X = [[,., X; intersect (vice versa, might be

pairwise disjoint). This observation, which is instrumental in the above proof of Theorem 2,
was mentioned in 1978 [18] and illustrated for n = 3 and K = {{1,2},{2,3},{3,1}}.

6.2 Proof of Theorem 1

Now we assume that EFF E = {(Kj;, B;); j € J} is monotone and superadditive and want
to construct a game form g such that £/ = F;. In the previous section, we already got a
game form ¢’ such that £ < E,. To enforce the equality, we will have to extend ¢’ to g as
follows. To each player i € I, in addition to the proper strategies X! = {xf 1€ K}, we
will add p = |A| backup strategies X! = {2%; b € {0,1,...,p— 1}}. Thus, X; = X/ U X/
forallie I and X =J[,., X; =[[,.,(X]uX/).

Thus, each strategy profile x € X defines a unique partition I = K’ U K", where K' =
K'(z) and K" = K"(x) are the coalitions of all ”"proper” and ”"backup” players, respectively,
that is, z; € X] for i € K" and z; € X for i € K”. To obtain the desired game form g : X —
A (such that E, = E), we will define g(z) successively for |K"(z)| = k(z) =k =0,1,...,n.

Two extreme cases, k = 0 and k = n are simple. If k(z) = 0, that is, in z all players
choose proper strategies , then g(z) = ¢/(x) is defined as in the previous section. If k(z) = n,
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that is, in x all players choose backup strategies z; € X! = {xf, b; € {0,1,....,p—1}},
then

g(x)=a, € A={a1,...,a,}, where r—lszi mod p. (1)
i=1

Table 3 and the lower right 4 x 4 corner of Table 1 provide two examples, with n =p =3
and n = 2, p = 4, respectively.

Now, we plan to define g(z) for k(z) € {1,...,n — 1}.

First, we have to extend the concepts of a proper coalition, strategy, and game form
defined in the previous section. Given a strategy profile z € X, let us consider partition
I = K'(2)UK"(x), where players of K" and K" choose in z their proper and backup strategies,
respectively. A coalition Kj is called proper if z; = xf for each ¢ € K;. By this definition,
K; C K'(x), that is, each proper coalition is a subcoalition of K’(z). The obtained strategy
ri; = {x}; i € K} of coalition Kj is called proper, too. If for each such strategy and every
strategy x g, of the complementary coalition, inclusion g(zx;, 2\ k;) € B; holds then game
form g will be also called proper. As before, these conditions are not contradictory whenever
EFF FE is (weakly) superadditive. Indeed, if several coalitions {K;; j € J' C J} are proper
with respect to a given strategy profile z = (x1, ..., z,) then, obviously, these coalitions are
pairwise disjoint and, hence, B(z) = ;. B; # 0.

Two strategy profiles x/, " € X will be called equivalent if the corresponding partitions
coincide, or in other words, if K'(z') = K'(2”) = K and, moreover, z;, = x/ for every i € K.
Obviously, these classes partition X.

Given z € X, let |[K"(z)| = k(z) = k and |B(x)| = ¢(z) = ¢; furthermore, let for
simplicity K”(z) = {1,...,k} C I and B(x) = {a1,...,a,} C A.

We generalize formula (1) for arbitrary integral ¢ < p and k < n as follows:

k
g(z) =a, € B(x) ={ay,...,a,}, where r—1= Zbi mod g. (2)
i=1
whenever in the given profile x € X each player i € K”(z) chooses a backup strategy
x;=0b;€{0,1,...,p—1}.
Several examples are given in Tables 2 and 3, where p=4or p=5,¢=3, k=2 and p
= q = k = 3, respectively.

a1 az a3z aa a1 az a3z ap Qag
ayp a; G2 as Gz a1 G2 a3 aj
az a; a; Qg ayp G2 a1 G2 as
Gz az a; ap az ap Gz ap Qg

Gz az ap az a

Table 2: ¢ =3, k=2, p=4and p=5.
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a1 az as Gz as ai a3 aip a2
as ap as a; QAo as a9 a3 ap
a2 az aj az aip az ayp as ag

Table 3: p=q=Fk = 3.

By the above definition, for every z € X, there are exactly p*®) strategy profiles equiv-
alent with z. Let us define function (game form) g on these profiles in accordance with
(2).

In particular, g(x) = ¢’(x) when K”(z) = () and g(z) is defined by (1) when K'(z) = (.
Table 1 represents an example in which n =2 and p = 4.

By construction, each strategy xx is effective for the block B(xg) = NjecyB;, where
J' = J(xk) C J is defined as follows: zf is a proper strategy of K; if and only if j € J'. In
particular, K; C K for all j € J'.

In general, £, (K,B)=1if and only K O K; and B D B; fora j € J.

In particular, £, (K}, B;) =1 for all j € J, since the proper strategy rx, = {z]; i€ K;}
is effective for B;. Thus, by the above construction, equality £ = E, holds if and only if the
input EFF FE is monotone and superadditive. [l

Remark 3 In general, the obtained EFF E, is the minimum monotone and superadditive
majorant of the input EFF E.

Let us also note that the above construction is computationally efficient: for every strategy
profile x the corresponding outcome g(x) is determined in polynomial time. Obuviously, the
same 1s true in case of Theorem 2 too.

6.3 Theorem 2 results from Theorem 1

We derived Theorems 1 from Theorem 2. In fact, the latter is of independent interest. For
example, it is instrumental in the proof of the Berge and Duchet conjecture in [4]; see also
[5, 6]. In these papers, Theorem 2 was derived from Theorem 1, since the latter was already
published by Moulin.

Remark 4 In an old joke, a mathematician solved the problem of boiling water in the kettle
as follows: ”... If water is already in the kettle then out and, by this, the problem is reduced
to the previous one”.

An EFF E and its minimum monotone majorant £ can be weakly superadditive or,
respectively, formal-minor only simultaneously. Moreover, E < E, if and only if EM < E,,
since B, and EM are both monotone. Hence, we can prove Theorem 2 for EY rather than
E. Since EFF E™ is monotone, it is uniquely defined by the set of its minimal ”ones”
EM = {(K;,B)); j € J}.
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First let us assume that E is formal-minor, that is, EM < E, for a game form g.
Furthermore, let J* C J be a family of pairwise disjoint coalitions, Kj, N K}, = () for all
j'.j" € J' such that j' # j”. Obviously, F,(K;, B;) = 1 follows for all j € J, by EM < E,.
By Theorem 1, E, is monotone, superadditive, and satisfies the boundary conditions; see
Section 4. Hence, E,(UjcK;,NjerB;) = 1, by superadditivity, and NjcB;) = 1, by
boundary condition. Thus, EFFs EM (and E) are weakly superadditive.

Conversely, let EM be weakly superadditive. Let us define an EFF E’ by setting
F'(K,B) = 1if and only if B = A, or K = I and B # (), or there is a non-empty
subset J' C J such that B D NjcyB;, K 2 UjeyK;, and the corresponding coalitions,
{Kj; j € J'} are pairwise disjoint. By this definition, F* < FE’. Furthermore, it is not
difficult to verify that the obtained EFF E’ is monotone, superadditive, and satisfies the
boundary conditions. Hence, by Theorem 1, F' = E, for a game form g. Thus, EY and F
are formal-minor.

7 Graphs and their effectivity functions

Given a graph G = (J, E), let us assign a player (outcome) to every its inclusion-maximal
clique (independent set) and denote the obtained two sets by I and Ag. Then, for every
vertex j € J let us consider the coalition K (block B;) corresponding to all maximal cliques
(independent sets) that contain vertex j. The obtained list {(Kj, B;); j € J} defines an
EFF E. Let Eq; = EM be the minimum monotone majorant of F; or in other words,

Eq(K,B) =1 if and only if K; C K and B; C B for a vertex j € J.

The following claim is instrumental in the proof of the Berge and Duchet conjecture in
[4]; see also [5, 6].
Lemma 1 For every graph G the corresponding EFF Eq is formal-minor.
Proof. Let J' C J be a set of vertices in G such that the coalitions {K;; j € J'} are
pairwise disjoint. Then, obviously, J' is an independent set of G. Indeed, K; N K;» # 0 if

and only if (5/,j") is an edge of G. Let J” be a maximal independent set that contains J’
and a € Ag be the corresponding outcome. Then, obviously, a € Nje K; # () 0

Thus, there is a game form g : Hielc X, — Ag such that Eq < E|,.

Although both sets I and Ag might be exponential in |J|, yet, by construction of
Theorem 2, it follows that one can choose a game form g of a ”pretty modest” size, namely,
| X;| < |J] for all i € Ig.

8 Tight game forms and self-dual EFF's

8.1 Dual and self-dual effectivity functions

To each EFF FE let us assign the dual EFF E? defined by formula:
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EYK,B)+E(I\K,A\B)=1VKCI, BCA.

In other words, F4(K, B) =1 if and only if E(I \ K, A\ B) = 0.

It is not difficult to verify that two EFFs are dual if and only if the corresponding two
Boolean functions are dual. (Let us also recall that an EFF is monotone if and only if
the corresponding Boolean function is monotone.) Thus, our terminology for EFFs is in
agreement with the standard Boolean language.

Respectively, an EFF E is called self-dual (or mazimal) if

E(K,B)+E(I\K,A\B)=1, VK CI, BC A,

that is, K is effective for B if and only if I\ K is not effective for A\ B.
It is easy to see that inequality

B(K.B)+ E(I\K,A\B)<1, VK CI, BC A,
holds for every weakly superadditive EFF. Indeed, otherwise

E(K,B)=E(I\K,A\B)=1 and E(I,0) =0,
in contradiction with the boundary conditions. In other words, E(K,B) = 0 whenever
E(I\K,A\B)=1.

An EFF FE is self-dual if and only if the inverse implication holds. In other words, the
equalities F(K, B) = E(I \ K, A\ B) = 0 might hold for some K C I, B C A of an EFF E;
they cannot hold if and only if EFF FE is self-dual.

In particular, the self-dual EFFs are maximal, with respect to the partial order 7 <",

among the weak superadditive (as well as among superadditive, or formal, or formal-minor)
EFFs.

Remark 5 For this reason, in the literature the term “maximal”, rather than ”self-dual”,
is frequent in the literature; see, for example, [20, 23, 3]. However, in this paper we follow
Boolean terminology.

Remark 6 Let us also recall that, by the boundary conditions, E(I,0) =0 and E(0, A) =1,
in agreement with self-duality.

8.2 Tight game forms; 7T-formal and T-formal-minor EFF's

A game form g is called tight if its EFF E is self-dual.

Let us recall that EFF E is T-formal (T-formal-minor) if and only if £ = E, (respectively,
E < E,) for a tight game form g. It is not difficult to show that the families of the formal-
minor and T-formal-minor EFFs just coincide.

Proposition 5 An EFF is T-formal-minor if and only if it is formal-minor.
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Proof. Indeed, it is shown in [16] that every game form g can be extended to a tight one;
in other words, for each ¢ there is a tight game form ¢’ such that ¢ is a subform of ¢’ and
E, < Ey. U

Furthermore, just by definition, an EFF is T-formal if and only if it is formal and self-dual.
Moreover, the following statement holds.

Theorem 4 An EFF E is T-formal if and only if it is monotone, superadditive, and self-
dual. The next four properties of a self-dual EFF E are equivalent:

(a) E is T-formal; (b) E is monotone and superadditive;

(c) E is T-formal-minor; (d) E is monotone and weakly superadditive.

Proof. The last claim immediately follows from Theorem 1 and the definition of tightness
and results in equivalence of (a) and (b). Furthermore, obviously, (a) implies (¢). To show
the inverse let us assume indirectly that the strict inequality £ < E,; holds for a self-dual
EFF FE and game for g.

Yet, let us also recall that the inequality E,(K,B) + E,(I \ K, A\ B) < 1 holds for a
game form ¢ and identity E,(K, B) + E,(I \ K, A\ B) = 1 holds whenever g is tight. Since
E < E,, there is a pair K C I, B C A such that E(K,B) = E(/ \ K,A\ B) = 0. Then,
by duality, E4(K,B) = E4(I\ K,A\ B) = 1 and we get a contradiction, since EFF F is
self-dual, £ = E°.

The same arguments, in slightly different terms, appears already in [20].

Finally, Theorems 1, 2 and the above observations readily imply that (d) is equivalent to
(a,b,c), too. O

8.3 On tightness and Nash-solvability

Given sets of players (voters) I and outcomes (candidates) A, the utility (payoff, preference)
function is introduced by a mapping u : [ x A — R, where the value u(7, a) is standardly
interpreted as a profit of the player ¢ € I in case the outcome a € A is realized.

Given also a game form g : X — A, the pair (g, u) is a game in normal form.

A strategy profile x = {x;; i € I} € [[;,.; Xi = X is called a Nash equilibrium in game
(g,u) if u(i,z) > u(i,2’) for each player i € I and each strategy profile 2’ obtained from x
by substituting a strategy x} for x;. In other words, x is a Nash equilibrium if a player can
make no profit in z by choosing another strategy provided all other players keep their old
strategies.

A game form g is called Nash-solvable if for each utility function u the obtained game
(g9,u) has a Nash equilibrium.

Theorem 5 A two-person game form is Nash-solvable if and only if it is tight.
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This result was obtained in 1975 [12]; see also [13] and [8] Appendix 1, where it is also
shown that in case of more than two players tightness is no longer necessary or sufficient for
Nash-solvability.

In contrast, for two-person zero-sum games tightness remains necessary. More pre-
cisely, let I = {1, 2}, a utility function u : I x A — R is called zero-sum if u(1,a)+u(2,a) =0
for each outcome a € A. A game form g is called zero-sum-solvable (£1-solvable) if for every
zero-sum (and taking only +1-values) utility function u the obtained zero-sum game (g, u)
has a saddle point.

Theorem 6 The following properties of a two-person game form are equivalent:

(i) Nash-solvability, (ii) zero-sum-solvability, (iii) £1-solvability, (iv) tightness.

Equivalence of (ii), (iii), and (iv) was demonstrated in 1970 by Edmonds and Fulkerson
[10]; see also [11].

9 On totally tight game forms and TT-formal effectiv-
ity functions

9.1 Two-person case

Let us start with the case n = 2. A two-person game form g is called totally tight (TT) if
every 2 x 2 subform of ¢ is tight.
Up to an isomorphism, there are only seven 2 x 2 game forms:

a1a; ai1a; aijai aiap a1az ai1az a102
aja; a1z Q09 G2a3 o071 Q2a3 Q304

The first four are tight, while the last three are not. Thus, a 2 x 2 game form is tight if
and only if it has a constant line, row or column.

Let g be a game form with a constant line and let ¢’ be the subform of g obtained by
eliminating this line. Obviously, g is TT if and only if ¢’ is TT.

Let us also remark that g might be tight, while ¢’ is not; see [7] for the corresponding
examples. However, ¢ is tight whenever ¢’ is tight.

A TT game form with a constant line is called reducible.
Somewhat surprisingly, all irreducible T'T game form have the same EFF.

Theorem 7 ([7]) Let g : X1 x Xy — A be an irreducible TT two-person game form. Then
there are three outcomes a1, as,a3 € A such that

E,(i,{a1,a2}) = Ey(i,{as,a3}) = Ey(i,{as,a1}) = 1, while E,(i,{a;}) =0,
for ie I ={1,2}, jeJ=1{1,23}
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It is easy to see that EFF FE, is uniquely defined by the equalities of Theorem 7 and
boundary conditions.

We have to remark that a 1 x 1 game form is TT, too. Yet, formally, this game form g is
reducible. The corresponding EFF E, is given by equalities E, (1, {a}) = E, (2, {a}) = 1,
where a is a unique outcome, A = {a}.

We will call this EFF trivial, while the EFF of Theorem 7 will be called (3,2)-EFF.
Obviously, both EFFs are self-dual and, hence, the corresponding game forms are tight.
Since addition of a constant line to a game form respects its tightness, the next statement
follows.

Corollary 2 A totally tight game form is tight.

The above proof was based on Theorem 7. There is an alternative very short proof based
on Theortems 5, 6, and Shapley’s condition for solvability of matrix games. If g is TT then
every its 2 x 2 subform ¢ is tight. Then, obviously, ¢’ is Nash-solvable. (This follows, for
example, from Theorems 5 and 6; although ”such two guns are too big for a fly that small”.)
Yet, in 1964, Shapley [25] proved that a matrix has a saddle point whenever every its 2 x 2
submatrix has one. By Shapley’s theorem, game (g, u) has a saddle point for each zero-sum
payoff u. Thus, g is tight, by Theorem 6. U

By definition, every TT game form is obtained from an empty or irreducible one by
recursively adding constant lines. By this operation, the corresponding EFF's are changed in
an obvious way, which we will call an extension by adding constant lines or ACL-extension,
for short.

Thus, we obtain a recursive characterization for the EFFs of the TT two-person game
forms, or in other words, for the TT-formal two-person EFFs.

Theorem 8 A two-person EFF E is TT-formal if and only if it is an ACL-extension of the
trivial or (3,2)-EFF.

A recursive characterization of the two-person TT game forms themselves is obtained in
[7]. Tt is based on Theorem 7, yet, a bit surprisingly, is much more complicated than the
latter.

9.2 n-person case

Now, let g : X — A be a n-person game form, where X = [[..; X; and I = {1,...,n}.
Each coalition K C I such that K # () and K # I defines a two-person game form gg :
Xk x Xpg — A, where

X = {ZL‘K = {QTZ'; 1 E K}} and X[\K = {ZE]\K = {ZL'Z'; 1 g K}}
are the sets of strategies of two complementary coalitions K and I\ K.

Game form g is called totally tight (TT) if gx is TT for all K.
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An EFF FE is called TT-formal (respectively, TT-formal-minor) if E' = E, (respectively,
E < E,) for a TT game form g.

By definition, every TT-formal (TT-formal-minor) EFF E is T-formal (formal-minor).
Thus, we obtain obvious necessary conditions. In particular, F is (i) monotone, (ii) super-
additive, and (iii) self-dual (respectively, F and EM are weakly superadditive).

Furthermore, given an n-person EFF E : 294 — [0,1} and a coalition K C I, let us
define a two-person EFF Ex which is the restriction of E to K and I\ K. More precisely,
Ex(K',B) = 1if and only if F(K,B) = 1 and K’ C K. Obviously, for each K C I EFF
Ex is TT-formal (respectively, TT-formal-minor) whenever F is. Thus, we obtain more
necessary conditions:

Let us recall that a recursive characterization of the two-person TT-formal EFFs was
just obtained in the previous section. Yet, it remains open, whether the obtained necessary
conditions are also sufficient for an EFF to be TT-formal. In general, characterizing TT-
formal and TT-formal-minor EFFs remains an open problem.
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