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Coverable functions
Let us recall that given a Boolean function f, we 
denote by:

cnf(f) - minimum number of clauses needed to 
represent f by a CNF.

ess(f) - maximum number of pairwise disjoint 
essential sets of implicates of f.

A function f is coverable, if cnf(f)=ess(f).



Talk outline
We already know from the previous talk, that not 
every function is coverable.

We shall show, that quadratic, acyclic, quasi-
acyclic, and CQ Horn functions are coverable.

Before that we shall show, that in case of Horn 
functions we can restrict our attention to only pure 
Horn functions.



Negative implicates
Let f be a Horn function.

Let     be an exclusive set of implicates of f, such 
that no two clauses in                            are 
resolvable.

Then there exists an integer k, and pairwise 
disjoint essential sets                         , such that for 
every CNF    representing f:

 

   does not contain other elements of   .

X
E = I(f) \ R(X )

Q1, . . . ,Qk ⊆ E
C

|C ∩Qj | = 1, j = 1, . . . , k
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Negative implicates
We can use this proposition to negative implicates, 
if we put:

   = pure Horn implicates of f, and

   = negative implicates of f.

Now we can observe that:

Therefore we can restrict our attention to only 
pure Horn functions.

X
E

ess(f) = ess(X ) + k



CNF Graph
For a Horn CNF    let                        be the digraph 
defined as:

N is the set of variables of   .

(x, y) belongs to     , if there is a clause C in   , 
which contains    and y.

     , where f is the function represented by   , is 
transitive closure of      .

ϕ Gϕ = (N, Aϕ)
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Quadratic functions
A quadratic function is function, which can be 
represented by a CNF   , in which every clause 
consists of at most two literals.

Minimization algorithm for pure Horn quadratic 
functions:

Make    prime and irredundant.

Construct CNF graph      .

Find strong components of      .

Replace strong components by cycles.

ϕ

ϕ

Gϕ
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Example
Let us consider the following CNF:

CNF graph follows:

(a ∨ b) ∧ (b ∨ c) ∧ (c ∨ d)
∧ (d ∨ c) ∧ (c ∨ e) ∧ (e ∨ c)
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b



Example
A shortest CNF:

and its CNF graph:

e

ca

d
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(a ∨ b) ∧ (b ∨ c) ∧ (c ∨ d) ∧ (d ∨ e) ∧ (e ∨ c)



Disjoint essential sets for 
quadratic functions

Let us have a clause and let us define 
essential set    for this clause. 

If x and y belong to different strong components 
of     , we put           into   , if u belongs to the 
same strong component as x and v belongs to the 
same strong component as y.

x

yu

v

(x ∨ y)
E

Gf (u ∨ v) E



Disjoint essential sets ...
If x and y belong to the same component of      , we 
put             into    for every u in this component.

It is easily possible to find vector based definition 
of these sets as well.

If the input CNF is minimum, the sets are disjoint.

E(u ∨ y)

...

x

y
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Example
For our shortest CNF

we would have:

(a ∨ b) ∧ (b ∨ c) ∧ (c ∨ d) ∧ (d ∨ e) ∧ (e ∨ c)

e

ca

d

b

(a ∨ b) → {(a ∨ b)}
(b ∨ c) → {(b ∨ c)}
(c ∨ d) → {(c ∨ d), (e ∨ d)}
(d ∨ e) → {(d ∨ e), (c ∨ e)}
(e ∨ c) → {(e ∨ c), (d ∨ c)}



Essentiality of defined sets I
At first let us assume, that x and y belong to 
different strong components of     .

We have u in the same SC as x,    v in the same SC 
as y, and                                         for some z.

If z does not belong to the same SC as x or y, then 
 is redundant.

Therefore one of parent clauses belongs to   .

Gf
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Essentiality II 
Now let us assume, that x and y belong to the same 
strong component of     .

We have u in this strong component and z, for 
which                                       .

It follows, that z belong to the same strong 
component as well.

Gf

(u ∨ y) = R(u ∨ z, z ∨ y)
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Acyclic functions
A function f is acyclic, if its CNF graph is acyclic.

Prime and irredundant CNF is the only minimum 
representation of an acyclic function.

Given the only prime and irredundant acyclic 
CNF   , we define for each clause            an 
essential set                 .

This set is essential due to similar reasons as in the 
case of quadratic functions.

Vector based definition is also possible.

C ∈ ϕ
EC = {C}

ϕ



Quasi-acyclic functions
A function f is quasi-acyclic, if every two variables 
x and y, which belong to the same strong 
component of     , are logically equivalent.

Definition of essential sets is a combination of 
cases of quadratic and acyclic function.

Gf



CQ functions
A Horn CNF    is CQ, if in every clause            at 
most one subgoal belongs to the same strong 
component as its head.

A Horn function f is CQ, if it can be represented 
by a CQ CNF.

ϕ C ∈ ϕ

(a ∨ b ∨ c) ∧ (c ∨ b)

a

b

c

is CQ

a

b

c

(a ∨ b ∨ c) ∧ (c ∨ b) ∧ (c ∨ a)
is CQ



CQ and essential sets
Any prime CNF representation of a CQ function is 
a CQ CNF.

In order to be able to define disjoint essential sets, 
we have to investigate structure of minimum CQ 
CNFs and minimization algorithm for CQ 
functions.



Decomposition lemma
Let us have:

a function f,

a chain of exclusive subsets                                     
in which                       ,

minimal subsets                                           , such 
that                                     .

Then:

                      is a minimal representation of f.

If we can find these sets effectively and solve 
corresponding subproblems effectively, we are done.

∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xt

R(Xt) = I(f)

C∗i ⊆ Xi \ Xi−1, i = 1, . . . , t
R(Xi−1 ∪ C∗i ) = R(Xi)

C∗ =
⋃t

i=1 C∗i



Clause graph
Let     be a pure Horn CNF representing a function 
f, we define clause graph                         as follows:

 

                                if and only if:

 v can be reached from u by a path in      , and

for every          ,             is an implicate of f.

ϕ
Dϕ = (Vϕ, Eϕ)

Vϕ = ϕ

Gϕ
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(A ∨ u, B ∨ v) ∈ Eϕ
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Properties of clause graphs
By                         we denote          .

By                 , where H is a digraph and u one of its 
vertices, we denote the set of vertices, from which 
there is a path to u in H.

If                         , then                       and

Therefore                     is an exclusive set.

If K is a strong component of       containing C, 
then                           is again an exclusive set.

Although the size of       may be exponentially 
larger than   , it is sufficient to work with      , 
which can be constructed in polynomial time.

DI(f)

ConeH(u)

C = R(C1, C2)

Df = (Vf , Ef )

(C1, C) ∈ Ef (C2, C) ∈ Ef

ConeDf (C)

Df

ConeDf (C) \ K

Df

ϕ Dϕ



Back to decomposition lemma
Let                    be strong components of       in 
topological order, and

let us define                                        .

Every                       is an exclusive set and we can 
use it in decomposition lemma.

Representation given by            is sufficient for our 
needs.

Now we only have to solve partial problem for each 
strong component      of     .

K1, . . . ,Kt Df

Xi =
⋃i

j=1 Kj , i = 1, ..., t

Xi, i = 1, ..., t

Xi ∩ ϕ

Ki Df



Strong components
We say, that an implicate              of f is of 

type 0, if no element of A belong to the same 
strong component of       as u, and it is of

type 1, if one element of A belongs to the same 
strong component of      as u.

If K is a strong component of       and f is CQ, then 
all clauses belonging to K are of the same type.

Therefore we can assign this type to K as well.

If K is of type 0, we can leave the clauses in            
as they are, primality and irredundancy of     is 
sufficient in this case.

(A ∨ u)

Gf

Gf

Df

K ∩ ϕ
ϕ



Type 1 (example)
We shall demonstrate what we can do with strong 
components of type 1 on the following example:

ϕ = (b ∨ c) ∧ (b ∨ e) ∧ (a ∨ c ∨ b)
∧ (a ∨ e ∨ b) ∧ (a ∨ d ∨ b) ∧ (a ∨ b ∨ d)

Gϕ

a

e

b

c

d



Type 1 (example)
      has two strong components:

     is itself minimum (primality and irredundancy 
are sufficient for it).

Dϕ

K1 = {(b ∨ c), (b ∨ e)}

K2 = {(a ∨ c ∨ b), (a ∨ e ∨ b), (a ∨ d ∨ b), (a ∨ b ∨ d)}
K1



Type 1 (example)
We can find smaller representation of       by 
finding a smaller representation of strong 
component of       containing b, c, d, and e, but blue 
arcs generated by clauses in      cannot change.
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Type 1 (example)
By this we get an equivalent minimum CNF:

Smallest representation of a strong component 
with some fixed arcs can be found in polynomial 
time.

ϕ′ = (b ∨ c) ∧ (b ∨ e) ∧ (a ∨ e ∨ d)
∧ (a ∨ d ∨ e) ∧ (a ∨ e ∨ b)

a

e

b

c

d



Essential sets
Based on the minimization algorithm, we can 
define the essential sets.

We have to distinguish, whether clause      belongs 
to the strong component            of type 0, or 1.

We give only illustrative pictures of definitions of 
vectors defining the essential sets to give 
impression of their complexity.
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Conclusions
There are other classes, about which we can show, 
that they are coverable. (E.g. interval functions)

Horn coverable functions form a nontrivial 
subclass of Horn functions.

We still do not know, if

we can recognize, whether given Horn CNF 
represent a coverable function,

and what is the complexity of minimization of 
Horn coverable functions. 


