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Abstract. We study the speed of convergence to approximate solutions
in iterative competitive games. We also investigate the value of Nash
equilibria as a measure of the cost of the lack of coordination in such
games. Our basic model uses the underlying best response graph induced
by the selfish behavior of the players. In this model, we study the value
of the social function after multiple rounds of best response behavior by
the players. This work therefore deviates from other attempts to study
the outcome of selfish behavior of players in non-cooperative games in
that we dispense with the insistence upon only evaluating Nash equilib-
ria. A detailed theoretical and practical justification for this approach is
presented. We consider non-cooperative games with a submodular social
utility function; in particular, we focus upon the class of valid-utility
games introduced in [13]. Special cases include basic-utility games and
market sharing games which we examine in depth. On the positive side
we show that for basic-utility games we obtain extremely quick conver-
gence. After just one round of iterative selfish behavior we are guaran-
teed to obtain a solution with social value at least % that of optimal.
For n-player valid-utility games, in general, after one round we obtain a
%-approximate solution. For market sharing games we prove that one
round of selfish response behavior of players gives £2(.-)-approximate
solutions and this bound is almost tight. On the negative side we present
an example to show that even in games in which every Nash equilibrium
has high social value (at least half of optimal), iterative selfish behavior
may “converge” to a set of extremely poor solutions (each being at least
a factor n from optimal). In such games Nash equilibria may severely
underestimate the cost of the lack of coordination in a game, and we
discuss the implications of this.

1 Introduction

Traditionally, research in operation research has focused upon finding a global
optimum. Computer scientists have also long studied the effects of lack of dif-
ferent resources, mainly the lack of computational resources, in optimization.
Recently, the lack of coordination inherent in many problems has become an im-
portant issue in computer science. A natural response to this has been to analyze
Nash equilibria in these games. Of particular interest is the price of anarchy in
a game [8]; this is the worst case ratio between an optimal social solution and
a Nash equilibrium. Clearly, a low price of anarchy may indicate that a system



has no need for a single regulatory authority. Conversely, a high price of anarchy
is indicative of a poorly functioning system in need of some regulation.

In this paper we move away from the use of Nash equilibria as the solution
concept in a game. There are several reasons for this. The first reason relates
to use of non-randomized (pure) and randomized (mixed) strategies. Often pure
Nash equilibria may not exist, yet in many games the use of a randomized
(mixed) strategy is unrealistic. This necessitates the need for an alternative in
evaluating such games.

Secondly, Nash equilibria represent stable points in a system. Therefore (even
if pure Nash equilibria exist), they are a more acceptable solution concept if it is
likely that the system does converge to such stable points. In particular, the use
of Nash equilibria seems more valid in games in which Nash equilibria arise when
players iteratively engage in selfish behavior. The time it takes for convergence to
Nash equilibria, however, may be extremely long. So, from a practical viewpoint,
it is important to evaluate the speed or rate of convergence. Moreover, in many
games it is not the case that repeated selfish behavior always leads to Nash
equilibria. In these games, it seems that another measure of the cost of the lack
of coordination would be useful.

As is clear, these issues are particularly important in games in which the
use of pure strategies and repeated moves are the norm, for example, auctions.
We remark that for most practical games these properties are the rule rather
than the exception (this observation motivates much of the work in this paper).
For these games, then, it is not sufficient to just study the value of the social
function at Nash equilibria. Instead, we must also investigate the speed of con-
vergence (or non-convergence) to an equilibrium. Towards this goal, we will not
restrict our attention to Nash equilibria but rather prove that after some number
of improvements or best responses the value of the social function is within a
factor of the optimal social value. We tackle this by modeling the behavior of
players using the underlying best response graph on the set of strategy states.
We consider (best response) paths in this graph and evaluate the social function
at states along these paths. The rate of convergence to high quality solutions (or
Nash equilibria) can then be measured by the length of the path. As mentioned,
it may the case that there is no such convergence. In fact, in Section 4.2, it is
shown that instead we have the possibility of “convergence” to non-Nash equi-
libria with a bad social value. Clearly such a possibility has serious implications
for the study of stable solutions in games.

An overview of the paper is as follows. In section 2, we describe the problem
formulations and model. In section 3, we discuss other work and their relation to
this paper. In section 4, we give results for valid-utility and basic-utility games.
We prove that in valid-utility games we obtain a %—approximate solution if
each player sequentially makes one best response move. For basic-utility games
we obtain a 1-approximate solution in general, and a }-approximate solution if
each player initially used a null strategy. We then present a valid-utility game
in which every Nash equilibria is at least half-optimal and, yet, iterative selfish
behavior may lead to only O(%)—approximate solutions. In section 5, we examine



market sharing games and show that we obtain Q(ﬁ)—approximate solutions

after one best response move each. Finally, in section 6, we discuss other classes
of games and present some open questions.

2 Preliminaries

In this section, we define necessary game theoretic notations to formally describe
the classes of games that we study in the next sections. The game is defined as
the tuple (U, {S;}, {e;()})- Here U is the set of players or agents. Associated
with each player j is a disjoint groundset V;, and S; is a collection of subsets
of V;. The elements in the a groundset correspond to acts a player may make,
and hence the subsets correspond to strategies. We denote player j’s strategy
by s; € S;. Finally, a; : II;S; — R is the private payoff or utility function for
agent j, given the set of actions of all the players. In a non-cooperative game,
we assume that each selfish agent wishes to maximize its own payoff.

Definition 1. A function f : 2¥ — R is a set function on the groundset V.
A set function f : 2V — R is submodular if for any two sets A, B C V, we
have f(A) + f(B) > f(AN B) + f(AU B). The function is non-decreasing if
F(X) < F(Y) for any X CY C V.

For each game we will have a social objective function v : II;S; — R (We
remark that « can be viewed as a set function on the groundset UV;.) Our goal
will be to analyze the social value of solutions produced the selfish behavior of
the agents. Specifically, we will focus upon the class of games called wvalid-utility
games.

Definition 2. Let G(U,{S;},{c;}) be a non-cooperative game with social func-
tion v. G is a valid-utility game if it satisfies the properties:

— v is a submodular set function.

— The payoff of a player is at least equal to the difference in the social function
when the player participates versus when it does not.

— The sum of the utility or payoff functions for any set of strategies should be
less than or equal to the social function.

This framework encompasses a wide range of games in facility location, traffic
routing and auctions [13]. Here, as our main application, we consider the market
sharing game which is a special case of valid-utility games (and also congestion
games). We define this game formally in Section 5.

2.1 Best Response Paths

We model the selfish behavior of players using an underlying state graph. Each
vertex in the graph represents a strategy state S = (s1,82,...,5,). The arcs in
the graph corresponds to best response moves by the players. Formally, we have



Definition 3. The state graph, D = (V, &), is a directed graph. Each vertex in
V corresponds to a strategy state. There is an arc from state S to state S’ with
label j if the only difference between S and S' is only in the strategy of player j;
and player j plays his best response in strategy state S to go to S'.

Observe that the state graph may contain loops. A best response path is
a directed path in the state graph. We say that a player ¢ plays in the best
response path P, if at least one of the edges of P is labelled i. Assuming that
players optimize their best response function sequentially (and not in parallel),
we can evaluate the social value of states on a best response path in the state
graph. In particular, given a best response path starting from an arbitrary state,
we will be most interested in the social value of the the last state on the path.
Notice that if we do not allow every player to make a best response on a path P
then we may not be able to bound the social value of a state with respect to the
optimal solution. This follows from the fact that the actions of a single player
may be very important for producing solutions of high social value. Hence, we
consider the following models:

One-round path: Consider an arbitrary ordering of players iy,...,i,. Path P
is a one-round path if it starts from an arbitrary state and edges of P are
labelled 1,42, ...,4, in this order.

Covering path: A best response path P is a covering path if each player plays
at least once on the path.

k-Covering path: A best response path P is a k-covering path if there are k
covering paths Py, Pa, ..., Pk such that P = (P1,Pa,..., Pk).

Observe that a one-round path is a covering path. Note that in the one-round
path we let each player play his best response exactly one time, but in a cov-
ering path we let each player play at least one time. Both of these models have
justifications in extensive games with complete information. In these games, the
action of each player is observed by all the other players. As stated, for a non-
cooperative game G with a social function ~y, we are interested in the social value
of states (especially the final state) along one-round, covering, and k-covering
paths.

A Simple Example. Here, we consider covering paths in a basic load balancing
game; Even-Dar et. al. [2] considered the speed of convergence to Nash equi-
libria in these games. There are n jobs that can be scheduled on m machines.
It takes p; units of time for job j to run on any of the machines. The social
objective function is the maximum makespan over all machines. The private
payoff of a job, however, is the inverse of the makespan of the machine that the
job is scheduled on. Thus each job wants to be scheduled on a machine with as
small a makespan as possible. It is easy to verify that the price of anarchy in
this game is at most 2. It is also known that this game has pure Nash equilib-
ria and the length of any best-response path in this game is at most n? [1]. In
addition, from any state there is a path of length at most n to some pure Nash



equilibrium [12]. It may, however, take much more than n steps to converge to a
pure Nash equilibrium. Hence, our goal here is to show that the social value of
any state at the end of a covering path is within a factor 2 of optimal. So take
a covering path P = (51, Ss,...,Sk)- Let i* be the machine with the largest
makespan at state Si and let the load this machine be L*. Consider the last
job j* that was scheduled on machine ¢, and let the schedule after scheduling
j* be S;. Ignoring job j*, at time t the makespan of all the machines is at least
L* — p;«. If not, job j* would not have been scheduled at machine i*. Conse-
quently, we have >3, ., pi > m(L* — p;+). Thus, if OPT is the value of the
optimal schedule, then OPT > 37, ., pj/m > L* —pj+. Clearly OPT > p;- and
so L* =L — Dj* +p]* S 20PT.

3 Related Work

Here we give a brief overview of related work in this area. The consequences
of selfish behavior and the question of efficient computation of Nash equilibria
have recently drawn much attention in computer science [8, 7]. Moreover, the use
of the price of anarchy [8] as a measure of the cost of the lack of coordination
in a game is now widespread, with a notable success in this realm being the
selfish routing game [11]. Roughgarden and Tardos [10] also generalize their
results on selfish routing games to non-atomic congestion games. A basic result
of Rosenthal [9] defines congestion games for which pure strategy Nash equilibria
exist. Congestion games belong to the class of potential games [6] for which any
best-response path converges to a pure Nash equilibrium. Milchtaich [5] studied
player-specific congestion games and the length of best-response paths in this set
of games. Even-Dar et. al. [2] considered the convergence time to Nash equilibria
in variants of a load balancing game. They bound the number of required steps
to reach a pure Nash equilibrium in these games. Recently, Fabrikant et. al. [3]
studied the complexity of finding a pure strategy Nash equilibrium in general
congestion games. Their PLS-completeness results show that in some congestion
games (including network congestion games) the length of a best-response path
in the state graph to a pure Nash equilibrium might be exponential. Goemans
et. al. [4] considered market sharing games in modeling a decentralized content
distribution policy in ad-hoc networks. They show that the market sharing game
is a special case of valid-utility games and congestion games. In addition, they
give improved bounds for the price of anarchy in some special cases, and present
an algorithm to find the pure strategy Nash equilibrium in the uniform market
sharing game. The results of Section 5 extend their results.

4 Basic-Utility and Valid-Utility Games

In this section we consider valid-utility games. First we present results concerning
the quality of states at the end of one-round paths. Then we give negative results
concerning the non-convergence of k-covering paths.



4.1 Convergence

We use the notation from [13]. In particular, a strategy state is denoted by
S = {s1,82,...,8x} € S. Here s; is the strategy of player i, where s; C V;
and V; is a groundset of elements (with each element corresponding to an ac-
tion for player i); @; corresponds to a null strategy. We also let S & s} =
{s1y-..,8i—1,8},8it1,...,5k}, i.e. the strategy set obtained if agent ¢ changes
its strategy from s; to s}. The social value of a state S is y(S), where 7 is a
submodular function on the groundset U;V;. For simplicity, in this section we
will assume that v is non-decreasing. Similar results, however, do hold in the
general case.

We also denote by a;(S) the private return to player i from the state S, and
we let ;. (S) = v(SUs;) —(S). Thus, formally, the second and third conditions
in definition 2 are a;(S) > 7,,(S ® 0;) and >, a;(S) < 7(S), respectively. Of
particular interest is the subclass of valid-utility games where we always have
a;(S) = 7..(S ® 0;); these games are called basic-utility games (examples of
which include competitive facility location games).

Theorem 1. In basic-utility games, the social value of a state at the end of a
one-round path is at least % of the optimal social value.

Proof. Let 2 = {o1,...,0,} denote the optimum state, and let T' = {t1,...,tn}

and S = {s1,..., 8y} be the initial state and final states on the one-round path,
respectively; we assume the agents play best response strategies in the order
1,2,...,n. So T* = {s1,...,8i-1,ti,...,tn} is & state in our one-round path

P ={T =T,T?..., 7" = S}. Thus, by basicness and the fact that the
players use best response strategies, we have Y, a;(T*H) = Y"1 | Vs, (T ;) >
> ive. (T @ 0;). Tt follows by submodularity that >, ai(T) > 3, ~5 (S U
T ® 0;) > v(2) —v(SUT) > v(02) — vy(S) — v(T). Moreover, by basicness,
Y(S) = y(T) = YT v(TH) =4 (T7) = 3, v(TH) = (T  ® ) — 3, v(T7) -
VT @ 0:) = 37, (T & 0;) — Zi Y (TP ®0;) = 3, (T = 3,7, (T &
0;). Let T* = {01,...,0;—1,%,...,tn}. Then, by submodularity, y(S) —v(T) >
S 0T = Sord (TF @ 07) = 3 aa(THY) — A(T). Hence, A(S) — 4(T) >
v(£2) — v(S) — 2v(T). Since v(S) > (T, it follows that 3v(S) > opPT. |

We suspect this result is not tight and that a factor 2 guarantee is possible.
Observe, though, that the above proof gives this guarantee for the special case
in which the initial strategy state is T' = 0.

Theorem 2. In basic-utility games, the social value of a state at the end of a
one-round path beginning at T = () is at least % of the optimal social value and
this bound is tight. O

It is known that any Nash equilibria in any valid-utility game has value
within a factor 2 of optimal. So here after just one round in a basic-utility game
we obtain a solution which matches this guarantee. However for non-basic-utility
games, the situation can be different. We can only obtain the following guarantee,
which is tight to within a constant factor.



Theorem 3. In general valid-utility games, the social value of some state on
any one-round path is at least % of the optimal social value.

Proof. Let 4(£2) = oPT and assume that 7(t1,t2,...,t,) < 5-0PT. Again,
agent i changes its strategy from t; to s; given the collection of strategies T =
{81,y 8i—1,tiy- -, tn} Ifat any state in the path P = {T' =T1,T?, ... Tn*!
S} we have a; (T"H) 2n OPT then we are done. To see this note that a (T”l)
V(T = (T*®0;) > 0, since y is non-decreasing. Thus y(T*") > 3, a; (T*
o;(T™1) > sLopT. Hence we have, y(t1 U s1,...,t; U 8i, tip1,- -, tn) — ¥(T)
E;’:1 7(51Ut1, N 1SLTTS 7 N P ,tn)—'y(slutl, ceey 81Ut 1t i1, ,tn) <
iy V(T Us5) = y(T7) < 305y Y(T7) = (T @ 0) < Y5y a(TIHY)
< 55 OPT. Consequently Yo Uty Ust,y...,0;Ut; Usi, o541 Utirt,...,onU ty)
—’)’(tl Usi,.. t Usz,tH_l,...,t )>OPT 'y(tlu.sl, . 2 US,,tH_l, .,tn)
> oPT—7(S)—5-0PT > 225i=LopT. Thus, thereis a j > i  such that Vo, (TT1) >

=1V 1
v

Vo, (t1 U 81, .. t U S'utz+17 ey tn) > 222(3’ 1)1 OPT > LOPT. Therefore we must
obtain a; (TJ+1) > 5-OPT for some j > i. O

4.2 Cyclic Equilibria

Here we show that Theorem 3 is essentially tight, and discuss the consequences
of this. Specifically, there is the possibility of convergence to low quality states
in games in which every Nash equilibria is of high quality.

Theorem 4. There are wvalid-utility games in which every solution on a k-
covering path has social value at most % of the optimal solution.

Proof. We consider the following n-player game. The groundset of player ¢ con-
sists of three elements z;, z} and y;. Let X = U;z; and X' = U;z;. We construct
a non-decreasing, submodular social utility function in the following manner.
For each agent 1 <4 < n, we have

, 1 ifSN(XUX)=90
Ve: (5) = {0 otherwise

We define 4/, (S) in an identical manner. Finally, for each agent 1 < i < n, we
let 7y, (S) = i,VS . Clearly, the social utility function -+ is non-decreasing. To see
that it is submodular, it suffices to consider any two sets A C B. If v, (B) =1
then ;. (A) = 1. This follows as BN (X UX') = () implies that AN (XUX') = 0.
Hence v;.(A) > v;,(B), Vi,YA C B. Similarly ., (A) > ( ), Vi,VA C B.
Finally, v,,(A4) = v,,(B) = 1, Vi,YAC B. Tt is well known that a function fis
submodular if and only if A C B implies f;(A4) > f;(B), Vj € V — B. Thus v is
submodular.

With this social utility function, we construct a valid utility system. To do
this, we create private utility functions «; using the following rule (except for a
few cases given below), where X; = SN (z; U z}).

ai(S)—{lﬁ_l(XXLL);{% ify; € S;

TXUXHAS] if yi ¢ Si



In the following cases, however, we ignore the rule and use the private utilities
given in the table.

s1(82|83| - *|Sn—1|8n|a1(S)|a2(S)|az(S)| - -|an—1(S)|an(S)
z1(z2 (03| --|0p-1|0n] O 1 o |-~ O 0
I1|To 33'3"'(071—1 @n 0 0 1 0 0
I1|T2|T3|" Tn-1 Q)n 0 0 0 1 0
T1|x2|T3| | Tp_1|Tn| O 0 0 0 1
xy|x2|z3| | Tno1|Tn| 1 0 0 0 0
xy|xh|zs| - |Tpo1|Tn| O 1 0 0 0
xl x|z |2, _q|en| O 0 0 1 0
@y |zh|as |- |zn| O 0 0 0 1
xy|xh|xh|- -2l g |zl 1 0 0 0 0
x1|Ta|Th|- - -|2h 1 |2h| O 1 0 0 0
x1|T2|T3| | Tp_1|zh| O 0 0 |- 1 0

Observe that, by construction, >, a;(S) = v(S) for all S (including the excep-
tions). It remains to show that the utility system is valid. It is easy to check
that a;(S) > v(S) —v(S ® 0;) = v/(S ® ;) for the exceptions. So consider the
“normal” S. If S; N (z; Uzi) =0, then ;(S) = 1 when y; € S; and «;(S) =0
otherwise. In both cases a;(S) = v/(S ® 0;). If S; N (z; U z}) # 0 then

2 ify; €S;and (S=S;)N(XUX)=0
, N 1 ify; €S;and (S—=S;)N(XUX")#0
nSeh) =14, if y; ¢ S; and (S —S))N (X UX') =0
0 ify; ¢ S;and (S—S;)N(XUX")#D
. Xi Xi
Consider the first case. We have that a}(S) = l+m = 1+‘(Xux’)ﬁS,-|-‘,-‘\(X‘UX’)O(S—S,-)| =

1+ % =2 = /(S ® 0;). It is easy to verify that in the other three cases

we also have a;(S) > 7/(S ® 0;). Thus our utility system is valid. It remains
to choose which subsets of each players’ groundset will correspond to feasible
strategies in our game. We simply allow only the singleton elements (and the
emptyset) to be feasible strategies. That the set of possible actions for player i
are A; = {0;,z;,x},y;}. Now it is easy to see that an optimal social solution has
value n. Any set of strategies of the form {y1,...,¥i1,2i, Yit+1,---,Yn}, Where
zi € {x;, 2}, v}, 1 <1 < n gives a social outcome of value n. However, consider
the case of n = 3. From the start of the game, if the players behave greedily
then we can obtain the sequence of strategies illustrated in Figure 1. The private
payoffs given by these exceptional strategy sets mean that each arrow actually
denotes a best response move by the labelled agent. However, all of the (non-
trivial) strategy sets induce a social outcome of value 1, a factor 3 away from
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Fig. 1. Bad Cycling.

optimal. Clearly this problem generalizes to n agents. So we converge to a cycle
of states all of whose outcomes are a factor n away from optimal. O

So our best response path may lead to a cycle on which every solution is
extremely bad socially, despite the fact that every Nash equilibria is very good
socially (within a factor two of optimal). We call such a cycle in the state graph
a cyclic equilibria. The presence of low quality cyclic equilibria is therefore dis-
turbing: even if the price of anarchy is low we may get stuck in states of very
poor social quality! We remark that our example is unstable in the sense that
we may leave the cyclic equilibria if we permute the order in which players make
there moves. We will examine in more detail the question of the stability of cyclic
equilibria in a follow-up paper.

5 Market Sharing Games

In this section we consider the market sharing game. We are given a set U of n
agents and a set H of m markets. The game is modelled by a bipartite graph
G = (H UU, E) where there is an edge between agent j and market ¢ if market
i is of interest to agent j (we write j is interested in market ¢). The value of
a market ¢ € H is represented by its query rate g; (this is the rate at which
market ¢ is requested per unit time). The cost, to any agent, of servicing market
1 is C;. In addition, agent j has a total budget B;. It follows that a set of
markets s; C H can be serviced by player j if ZiESj C; < By; in this case we
say that s; represents a feasible action for player j. The goal of each agent is to
maximise its return from the markets it services. Any agent j receives a reward
(return) R; for providing service to market 4, and this reward is dependent upon
the number of agents that service this market. More precisely, if the number of
agents that serve market i is n; then the reward R; = Z_ Observe that the total
reward received by all the players is equal to the total query rate of the markets
being serviced (by at least one player). The resultant game is called the market
sharing game. Observe that if a;(S) is the return to agent j from state S, then



the social value is 7(S) = ;. @;(S). It is then easy to show that the market
sharing game is a valid-utility game [4]. We remark that the subcase in which
all markets have the same cost is called the uniform market sharing game; the
subcase in which the bipartite graph G is complete is called the complete market
sharing game. Note that in this game, the strategy of each player is to solve
a knapsack problem. Therefore, in order to model computationally constrained
agents, we may assume that the agents apply A-approximation algorithms to
determine their best-response strategies. We then obtain the following theorems
concerning the social value after one round of best responses moves.

Theorem 5. In market sharing games, the social value of a state at the end
of a one-round path is at least 2H’12—+1 of the optimal social value (or at least

m if the agents use A-approzimation algorithms).
Proof. Let 2 = {o01,...,0,} denote an optimum state. Here o; C H is the
set of markets that player j services in this optimum solution; we may also
assume that each market is provided by at most one player. Let T' = {t1,...,t,}
and S = {s1,...,8,} be the initial state and final states on the one-round
path, respectively. Again, we assume the agents play best response strategies
in the order 1,2,...,n. So in step r, using a A-approximation algorithm, agent
r changes its strategy from ¢, to s,; thus T" = {s1,...,8p,tp41,.-.,tn} is an
intermediate state in our one-round path P = {T = T° T1 ... T™ = S}. Let
a;(S) be the return to agent j, then the social value of the state S = T™ is
Y(8) = X e @ (T™) So we need to show that 3= ;; a;(T") > mOPT.
Towards this goal, we first show that v(S) =3, a;(T") 2 H%, e % (T9).
We know that agent j does not changes its strategy from s, after step r. Therefore
a market ¢ has a nonzero contribution in +(S) if and only if market ¢ has a nonzero
contribution in the summation 3,y a; (T7). For any market i, if i appears in one
of strategies in T™ then the contribution of 7 to v(5) is g;. On the other hand, at
most n players use market 4 in their strategies. Consequently, the contribution of
market ¢ in the summation ), a; (T7)is at most (1+3+1+...+1)g = Hyg;.
It follows that 3 cp; a;(T™) > 7= > icp @;(T7), as required. We denote by T
the summation }_ ;. a; (T7). Next consider the optimal assignment (2, and let
Y; be the set of markets that are in serviced by agent j in o; but that are not
serviced by any agent in T™, that is, Y; = 0; —Urcus,. Now v(S) is greater than
the value of all the markets in U,cy7 (o, — Y;) since these markets are a subset of
markets serviced in 7. Hence, using the notation ¢(Q) = 3, ¢: to denote the
sum of query rates of a subset @ of the markets, we have v(S) > 3,y q(o-—Y7).
Next we will prove that T > 52 ,cv ¢(Y2). Let Y] be the markets in Y that are
serviced in T7, that is, Y] = Y;—(s1U---Us;Ut;1U- - -Uty,). Then Y] is a feasible
strategy for agent j at step j, and thus, since player j uses a A-approximation
algorithm, we have Aa;(T7) > ¢(Y}). Therefore, AT > 3 ., q(Y})-

Finally, we claim that 7 > >7. 1, ¢(Y}"). To see this, consider a any market
i € Y] =Y; —Y]. Then market i is not in the strategy set of any agent in
T™, but is in the strategy set of at least one player in 7. Therefore, somewhere



on the path P after 77 some player must change its strategy and discontinue
servicing market 4. Let b; be time step such that T% is the first state amongst
T3+, ..., T™ that does not service market i. Let M; = {i € H|b; = j} be the set
of markets for which b; = j. It follows that U,cyY" (t) = UrcuM,.. Notice that
M, C t, and no other agents service any market in M, at step r. It follows that
a;(T7) > q(M;). Therefore, 3=y, a(Y]') = X jcp a(Mj) < ¥jep i (T7) = T.
Hence we have, OPT = ). q{aj) <Yjevlo; =Y + 2 e a(Yy) < 4(S) +
S iev aY) + Xse0 aV]) < A(S) AT +T < (1+ (A + D Ho)(S). 0

Theorem 6. In market sharing games, the social value of a state at the end of
a one-round path may be as bad as HL of the optimal social value. In particular,
this is true even for uniform market sharing games and complete market sharing
games.

Proof. Consider the following instance of a complete market sharing game. There
are m = n markets, and the query rate of market i is ¢; = 7 —eforall1 <i < n
where € is sufficiently small. The cost of market 7 is C; = 1+ (n—i)efor2<i<n
and C = 1. There are n players and the budget of player j is equal to 1+ (n—j)e.
Consider the ordering 1,2,...,n and the one-round path starting from empty
set of strategies and letting each player play once in this order. The resulting
assignment, after this one-round path is that all players provide market number
1 and the social value of this assignment is n — e. However, the optimum solution
is for agent j to service market j giving an optimal social value of nH, — ne.
Thus, the ratio between the optimum and the value of the resulting assignment
is H, at the end of a one-round path.

The bad instance for the uniform market sharing game is similar. There are
n markets of cost 1 and query rates ¢; = 7 — € for all 1 < i < n where € is
sufficiently small. There are n players each with budget 1. Player j is interested

in markets 7,7 + 1,...,n and in market 1. It follows that the social value of the
assignment after one round is n — €. The optimal social value covers all markets
and its value is nH,, — ne. Thus, the ratio is HLH after one round. O

6 Conclusion and open problems

In this paper, we presented a framework for studying speed of convergence to
approximate solutions in competitive games. We proved bounds on the out-
come of one round of best responses of players in terms of the social objective
function. More generally, one may consider longer (but polynomial-sized) best-
response paths, provided the problem of cycling can be dealt with. In acyclic state
graphs, such as potential games (or congestion games), the PLS-completeness
results of Fabrikant et. al. [3] show that there are games for which the size of
the shortest best-response path from some states to any pure Nash equilibrium
is exponential. This implies that in some congestion games the social value of
a state after exponentially many best responses might be far from the optimal
social value. However, this does not preclude the possibility that good approxi-
mate solutions are obtained when short k-covering paths are used. This provides



additional motivation for the study of such paths. Here we may consider using
a local optimization algorithm and evaluating the output of this algorithm after
a polynomial number of local improvements.

The market sharing games are not yet well understood. In particular, it is
not known whether exponentially long best-response paths may exist. Bounding
the social value of a vertex at the end of a k-covering path is another open
question. Goemans et.al. [4] give a polynomial-time algorithm to find the pure
Nash equilibrium in uniform market sharing games. Finding such an equilibrium
is NP-complete for the general case, but the question of obtaining approximate
Nash equilibria is open.
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