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FOR BAYESIAN WANNABES, ARE DISAGREEMENTS NOT
ABOUT INFORMATION?

ABSTRACT. Consider two agents who want to be Bayesians with a common
prior, but who cannot due to computational limitations. If these agents agree
that their estimates are consistent with certain easy-to-compute consistency con-
straints, then they can agree to disagree about any random variable only if they
also agree to disagree, to a similar degree and in a stronger sense, about an average
error. Yet average error is a state-independent random variable, and one agent’s
estimate of it is also agreed to be state-independent. Thus suggests that disagree-
ments are not fundamentally due to differing information about the state of the
world.

KEY WORDS: Agree, Bounded rationality, Common belief, Disagree

1. INTRODUCTION

Theory and observation seem to be in conflict. On the one hand,
persistent disagreements on matters of fact seem ubiquitous, such
as in academia, politics, and speculative trade. Such disagreements
persist, even though two or more sides seem well aware of the dis-
agreement. On the other hand, we have theory suggesting that ra-
tional agents cannot agree to disagree in this manner. Bayesians
with common priors cannot so disagree (Aumann, 1976; Sebenius
and Geanakoplos, 1983; McKelvey and Page, 1986; Neilsen et al.,
1990), even approximately (Monderer and Samet, 1989; Sonsino,
1995; Neeman, 1996a).

To resolve this conflict, we might posit that people do not actu-
ally disagree as much as they seem, or that people are so irrational
that it is feasible and profitable for them to disagree less than they
do. A third resolution, however, is to posit that existing theoretical
results are fragile, and do not hold up under more reasonable and
feasible concepts of rationality. Yet many authors have explored
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weaker rationality assumptions, and have often still found agree-
ing to disagree to be irrational (Geanakoplos, 1989; Rubinstein and
Wolinsky, 1990; Geanakoplos, 1994; Samet, 1990; Morris, 1994).

Even such weaker concepts of rationality, however, often require
unrealistic computational abilities. For example, even agents charac-
terized only by possibility correspondences are assumed to exactly
calculate expected values over what are typically truly immense
sets of possible states. Some authors have directly considered com-
putational constraints, such as by simulating the consequences of
specific computational strategies, or by allowing agents to know all
theorems which can be generated in any finite time by a Turing ma-
chine (Megiddo, 1989; Shin and Williamson, 1994; Lipman, 1995).
The literature has lacked, however, general results regarding agents
with more substantial computational limitations.

To fill this gap, this paper considers a general class of agents
with perhaps severe computational constraints. For an agent in this
class, her estimate regarding any random variable of interest is itself
a random variable. Such agents may be unrealistic in the sense that
we do not model any confusion on their part regarding the meaning
of a random variable, and we restrict attention to finite spaces of
possible states. But otherwise, our agents may use any error-prone
state-dependent computational strategy to estimate the value of any
random variable.

We call such an agent a “Bayesian wannabe” if she can make
sense of counterfactual statements about what her estimates would
have been if she were capable of computing exact Bayesian expected
values. That is, she in principle has a prior and an information par-
tition, but may in practice find it very hard to use them to compute
expected values. Even so, she can make sense of the concept of her
“error”, the difference between her actual estimate and the estimate
she would have if she had sufficient computational abilities to be a
perfect Bayesian.

We can say that two Bayesian wannabes disagree when the dif-
ference between their estimates of some random variable is large
enough. And, in the usual way, we can say that Bayesian wannabes
agree on some claim when they are both sufficiently confident that
the claim is true, and that they agree. We can thus ask: when do
Bayesian wannabes agree to disagree?



FOR BAYESIAN WANNABES 107

There are three obvious sources of disagreement: priors, inform-
ation, and computation (i.e., errors1). We already know, however,
that not all of these sources can by themselves induce agreements
to disagree. Previously mentioned results show that for Bayesians
with a common prior, differing information can not by itself induce
agreements to disagree. In contrast, perfect Bayesians with identical
information but differing priors can clearly agree to disagree.

Similarly, Bayesian wannabes can agree to disagree purely due
to computational errors, since disagreements about computing the
value of a shared prior can have the same result as differing priors.
Another example would be two agents who were fully aware that
in every state one of them estimated π ≈ 3.14 while the other
estimated π ≈ 22/7. (Of course, as with differing priors, it is not
obvious how rational this behavior is.)

Thus we know that agreeing to disagree can be purely due to
differing priors or differing computation, but not purely due to dif-
fering information (at least for Bayesians). Differing information,
however, seems a more rational basis for disagreement than priors or
computation. Can we retain a central role for information in persist-
ent disagreements by attributing them to intrinsic combinations of
differing information, priors, and computation, combinations which
do not reduce to pure disagreements of any sort?

For two perfect Bayesians with any combination of differing in-
formation and priors, one can easily find state-independent random
variables about which the Bayesians will agree to disagree, even
though state-information is irrelevant to Bayesians’ estimates of
such variables. (Consider, for example, the average of some random
variable across the universe of states.) Thus persistent disagreements
due to combinations of differing information and priors seem to “re-
duce” to persistent disagreements based purely on differing priors,
in the sense that you can’t have the first kind without the second
kind also being present.

This paper provides a similar result about combinations of dif-
fering information and computation, suggesting that you can’t have
such a combination without also having a pure computational dis-
agreement. Specifically, this paper considers two Bayesian
wannabes with identical priors but differing information and com-
putational errors, and gives conditions under which any example of
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agreeing to disagree implies that the same agents agree to disagree
in a certain strong way about a state-independent random variable.

To get this result, we assume that agent estimates satisfy certain
consistency constraints. These assumptions are non-trivial, but they
are also not computationally difficult; even quite severely compu-
tationally constrained agents can satisfy these constraints. Specific-
ally, we first assume that when two agents, call them Pam and Sue,
agree to disagree about some random variable, each agent estimates
herself to be unbiased in those estimates. That is, while each agent
expects that in some states her estimates will be too high and in
other states her estimates will be too low, she expects that her bias,
the average of these errors across states where she thinks they agree
to disagree, will be zero.

We also assume that Pam keeps her estimates consistent with a
simple inequality constraint. This constraint takes as input Pam’s
estimate of the amount by which Pam and Sue agree to disagree
here, and Pam’s estimate of their accuracy this agreement, i.e., of
how often they actually agree, when they think that they agree. From
these, a simple formula gives a lower bound on Pam’s estimate of
Sue’s bias.

Finally, we do not actually require that the above assumptions
hold in every state. Instead we require that Pam and Sue agree that a
direct implication of these assumptions holds. That is, if the agents
agree that Sue’s estimate of Sue’s bias is zero, and that Pam’s estim-
ate of Sue’s bias is above a positive lower bound, then Pam and Sue
by definition agree to disagree about Sue’s bias in a strong way.

This disagreement on Sue’s bias persists, even though bias is
state-independent, and even though Pam and Sue agree on the exact
value of Sue’s estimate, so that there is nothing more Pam could
learn about Sue’s estimate (other than perhaps learning that they
never actually agreed). If we can consider this to be a situation
of “pure” computational disagreement, then we can conclude that,
for Bayesian wannabes with a common prior, persistent disagree-
ments due to combinations of differing information and computation
“reduce” to persistent disagreements based purely on differing com-
putation, in the sense that you can’t have the first kind without the
second kind also being present.
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We now explain our notation, give some examples, and then de-
rive the above results.

2. THE MODEL

2.1. Bayesian Wannabes

Consider a finite set of possible states ω ∈ �, and real-valued
random variables over these states, such as X(ω) ∈ [X, X̄]. A de-
cision agent i is characterized by an estimation operator Ẽiω, which
for every random variable X(ω) produces another random variable
X̃i(ω) = Ẽiω[X(ω)], which is agent i’s estimate in state ω of vari-
able X.

A Bayesian decision agent i has information described by a par-
tition Ii of �, assigns a prior weight µi(ω) to the states, and uses
an exact expected value decision operator Ẽiω[X] = Eµi

[X | Ii(ω)],
where

Eµi
[X | Ii(ω

′)] =

∑

ω∈Ii (ω′)
X(ω)µi(ω)

∑

ω∈Ii (ω′)
µi(ω)

(1)

When � is large, such expected values can be very difficult to com-
pute.

A Bayesian wannabe i is a decision agent who can make sense of
counterfactual statements regarding what her estimates would be if
she had sufficient computational abilities to be a Bayesian. That is,
she imagines that with sufficient computational power to consider
the matter, she could eventually reach a reflective equilibrium about
which prior µi(ω) is most rational, could eventually combine all
the implications of all her state clues into a consistent partition ele-
ment Ii(ω), and could then compute exact expected value estimates
Xi(ω) = Eµi

[X | Ii(ω)].
A Bayesian wannabe can thus make sense of her error, eiω[X] =

X̃i(ω) − Xi(ω), the difference between her actual estimate X̃i(ω)

and the estimate Xi(ω) she would use if she had the computational
abilities to be a Bayesian. We assume that agent i’s estimation oper-
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ator Ẽiω is measurable with respect to information Ii , so that for all
variables X and ω′ ∈ Ii(ω), X̃i(ω

′) = X̃i(ω).

2.2. Bias

An agent’s bias regarding X on a set S is her average error on
that set, ēi[X|S] = Eµi

[eiω[X] | S]. To reduce the magnitude of her
bias,2 a Bayesian wannabe might adjust a calibration ciω[X], so that
X̃i(ω) = X̃0

i (ω) − ciω[X], where X̃0
i (ω) is her estimate with zero

calibration.
We can show the following (non-trivial proofs in Proofs Ap-

pendix).

LEMMA 1. When ciω[X] = c for all ω ∈ S and S is a union of
elements of Ii , the c which minimizes Eµi

[(X̃i(ω) − X(ω))2 | S] (or
Eµi

[e2
iω[X] | S]) sets ēi[X|S] = 0.

Let us say that agent i at state ω expects that she is unbiased re-
garding X on S when Ẽiω[ēi[X|S]] = 0. When a Bayesian wannabe
at state ω is aware of Lemma 1 and makes calibration adjustments
to minimize her average squared error, it seems reasonable for her
to expect that she is unbiased regarding X on her calibration set
DX

i (ω), the set of states where she makes the same calibration ad-
justment, so that ciω′ [X] = ciω[X] for all ω′ ∈ DX

i (ω). It also seems
reasonable for her to expect that she is unbiased regarding X on any
set S that is a union of elements of the partition DX

i . (We assume
DX

i coarsens Ii .)

2.3. Agreeing to Disagree

Standard notions of belief, agreement, and disagreement, can be
generalized to apply to a Bayesian wannabe. Such an agent q-estim-
ates an event E within the estimation set

B̃
q

i (E) = {ω | Ẽiω[µi(E | Ii(ω))] ≥ q},
and the accuracy of agent i on this estimation set is µi(E | B̃q

i (E)).
(Bayesians always have an accuracy of at least q in their q-estim-
ation, which for Bayesians is called q-belief.)

A set N of agents q-agree that E within any C where

C ⊂ ∩i∈NB̃
q
i (C ∩ E). (2)
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We will call such an event C a q-agreement event of E, and call
Equation (2) its agreement equation. Note that this concept has been
introduced for Bayesians under other names (Monderer and Samet,
1996; Borgers, 1994).3

We will use several concepts of disagreement. A weak concept is
that agents i, j are said to ε-disagree about X when X̃i ≥ X̃j + ε.
(They are said to disagree when ε > 0.) Let {ω | X̃i(ω) ≥ X̃j (ω)+ε}
be the i, j ε-disagreement event about X. A strong concept is that
agents i, j α, β-disagree about X when X̃i ≥ α and β ≥ X̃j . Note
that a strong α, β-disagreement implies a weak (α−β)-disagreement,
and that these definitions are not symmetric between i, j .

We can thus say that i, j q-agree to ε-disagree about X if they
q-agree regarding i, j ’s ε-disagreement event about X. We can sim-
ilarly define when i, j q-agree to α, β-disagree about X. (When
ε > 0, the agents i, j q-agree to weakly disagree, and when α > β

they q-agree to strongly disagree.) Note that in any agreement to
disagree, each agent has the option to adjust her estimate in the
direction of (her estimate of) the other agent’s estimate.

2.4. Agreeing to Disagree about Computation

Let us say that agents i, j disagree about the computation of X when
they disagree about X and X is state-independent, and that they q-
agree to disagree about the computation of X if they q-agree that
they disagree about the computation of X.

How relevant is private information to an agreement to disagree
about computation? Let us say that agents i, j q-agree to clearly
α, β-disagree about the computation of X if they q-agree that X̃i =
α and X̃j = β, for a state-independent X. Here it is agreed that X,
X̃i , and X̃j are all state independent, and so knowing the state of
the world does not tell any agent directly about X, about her own
value of the computation of X, or about the other agent’s value for
the computation of X.

Let us say that agents i, j q-agree to strongly α, β-disagree about
the computation of X if they q-agree that X̃i ≥ α and X̃j = β,
for a state-independent X. Here X̃i , but not X̃j , is sometimes state-
dependent, but only by sometimes moving even farther away from
X̃j . In this case, knowing the state of the world does not tell agent i

directly about X, nor about the agent j ’s value for the computation
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TABLE I

One State Example

ω X X̃1 X̃2 e1[X] ē1 Ẽ1[ē1] Ẽ2[ē1]
1 π 22/7 3.14 0.00126 0.00126 0 0.003

of X. While not as clear as the previous case, this still seems a
strong candidate for a reasonably “pure” computational agreement
to disagree, and this is the case that will be demonstrated in this
paper to follow from any agreement to disagree.

It is admittedly not obvious that these cases are “clear” and
“strong” as I have described them. This paper will not further con-
sider this issue, however.

2.5. Examples

Table I describes an extremely simple example, where agents be-
lieve there is only one possible self-consistent description of a pos-
sible reality. So � = {1}, µi(1) = 1, and Ii = {{1}}. Two agents,
named 1 and 2, each use a different heuristic to estimate the math-
ematical constant π . Agent 1 estimates that she has zero error in
her estimation that π ≈ 22/7, while agent 2, who uses a different
estimate π ≈ 22/7, estimates that agent 1 has an error of 0.003.
Agents 1, 2 1-agree to clearly 22/7, 3.14-disagree about the compu-
tation of π . Since there is known to be only one possible state here,
estimates of error are the same as estimates of bias, or average error.
All of these features remain if this example is modified to have two
states, each with the same row of values shown in Table I, and with
I1 = {{1, 2}}, I2 = {{1}, {2}}, and any µi .

Table II describes a five state example where agents 1, 2 are said
to 0.94-agree to 15-disagree about a variable X ∈ [0, 100]. That
is, two Bayesian wannabes have a common prior µ(ω) and dif-
fering information partitions I1 = {{1}, {2, 3}, {4, 5}} and I2 =
{{1, 2}, {3, 4}, {5}}. Consider the event C = {2, 3, 4} and agent es-
timates q̃i(ω) = Ẽiω[qi] about whether they are in event C, where
qi = µ(C|Ii(ω)). Everywhere in B1 = {2, 3, 4, 5} agent 1 satisfies
q̃1 ≥ 0.94, and everywhere in B2 = {1, 2, 3, 4}, agent 2 satisfies
q̃2 ≥ 0.95. Since C ⊂ B1

⋂
B2, then C is an agreement event. And
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1]
ε̂

p̃
2

1
0.

02
0.

01
0.

95
0

0.
0

70
.6

5
55

5.
0

8.
57

0
10

8.
6

0.
97

2
0.

32
0.

99
0.

95
75

62
.5

70
.6

70
55

7.
5

8.
57

0
10

8.
6

0.
97

3
0.

32
0.

99
0.

99
50

62
.5

37
.5

70
25

7.
5

8.
57

0
12

10
.7

0.
98

4
0.

32
0.

94
0.

99
25

29
.4

37
.5

40
25

10
.6

8.
57

0
12

10
.7

0.
98

5
0.

02
0.

94
0.

02
10

0
29

.4
10

0
40

95
10

.6
8.

57
0

5
8.

6
0.

97



114 ROBIN HANSON

TABLE III

Five State, State-Independent Variable Example

ω µ q̃1 q̃2 X X̃1 X̃2 e1[X] ē1 Ẽ1[ē1] Ẽ2[ē1]
1 0.02 0.01 0.95 π 3.1 3 -0.042 -0.0009 0 0.04

2 0.32 0.99 0.95 π 3.14 3 -0.002 -0.0009 0 0.04

3 0.32 0.99 0.99 π 3.14 3.1 -0.002 -0.0009 0 0.03

4 0.32 0.94 0.99 π 3.142 3.1 0.0004 -0.0009 0 0.03

5 0.02 0.94 0.02 π 3.142 3.14 0.0004 -0.0009 0 0.01

since X̃1 − X̃2 ≥ 15 everywhere in C, they are agreeing to disagree
on X in the weak sense. (They do not 0.94-agree to disagree in the
strong sense, since there are no α, β satisfying X̃1 ≥ α > β ≥ X̃2
for all ω ∈ C.)

These agents make many errors, and would not even weakly dis-
agree if they were Bayesians. Agent 1’s errors in estimating X,
averaged across B1, constitute a bias of 8.57 on that set. (Agent
2 has a bias of −13.53 on B2.) Agent 1 always estimates herself
to be unbiased, but agent 2 estimates that agent 1 is biased. While
agent 2’s estimate of agent 1’s bias varies from state to state, it is
always at least 10. So this is an example where agents 2, 1 are said
to 0.94-agree to strongly 10, 0-disagree about the computation of ē1.

As will be explained in the next section, there is a simple formula
which agents can use to calculate ε̂, which is a lower bound on agent
2’s estimate of agent 1’s average bias. This formula takes as input
the amount of the basic weak disagreement, in this case ε = 15, and
p̃2, which is agent 2’s estimate of the minimum among the accuracy
of agent 1 on B1, and the accuracy of 2 on B2. (These accuracies are
both equal to 0.98 in this example.) If the agents agree that ε ≥ 15
and that p̃2 ≥ 0.97, they can agree that ε̂ = 8.6, and so can 0.94-
agree to strongly 8.6, 0-disagree on the computation of agent 1’s
bias.

Table III describes a five state example with the same prior, in-
formation partitions, and estimates qi as in Table II. The difference
here is that the random variable is the mathematical constant π ,
which is the same in all states. What differs across states is the num-
ber of digits in each agent’s approximation of π . In this example,
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agents 1, 2 0.94-agree to 0.04-disagree about the computation of
π , and agents 2, 1 0.94-agree to strongly 0.03, 0-disagree about the
computation of ē1[π ]. Agents 1, 2 do not 0.94-agree to strongly
disagree about the computation of π , however.

This example may help illustrate some issues in attributing dis-
agreements about state-independent variables to private informa-
tion. While this disagreement is in part due to the fact that agents
have access to differing numbers of digits of π in different states,
it seems more fundamentally due to the fact that the agents seem to
not consider the possibility that the other agent might have access
to more digits. It seems that to agree to disagree about π , the agents
must agree to disagree about who has more digits. And as we will
see, this requires that they agree to disagree about their average bias
in estimating who has more digits.

It should be noted that cases of uncertainty about the value of
state-independent variables can be re-described as cases of uncer-
tainty about state-dependent variables, by expanding the state space
to include “impossible possible worlds” (Hintikka, 1975). So uncer-
tainty about π could be represented using states where the value of
π varies across the states. It is not clear, however, how best to do
this regarding variables defined in terms of the existing state space,
such as an average of random variable over the state space.

3. ANALYSIS

Let us now focus attention on a particular random variable X, and
assume that in some states two Bayesian wannabes, named 1 and
2, q-agree to ε-disagree about X, with ε > 0. Thus there is a non-
empty 1, 2 ε-disagreement event E, within which X̃1 ≥ X̃2 + ε. We
assume the agents have a common prior, µ1 = µ2 = µ, and focus
on a particular uniquely defined non-empty q-agreement event C,
such as the one with the largest prior weight. Thus C and E satisfy
Equation (2).

To further simplify our notation, let A = C ∩ E be the analysis
set we will focus on, let Bi = B̃

q
i (A) be its estimation sets, let

ēi = ēi[X|Bi] be each agent’s bias regarding X on those sets, and
let pi = µ(A |Bi) be each agent’s accuracy on those estimation
sets. Note that if agent i considers Bi to be a union of her calib-
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ration sets DX
i (ω), that is, if she considers her calibration of X as

she considers her disagreement, then she should expect that she is
unbiased regarding X on Bi , so that Ẽiω[ēi] = 0.

We will now consider under what conditions agreeing to disagree
about X implies that Bayesian wannabes disagree, or agree to dis-
agree, about their biases ēi . Note that since the sets C and E are
defined in a state independent manner, and since the sets Bi were
defined uniquely in terms of these sets, biases ēi have also been
defined to be state-independent random variables. Thus agreeing
to α, β-disagree about such biases is agreeing to disagree about
computation.

If the agents are accurate (pi ≈ 1) in estimating that they agree
to disagree, the Bi sets cannot differ much from the analysis set A.
This suggests that the difference between the agent’s biases ēi on Bi

is nearly the average difference between the agent’s estimates on A.

LEMMA 3. ē1/p1 − ē2/p2 = E[X̃1 − X̃2 |A] + E[X̃1 − X |B1\
A](1 − p1)/p1 − E[X̃2 − X |B2\A](1 − p2)/p2.

Since X̃1 − X̃2 > ε everywhere in A, ē1 must be positive if ē2 = 0
and ε is not too small. Let us define p0 = min(p1, p2), �X =
X̄ − X, and ε̂(ε, p) = pε − 2(1 − p)�X. Using these definitions,
we can show that agent 2 being unbiased implies a lower bound on
agent 1’s bias.

LEMMA 4. ε ≥ 0 and ē2 = 0 imply ē1 ≥ ε̂(ε, p0).

This lower bound is positive for p0 ≈ 1 near one, since then
ε̂(ε, p0) ≈ ε.

If at state ω, Bayesian wannabe 2 is aware of Lemma 4, and
expects that she is unbiased regarding X on B2, she should want
to keep her estimates consistent with the inequality constraint given
by Lemma 4. Since ε̂(ε, p) is linear in p, this should result in4

Ẽ2ω[ē1] ≥ ε̂(ε, p̃2), (3)

for p̃2 = Ẽ2ω[p0].
But if at state ω Bayesian wannabe 1 expects that she is unbiased

on B1, we have

Ẽ1ω[ē1] = 0. (4)
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Equations (3) and (4) directly imply our first main result.

THEOREM 1. Regarding agents 1, 2 q-agreeing to ε-disagree
about X, if at some ω agent 1 satisfies Equation (4) (expecting she
is unbiased regarding X on B1), and agent 2 satisfies Equation (3)
for some p̃2, then at ω, agents 2, 1 ε̂(ε, p̃2), 0-disagree about the
computation of ē1.

Note that the magnitude ε̄ of the resulting disagreement depends on
p̃2, agent 2’s perception of their accuracy of agreement, but not on
q, their common confidence in agreement. Theorem 1 shows that if
two Bayesian wannabes each think they are unbiased and agree to
weakly disagree by a large enough amount about any random vari-
able X, they must also disagree about one of their biases. And since
bias has been defined in a state-independent manner, this implies
that they disagree about a computation.

To conclude that two Bayesian wannabes agree to disagree about
a computation, however, we must assume more. We can simply as-
sume that they agree that they accept the assumptions of Theorem 1.

THEOREM 2. If agents 1, 2 q-agree (at agreement C)

1. that they ε-disagree about X (for ε > 0), and
2. that they satisfy Equations 3 and 4 for agreed on values of ε and

p̃2,

then within C, agents 2, 1 q-agree to strongly ε̂(ε, p̃2), 0-disagree
about the computation of ē1.

An example to which Theorem 2 applies is described in Table II.
Theorem 2 is our main conclusion.5 It considers two agents who
agree both that they weakly disagree by a large enough amount
regarding any real-valued random variable, and that the assump-
tions of Theorem 1 holds, which are that agent 1 expects herself
to be unbiased, and that agent 2 keeps her estimates consistent with
Equation (3) for some agreed-on value of p̃2, presumably because
agent 2 is aware of Lemma 4 and estimates that she is unbiased.

Given this agreement, these agents must agree to disagree by
a certain amount about agent 1’s average error, which is a state-
independent random variable. Moreover, they must agree that agent
1’s estimate of this variable is also state independent. This is a sort of
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agreement to disagree that we earlier argued seems a strong candid-
ate for a case of “pure” computational disagreement, where differing
private information is largely irrelevant.

4. CONCLUSION

Since Bayesians with a common prior cannot agree to disagree, to
what can we attribute persistent human disagreement? We can gen-
eralize the concept of a Bayesian to that of a Bayesian wannabe,
who makes computational errors while attempting to be Bayesian.
Agreements to disagree can then arise from pure differences in pri-
ors, or from pure differences in computation, but it is not clear how
rational these disagreements are. Disagreements due to differing
information seem more rational, but for Bayesians disagreements
cannot arise due to differing information alone.

Can we explain persistent disagreement as due to an intrinsic
combination of differing information and differing something else?
Given any agreement to disagree due to a combination of differing
priors and information, and no computational errors, we can easily
find a disagreement purely due to differing priors, so this case seems
to reduce to pure prior-based disagreements. Similarly, this paper
shows that given any agreement to disagree with differing inform-
ation and computational errors, but common priors, we can find an
agreement to disagree about a state-independent random variable.
And this agreement to disagree seems of a strong sort that is plaus-
ibly described as a case of pure computational disagreement, though
this is admittedly not an obvious interpretation.

If the interpretation proposed here is correct, then it seems that
to the extent that pure computational and pure prior-based persist-
ent disagreements are irrational, any persistent disagreement is irra-
tional. This would make it much harder to reconcile the ubiquitous
persistent disagreements around us with a presumption of human
rationality.
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5. PROOFS APPENDIX

LEMMA 1. When ciω[X] = c for all ω ∈ S and S is a union of
elements of Ii , the c which minimizes Eµi

[(X̃i(ω) − X(ω))2 | S] (or
Eµi

[e2
iω[X] | S]) sets ēi[X|S] = 0.

Proof. Since ei = X̃i −Xi, then (X̃i −X)2 = (ei + (Xi −X))2 =
e2
i + (Xi − X)2 + 2ei(Xi − X). The second term on the right is

independent of c, and the expectation of the third term on the right
over S vanishes because ei is constant over each Ii(ω) ⊂ S and
E[Xi − X | Ii(ω)] = 0, which follows from Equation 1. Thus to
minimize E[(X̃i − X)2 | S] is to minimize E[e2

i | S]. We can write
ei = X̃i −Xi = (X̃0

i −ci)−Xi = mi −ci , where mi = X̃0
i −Xi . We

can further write ei = mi −ci = (mi −m̄i)+ (m̄i −ci), where m̄i =
E[mi | S]. Then e2

i = (mi −m̄i)
2+(m̄i −ci)

2+2(mi −m̄i)(m̄i −ci).
But the expectation of the third term here over S vanishes by the
definition of m̄i , the first term is independent of ci , and the second
term is minimized by ci = m̄i . So ēi = m̄i − ci = 0. �
LEMMA 2. Common p-belief implies (2p − 1)-agreeing, and p-
agreeing implies common p-belief.

Proof. Regarding the second claim, C ⊂ B
p
i (C ∩ E) implies

both C ⊂ B
p

i (C) and C ⊂ B
p

i (E) due to the general relation that
B

p

i (S) ⊂ B
p

i (S′) whenever S ⊂ S′. Regarding the first claim, for
all ω in a common set C, µ(C | Ii(ω)) ≥ p and µ(E | Ii(ω)) ≥ p.
Defining a1 = µ(C ∩ E | Ii(ω)), a2 = µ(C\E | Ii(ω)), a3 = (E\
C | Ii(ω)), and a4 = 1 − a1 − a2 − a3, we thus have a1 + a2 ≥ p

and a1 + a3 ≥ p. This implies a3 + a4 ≤ 1 −p and a2 + a4 ≤ 1 −p

which implies 1 − a1 = a2 + a3 + a4 ≤ a2 + a3 + 2a4 ≤ 2(1 − p)

so that a1 = µ(C ∩ E | Ii(ω) ≥ 2p − 1 for all ω ∈ C. �
LEMMA 3. ē1/p1 − ē2/p2 = E[X̃1 − X̃2 |A] + E[X̃1 − X |B1\
A](1 − p1)/p1 − E[X̃2 − X |B2\A](1 − p2)/p2.

Proof. Since ei = X̃i − Xi , we have E[e1 |A] − E[e2 |A] =
E[X̃1 − X̃2 |A] − E[X1 − X2 |A]. The strategy of proof is to find
expressions for each of these terms, substitute them, and then solve
for ē1/p1 − ē2/p2.

First, rearranging equation 1 implies that E[Xi | S] = E[X | S]
for any S which is a union of Ii members. And Bi must be a union
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of Ii members since Ẽiω′ = Ẽiω is the same for all ω′ ∈ Ii(ω). Thus
E[Xi |Bi] = E[X |Bi]. Since pi = µ(A |Bi), we also have

E[f |Bi] = E[f |A]pi + E[f |Bi\A](1 − pi) (5)

for any f . Using f = X and f = Xi , we can then solve for
E[Xi |A] = E[X |A]+E[X−Xi |Bi\A](1−pi)/pi , which implies

E[X1 − X2 |A] = E[X − X1 |B1\A](1 − p1)

/p1 − E[X − X2 |B2\A](1 − p2)/p2.

Second, using f = ei in equation 5 yields E[ei |A] = ēi/pi −
E[ei |Bi \A](1 − pi)/pi . Finally, we can leave E[X̃1 − X̃2 |A] =
E[X̃1 − X̃2 |C ∩E] alone, as this must be at least ε by the definition
of E. Substituting into the original equation, noting that (Xi −X)+
ei = X̃i − X, and solving for ē1/p1 − ē2/p2 gives the result. �
LEMMA 4. ε ≥ 0 and ē2 ≥ −δ ≤ 0 imply ē1 ≥ ε̂(ε, p0) − δ.

Proof. Since X̃1 − X̃2 ≥ ε everywhere in E, and A ⊂ E, the first
right side term in Lemma 3’s equation is at least ε. For ε ≥ 0 the
most negative imaginable case for this right side is where (B1\A) ∩
(B2\A) = ∅, with X̃1 = X and X = X̄ on B1\A, and X̃2 = X and
X = X on B2\A. This gives

ē1/p1 ≥ ē2/p2 + ε − �X((1 − p1)/p1 + (1 − p2)/p2).

Multiplying this equation by p1, the most negative case for the last
two right side terms is p1 = p2 = p0, and when ē2 = −δ ≤ 0, the
most negative case for the first right side term is p1 = 1, p2 = p0.
This implies the result. �
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NOTES

1. In this paper, “computation” is whatever agents do to reduce calculation “er-
rors” as we have defined them.

2. When humans suspect their judgment is biased, they often attempt to correct
it (Wegener et al., 1998).

3. An related concept is common p-estimation of event E, holding at states
within any event C where C ⊂ B̃

p

i (C) and C ⊂ B̃
p

i (E) for all i ∈ N .
(For Bayesians, this has been called common p-belief (Monderer and Samet,
1989).) For Bayesians, agreeing and common estimation are very similar con-
cepts.

LEMMA 2. For Bayesians, common p-estimation implies (2p−1)-agreeing,
and p-agreeing implies common p-estimation.

4. As stated, Equation (3) allows no rounding error in the agent 2’s maintenance
of Lemma 4’s constraint. Such rounding error can be allowed by generalizing
ε̂(ε, p) to ε̂(ε, p, δ) = ε̂(ε, p)− δ. Theorems 1 and 2 then trivially generalize
to this new expression for ε̂, for some rounding error δ. Similar corrections can
allow deviations from agents expecting themselves to be exactly unbiased; our
conclusions do not fragily depend on such assumptions.

5. Note that Theorem 2 can easily be generalized to distinguish the q ′-agreement
event C′ regarding disagreeing on ē1 from the q-agreement event C regarding
disagreeing about X. There are no obvious constraints relating C and C′ and
q and q ′.
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