Recognition of Positive k-Interval Boolean Functions

O. Čepek D. Kronus P. Kučera

Charles University in Prague
University of Liège

DIMACS - RUTCOR Workshop on Boolean and Pseudo-Boolean Functions, 2009

Outline

(9) Introduction

- Interval Representations of Boolean Functions
(2) Recognition of positive k-interval functions
- Positive 1-Interval Functions
- Positive 2-Interval Functions
- Positive 3-Interval Functions
- Generalization to Positive k-Interval Functions
(3) Conclusion

Integers and Bit Vectors Correspondence

- n-bit vector $\vec{x} \leftrightarrow$ integer $n(\vec{x})$
- significance of bits - x_{1} most, x_{n} least
$\Rightarrow n(\vec{x})=\sum_{i=1}^{n} x_{i} 2^{n-i}$
- let $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a permutation
- then \vec{x}^{π} is a vector of length n such that
- $x_{i}^{\pi}=x_{j}$, where $\pi(j)=i$

Examples

Integers and Bit Vectors Correspondence

- n-bit vector $\vec{x} \leftrightarrow$ integer $n(\vec{x})$
- significance of bits - x_{1}

Integers and Bit Vectors Correspondence

- n-bit vector $\vec{x} \leftrightarrow$ integer $n(\vec{x})$
- significance of bits - x_{1} most, x_{n} least

$$
\Rightarrow n(\vec{x})=\sum_{i=1}^{n} x_{i} 2^{n-i}
$$

- let $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a permutation
- then \vec{x}^{π} is a vector of length n such that
- $x_{i}^{\pi}=x_{j}$, where $\pi(j)=i$

Examples

i	1	2	3
$\pi(i)$	3	2	1

x_{1}	x_{2}	x_{3}	$n(\vec{x})$	$n\left(\vec{x}^{\pi}\right)$
1	1	0	6	3
0	1	1	3	6

Interval Representation of Boolean Functions

Definition

- Boolean function f on n variables is represented by k intervals $\left[a^{1}, b^{1}\right]<\left[a^{2}, b^{2}\right]<\ldots<\left[a^{k}, b^{k}\right]$ of n-bit integers with respect to ordering π of variables if

$$
\forall \vec{x} \in\{0,1\}^{n}: f(\vec{x})=1 \Leftrightarrow n\left(x^{\pi}\right) \in \cup_{i=1}^{k}\left[a^{i}, b^{i}\right]
$$

Interval Representation of Boolean Functions

Definition

- Boolean function f on n variables is represented by k intervals $\left[a^{1}, b^{1}\right]<\left[a^{2}, b^{2}\right]<\ldots<\left[a^{k}, b^{k}\right]$ of n-bit integers with respect to ordering π of variables if

$$
\forall \vec{x} \in\{0,1\}^{n}: f(\vec{x})=1 \Leftrightarrow n\left(x^{\pi}\right) \in \cup_{i=1}^{k}\left[a^{i}, b^{i}\right]
$$

Interval Representation of Boolean Functions

Definition

- Boolean function f on n variables is represented by k intervals $\left[a^{1}, b^{1}\right]<\left[a^{2}, b^{2}\right]<\ldots<\left[a^{k}, b^{k}\right]$ of n-bit integers with respect to ordering π of variables if

$$
\forall \vec{x} \in\{0,1\}^{n}: f(\vec{x})=1 \Leftrightarrow n\left(x^{\pi}\right) \in \cup_{i=1}^{k}\left[a^{i}, b^{i}\right]
$$

Interval Representation of Boolean Functions

Definition

- Boolean function f on n variables is represented by k intervals $\left[a^{1}, b^{1}\right]<\left[a^{2}, b^{2}\right]<\ldots<\left[a^{k}, b^{k}\right]$ of n-bit integers with respect to ordering π of variables if

$$
\forall \vec{x} \in\{0,1\}^{n}: f(\vec{x})=1 \Leftrightarrow n\left(x^{\pi}\right) \in \cup_{i=1}^{K}\left[a^{i}, b^{i}\right]
$$

Example (1)

Example

$$
\mathcal{F}=x_{1} \vee x_{2} x_{3}
$$

ordering $x_{1}, x_{2}, x_{3} \rightarrow$ interval $[3,7]$

ordering $x_{3}, x_{2}, x_{1} \rightarrow 3$ intervals ([1], [3] and [5, 7])

Example (2)

Example

$\mathcal{F}=x_{1} x_{2} \vee x_{2} x_{3} \vee x_{1} x_{3}$
Variables are symmetrical \rightarrow all orderings are equivalent.

cannot be represented by 1 interval, only by 2 ([3] and [5, 7,])

Definition

Boolean function f is called k-interval, if it can be represented by at most k intervals (with respect to a suitable ordering).

- Introduced in [Schieber et al., 05] where minimal DNF representations of 1 -interval functions were studied.

Definition

Boolean function f is called k-interval, if it can be represented by at most k intervals (with respect to a suitable ordering).

- Introduced in [Schieber et al., 05] where minimal DNF representations of 1 -interval functions were studied.

Recognition of positive k-interval functions

Problem:

- input: positive prime DNF \mathcal{F} representing function f, positive integer k
- output: ordering π and intervals $\left[a_{1}, b_{1}\right] \ldots\left[a_{m}, b_{m}\right], m \leq k$, representing f w.r.t. π or NO when f is not k-interval

Recognition of Positive 1-Interval Functions

- if f is 1 -interval then there must exist x_{i} such that one of the following conditions is satisfied:

2) \mathcal{F} contains x_{i} in all terms

- the input DNF represents 1 -interval function $\Leftrightarrow \mathcal{F}\left[x_{i}:=0\right]$ (resp. $\mathcal{F}\left[x_{i}:=1\right]$) represents 1-interval function

Theorem

Positive 1-interval functions can be recognized in $O(I)$.

Recognition of Positive 1-Interval Functions

- if f is 1 -interval then there must exist x_{i} such that one of the following conditions is satisfied:

1) \mathcal{F} contains linear term x_{i}

2) \mathcal{F} contains x_{i} in all terms

- the input DNF represents 1-interval function $\Leftrightarrow \mathcal{F}\left[x_{i}:=0\right]$ (resp. $\mathcal{F}\left[x_{i}:=1\right]$) represents 1 -interval function

Theorem

Positive 1-interval functions can be recognized in $O(1)$

Recognition of Positive 1-Interval Functions

- if f is 1 -interval then there must exist x_{i} such that one of the following conditions is satisfied:

1) \mathcal{F} contains linear term x_{i}

2) \mathcal{F} contains x_{i} in all terms

- the input DNF represents 1 -interval function $\Leftrightarrow \mathcal{F}\left[x_{i}:=0\right]$ (resp. $\mathcal{F}\left[x_{i}:=1\right]$) represents 1 -interval function

Theorem

Positive 1 -interval functions can be recognized in $O(1)$.

Recognition of Positive 1-Interval Functions

Recognition of Positive 1-Interval Functions

- if f is 1 -interval then there must exist x_{i} such that one of the following conditions is satisfied:

1) \mathcal{F} contains linear term x_{i}

2) \mathcal{F} contains x_{i} in all terms

- the input DNF represents 1 -interval function $\Leftrightarrow \mathcal{F}\left[x_{i}:=0\right]$ (resp. $\mathcal{F}\left[x_{i}:=1\right]$) represents 1 -interval function

Theorem

Positive 1-interval functions can be recognized in $O(I)$.

Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is satisfied?

$\Rightarrow \mathcal{F}$ represents 2 -interval $\Leftrightarrow \exists \mathrm{i}: \mathcal{F}\left[x_{i}:=0\right]$ and $\mathcal{F}\left[x_{i}:=1\right]$
represent 1 -interval functions w.r.t. the same ordering π

- How to find such a variable x_{i} ?

Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is satisfied?

$\Rightarrow \mathcal{F}$ represents 2 -interval $\Leftrightarrow \exists \mathrm{i}: \mathcal{F}\left[x_{i}:=0\right]$ and $\mathcal{F}\left[x_{i}:=1\right]$
represent 1 -interval functions w.r.t. the same ordering π

- How to find such a variable x_{i} ?

Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is satisfied?

$\Rightarrow \mathcal{F}$ represents 2-interval $\Leftrightarrow \exists \mathrm{i}: \mathcal{F}\left[x_{i}:=0\right]$ and $\mathcal{F}\left[x_{i}:=1\right]$
represent 1 -interval functions w.r.t. the same ordering π

Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is satisfied?

$\Rightarrow \mathcal{F}$ represents 2-interval $\Leftrightarrow \exists \mathrm{i}: \mathcal{F}\left[x_{i}:=0\right]$ and $\mathcal{F}\left[x_{i}:=1\right]$
represent 1 -interval functions w.r.t. the same ordering π

- How to find such a variable x_{i} ?

Recognition of Positive 2-Interval Functions

(1) Iterate over all variables and try out.
© Smarter choice.
\square
Theorem
Let \mathcal{F} be a positive prime DNF representing f which is not 1-interval, moreover none of the conditions 1) or 2) is satisfied in \mathcal{F}. Then it suffices to try branching on one of variables x, y for which \mathcal{F} has the following form.

$$
\mathcal{F}=x y \vee x \mathcal{G} \vee y \mathcal{H}
$$

Recognition of Positive 2-Interval Functions

(1) Iterate over all variables and try out.
(2) Smarter choice...
\square
Theorem
Let \mathcal{F} be a positive prime DNF representing f which is not
1-interval, moreover none of the conditions 1) or 2) is satisfied
in \mathcal{F}. Then it suffices to try branching on one of variables x, y
for which \mathcal{F} has the following form.

$$
\mathcal{F}=x y \vee x \mathcal{G} \vee y \mathcal{H}
$$

Recognition of Positive 2-Interval Functions

(1) Iterate over all variables and try out.
(2) Smarter choice...

Theorem

Let \mathcal{F} be a positive prime DNF representing f which is not 1-interval, moreover none of the conditions 1) or 2) is satisfied in \mathcal{F}. Then it suffices to try branching on one of variables x, y for which \mathcal{F} has the following form.

$$
\mathcal{F}=x y \vee x \mathcal{G} \vee y \mathcal{H} .
$$

Recognition of Positive 2-Interval Functions

Algorithm has two phases:
(1) same as the algorithm recognizing positive 1-interval functions, i.e. based on conditions 1) and 2)
(2) choose candidate variable for branching (it suffices to try one) and perform synchronously the recognition algorithm for oositive 1 -interval functions on both subtrees.

Theorem
Positive 2-interval functions can be recognized in $O(I)$

Recognition of Positive 2-Interval Functions

Algorithm has two phases:
(1) same as the algorithm recognizing positive 1-interval functions, i.e. based on conditions 1) and 2)
(2) choose candidate variable for branching (it suffices to try one) and perform synchronously the recognition algorithm for positive 1-interval functions on both subtrees.

Theorem
Positive 2-interval functions can be recognized in $O(I)$

Recognition of Positive 2-Interval Functions

Algorithm has two phases:
(1) same as the algorithm recognizing positive 1 -interval functions, i.e. based on conditions 1) and 2)
(2) choose candidate variable for branching (it suffices to try one) and perform synchronously the recognition algorithm for positive 1 -interval functions on both subtrees.

Theorem

Positive 2-interval functions can be recognized in $O(I)$.

Recognition of Positive 3-Interval Functions

Phases of algorithm:
(1) Based on conditions 1) and 2)...
(2) Choose candidate for branching (don't know how...)

$$
x_{i}=0 \quad x_{i}=1
$$

$$
x_{i}=0 \quad x_{i}=1
$$

(8) Synchronously recognize 1-interval and 2-interval functions in subtrees.

Recognition of Positive 3-Interval Functions

Phases of algorithm:
(1) Based on conditions 1) and 2)...
(2) Choose candidate for branching (don't know how...)

(3) Synchronously recognize 1-interval and 2-interval functions in subtrees.

Recognition of Positive 3-Interval Functions

Phases of algorithm:
(1) Based on conditions 1) and 2)...
(2) Choose candidate for branching (don't know how...)

(3) Synchronously recognize 1-interval and 2-interval functions in subtrees.

Recognition of Positive 3-Interval Functions

Implementation:

- For the time being all the candidates for branching have to be tried out
- First branching.
- Even in the case of 2-interval function in a subtree because it might actually be 1 -interval function but there might be no ordering suitable for both subtrees.

Theorem

Positive 3-interval functions can be recognized in $O\left(n^{2} I\right)$.

Generalization to Positive k-Interval Functions

- In order to have at most k intervals we can branch only $k-1$ times.
- For the time being we have to try all remaining variables at each point of branching.
- On any level if every subtree satisfies one of the conditions

1) or 2) for the same variable we can proceed without branching using such variable.

- Synchronization of ordering in several subtrees costs alltogether $O(\mathrm{kl})$.

Theorem

Positive k-interval functions can be recognized in $O\left(k n^{k-1} /\right)$.

Generalization to Positive k-Interval Functions

- In order to have at most k intervals we can branch only $k-1$ times.
- For the time being we have to try all remaining variables at each point of branching.
- On any level if every subtree satisfies one of the conditions 1) or 2) for the same variable we can proceed without branching using such variable.
- Synchronization of ordering in several subtrees costs alltogether $O(\mathrm{kl})$.

Theorem

Positive k-interval functions can be recognized in $O\left(k n^{k-1} /\right)$.

Generalization to Positive k-Interval Functions

- In order to have at most k intervals we can branch only k - 1 times.
- For the time being we have to try all remaining variables at each point of branching.
- On any level if every subtree satisfies one of the conditions 1) or 2) for the same variable we can proceed without branching using such variable.
- Synchronization of ordering in several subtrees costs alltogether $O(\mathrm{kl})$.

Theorem

Positive k-interval functions can be recognized in $O\left(k n^{k-1} /\right)$

Generalization to Positive k-Interval Functions

- In order to have at most k intervals we can branch only $k-1$ times.
- For the time being we have to try all remaining variables at each point of branching.
- On any level if every subtree satisfies one of the conditions 1) or 2) for the same variable we can proceed without branching using such variable.
- Synchronization of ordering in several subtrees costs alltogether $O(k l)$.

Theorem

Positive k-interval functions can be recognized in $O\left(k n^{k-1} /\right)$)

Generalization to Positive k-Interval Functions

- In order to have at most k intervals we can branch only $k-1$ times.
- For the time being we have to try all remaining variables at each point of branching.
- On any level if every subtree satisfies one of the conditions 1) or 2) for the same variable we can proceed without branching using such variable.
- Synchronization of ordering in several subtrees costs alltogether $O(k l)$.

Theorem

Positive k-interval functions can be recognized in $O\left(k^{k-1} /\right)$.

Summary

Open problems:

- Is it possible to eliminate the iteration over all variables at each branching point?
- Is it possible to construct a polynomial (in size of input and output) algorithm recognizing positive k-interval functions?

