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Cut game

Cut game:

Players: Nodes of the graph.
Player’s strategy ∈ {1,−1} (Republican or
Democrat)
An action profile corresponds to a cut.
Payoff: Total Contribution in the cut.
Change Party if you gain.

2 and 5 are unhappy.
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The Cut Game: Price of Anarchy

2 and 5 are unhappy.
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Pure Nash Equilibrium.
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The Cut Game: Price of Anarchy

The Optimum.
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2 and 5 are unhappy.

Social Function:
The cut value.

Price of Anarchy for this instance: 12
8 = 1.5.
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Outline

Performance in lack of Coordination: Price of Anarchy.

Best-Responses, Convergence, and Random Paths.

A Potential Game: Cut Game

Lower Bounds: Long poor paths
Upper Bounds: random paths

Basic-utility and Valid-utility Games
Basic-utility Games: Fast Convergence.
Valid-utility Games: Poor Sink Equilibria

Conclusion: Other Games?
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Convergence to Approximate Solutions

We can model selfish behavior of players by a
sequence of best responses by players.
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Convergence to Approximate Solutions

We can model selfish behavior of players by a
sequence of best responses by players.

How fast do players converge to a Nash
equilibrium?
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Convergence to Approximate Solutions

We can model selfish behavior of players by a
sequence of best responses by players.

How fast do players converge to a Nash
equilibrium?
How fast do players converge to an approximate
solution?
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Convergence to Approximate Solutions

We can model selfish behavior of players by a
sequence of best responses by players.

How fast do players converge to a Nash
equilibrium?
How fast do players converge to an approximate
solution?
Our goal: How fast do players converge to an
approximate solution?
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Fair Paths

In a fair path, we should let each player play at
least once after each polynomially many steps.
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Fair Paths

In a fair path, we should let each player play at
least once after each polynomially many steps.

One-round path: We let each player play once in a
round.

random path: We pick the next player at random.
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Fair Paths

In a fair path, we should let each player play at
least once after each polynomially many steps.

One-round path: We let each player play once in a
round.

random path: We pick the next player at random.

We are interested in the Social Value at the end of
a fair path.
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A Cut game: The Party Affiliation Game

Cut game:

2 and 5 are unhappy.
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Cut Value: 

Social Function:
The Cut Value
Total Happiness

Price of anarchy: at most 2.

Local search algorithm for Max-Cut!
DIMACS – Bounded Rationality — January, 2005 – p.7/28



A Cut game: The Party Affiliation Game

Cut game:

2 and 5 are unhappy.
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Cut Value: 

Social Function:
The Cut Value

Convergence:
Finding local optimum for Max-Cut is
PLS-complete (Schaffer, Yannakakis [1991]).
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Cut Game: Paths to Nash equilibria

Unweighted graphs After O(n2) steps, we converge to
a Nash equilibrium.

Weighted graphs: It is PLS-complete.
PLS-Complete problems and tight PLS reduction
(Johnson, Papadimitriou, Yannakakis [1988]).
Tight PLS reduction from Max-Cut (Schaffer,
Yannakakis [1991])
There are some states that are exponentially far
from any Nash equilibrium.

Question: Are there long poor fair paths?
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Cut Game: A Bad Example

Consider graph G, a line of n vertices. The weight of
edges are 1, 1 + 1

n
, 1 + 2

n
, . . . , 1 + n−1

n
. Vertices are

labelled 1, . . . , n throughout the line. Consider the
round of best responses:
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A Bad Example: Illustration
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After one move.
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A Bad Example: Illustration
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A Bad Example: Illustration
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After n moves (one round)
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A Bad Example: Illustration
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After two rounds.

Theorem: In the above example, the cut value after k

rounds is O( k
n
) of the optimum.
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Random One-round paths

Theorem:(M., Sidiropoulos[2004]) The expected value
of the cut after a random one-round path is at most 1

8

of the optimum.

DIMACS – Bounded Rationality — January, 2005 – p.11/28



Random One-round paths

Theorem:(M., Sidiropoulos[2004]) The expected value
of the cut after a random one-round path is at most 1

8

of the optimum.

Proof Sketch: The sum of payoffs of nodes after their
moves is 1

2 -approximation. In a random ordering, with
a constant probability a node occurs after 3

4 of its
neighbors. The expected contribution of a node in the
cut is a constant-factor of its total weight.
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Exponentially Long Poor Paths

Theorem: (M., Sidiropoulos[2004]) There exists a
weighted graph G = (V (G), E(G)), with |V (G)| = Θ(n),
and exponentially long fair path such that the value of
the cut at the end of P, is at most O(1/n) of the
optimum cut.
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Exponentially Long Poor Paths

Theorem: (M., Sidiropoulos[2004]) There exists a
weighted graph G = (V (G), E(G)), with |V (G)| = Θ(n),
and exponentially long fair path such that the value of
the cut at the end of P, is at most O(1/n) of the
optimum cut.

Proof Sketch:
Use the example for the exponentially long paths to the
Nash equilibrium in the cut game. Find a player, v, that
moves exponentially many times. Add a line of n
vertices to this graph and connect all the vertices to
player v.
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Poor Long Path: Illustration
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Poor Long Path: Illustration
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Mildly Greedy Players

A Player is 2-greedy, if she does not move if she
cannot double her payoff.
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Mildly Greedy Players

A Player is 2-greedy, if she does not move if she
cannot double her payoff.

Theorem:(M., Sidiropoulos[2004]) One round of selfish
behavior of 2-greedy players converges to a
constant-factor cut.

Proof Idea: If a player moves it improves the value of
the cut by a constant factor of its contribution in the cut.
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Mildly Greedy Players

A Player is 2-greedy, if she does not move if she
cannot double her payoff.

Theorem:(M., Sidiropoulos[2004]) One round of selfish
behavior of 2-greedy players converges to a
constant-factor cut.

Proof Idea: If a player moves it improves the value of
the cut by a constant factor of its contribution in the cut.

Message: Mildly Greedy Players converge faster.
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Mildly Greedy Players

A Player is 2-greedy, if she does not move if she
cannot double her payoff.

Theorem:(M., Sidiropoulos[2004]) One round of selfish
behavior of 2-greedy players converges to a
constant-factor cut.

Proof Idea: If a player moves it improves the value of
the cut by a constant factor of its contribution in the cut.

Message: Mildly Greedy Players converge faster.
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A Cut game: Total Happiness

Cut game:

The happiness of player v is equal to his total
contribution in the cut minus the weight of its
adjacent edges not in the cut.

Social Function:
Total Happiness: Sum of happiness of players
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A Cut game: Total Happiness

Cut game:

The happiness of player v is equal to his total
contribution in the cut minus the weight of its
adjacent edges not in the cut.

Social Function:
Total Happiness: Sum of happiness of players

In the context of correlation clustering: Maximizing
agreement minus disagreement (Bansal, Blum,
Chawla[2002]).

log n-approximation algorithm is known. (Charikar,
Wirth[2004]).
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A Cut game: Total Happiness

Cut game:

The happiness of player v is equal to his total
contribution in the cut minus the weight of its
adjacent edges not in the cut.

Social Function:
Total Happiness: Sum of happiness of players

Price of anarchy: unbounded in the worst case.

A bad example: a cycle of size four.
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A Cut game: Total Happiness

Cut game:

The happiness of player v is equal to his total
contribution in the cut minus the weight of its
adjacent edges not in the cut.

Social Function:
Total Happiness: Sum of happiness of players

The expected happiness of a random cut is zero.

Our result: For unweighted graphs of large girth, if we
start from a random cut, then after a random
one-round path, the expected happiness is a
sublogarthmic-approximation.
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Cut Game: Total Happiness

For some δ > 0, we call an edge of G, δ-good, if at
least one of its end-points, has degree at most δ.
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Cut Game: Total Happiness

For some δ > 0, we call an edge of G, δ-good, if at
least one of its end-points, has degree at most δ.

For a pair u, v ∈ V (G), let Eu,v denote the event
that there exists a path p = x1, x2, . . . , x|p|, with
u = x1, and v = x|p|, and for any i, with 1 ≤ i < |p|,
xi ≺ xi+1.
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Cut Game: Total Happiness

For some δ > 0, we call an edge of G, δ-good, if at
least one of its end-points, has degree at most δ.

For a pair u, v ∈ V (G), let Eu,v denote the event
that there exists a path p = x1, x2, . . . , x|p|, with
u = x1, and v = x|p|, and for any i, with 1 ≤ i < |p|,
xi ≺ xi+1.

Lemma: Let {u, v}, {v, w} ∈ E(G), such that u ≺ w ≺ v.
There exists a constant C, such that if the girth of G is
at least C log n

log log n
, then Pr[Eu,w] < n−3.
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Cut Game: Total Happiness

For some δ > 0, we call an edge of G, δ-good, if at
least one of its end-points, has degree at most δ.

For a pair u, v ∈ V (G), let Eu,v denote the event
that there exists a path p = x1, x2, . . . , x|p|, with
u = x1, and v = x|p|, and for any i, with 1 ≤ i < |p|,
xi ≺ xi+1.

Lemma: Let {u, v}, {v, w} ∈ E(G), such that u ≺ w ≺ v.
There exists a constant C, such that if the girth of G is
at least C log n

log log n
, then Pr[Eu,w] < n−3.

Lemma: For any e ∈ E(G), we have
Pr[e is cut ] ≥ 1/2 − o(1).
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Cut Game: Total Happiness

Lemma: Let e = {u, v} ∈ E(G), with u ≺ v, and
deg(v) ≤ δ. Then, Pr[e is cut ] ≥ 1/2 + Ω(1/

√
δ).
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Cut Game: Total Happiness

Lemma: Let e = {u, v} ∈ E(G), with u ≺ v, and
deg(v) ≤ δ. Then, Pr[e is cut ] ≥ 1/2 + Ω(1/

√
δ).

Theorem: (M., Sidiropoulos[2004]) There exists a
constant C ′, such that for any C > C ′, and for any
unweighted simple graph of girth at least C log n

log log n
, if

we start from a random cut, the expected value of the
happiness at the end of a random one-round path, is
within a 1

(log n)O(1/C) factor from the maximum happiness.
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Outline

Performance in lack of Coordination: Price of Anarchy.

State Graphs, Convergence, and Fair Paths.

Cut Games: Party Affiliation Games

Lower Bounds: Long poor paths
Upper Bounds: random paths
Total Happiness: Cut minus Other Edges

Basic-utility and Valid-utility Games.
Basic-utility Games: Fast Convergence.
Valid-utility Games: Poor Sink Equilibria!

Conclusion: Other Games?
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Valid-Utility Games

Ground Set of Markets: V = {v1, v2, . . . , vn}.

Player i can provide a subset of V . Si is a family of
subsets of V feasible for player i.

Si ⊂ V is the strategy of player i. Si ∈ Si.
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Valid-Utility Games

Ground Set of Markets: V = {v1, v2, . . . , vn}.

Player i can provide a subset of V . Si is a family of
subsets of V feasible for player i.

Si ⊂ V is the strategy of player i. Si ∈ Si.

Social Function:
A submodular set function f : 2V → R on union of
strategies: f(∪1≤i≤nSi).
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Valid-Utility Games

Ground Set of Markets: V = {v1, v2, . . . , vn}.

Player i can provide a subset of V . Si is a family of
subsets of V feasible for player i.

Si ⊂ V is the strategy of player i. Si ∈ Si.

Social Function:
A submodular set function f : 2V → R on union of
strategies: f(∪1≤i≤nSi).

The payoff of any player is at least the change that he
makes in the social function by playing.

The sum of payoffs is at most the social function.

Several examples, including the market sharing game
and a facility location game
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Valid-Utility Games

Ground Set of Markets: V = {v1, v2, . . . , vn}.

Player i can provide a subset of V . Si is a family of
subsets of V feasible for player i.

Si ⊂ V is the strategy of player i. Si ∈ Si.

Social Function:
A submodular set function f : 2V → R on union of
strategies: f(∪1≤i≤nSi).

The payoff of any player is at least the change that he
makes in the social function by playing.

The sum of payoffs is at most the social function.

In basic-utility games, the payoff is equal to the change
that a player makes.
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Example: Market Sharing Game

Market Sharing Game
n markets and m players.
Market i has a value qi and cost Ci.
Player j has a budget Bj.
Player j’s action is to choose a subset of markets
of his interest whose total cost is at most Bj.
The value of a market is divided equally between
players that provide these markets.
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Example: Market Sharing Game

Market Sharing Game
n markets and m players.
Market i has a value qi and cost Ci.
Player j has a budget Bj.
Player j’s action is to choose a subset of markets
of his interest whose total cost is at most Bj.
The value of a market is divided equally between
players that provide these markets.

Social Function: Total query that’s satisfied in the
market. (submodular.)
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Valid-utility Games: Price of Anarchy

Theorem:(Vetta[2002]) The price of anarchy (of a
mixed Nash equilibrium) in valid-utility games is at
most 2.

Theorem:(Vetta[2002]) Basic-utility games are
potential games. In particular, best responses will
converge to a pure Nash equilibrium.

Theorem:(Goemans, Li, Mirrokni, Thottan[2004]) Pure
Nash equilibria exist for market sharing games and can
be found in polynomial time in the uniform case.
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Basic-Utility Games : Convergence

Theorem:(M.,Vetta[2004]) In basic-utility games, after
one round of selfish behavior of players, they converge
to a 1

3-optimal solution.
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Market Sharing Games : Convergence

Theorem:(M.,Vetta[2004]) In basic-utility games, after
one round of selfish behavior of players, they converge
to a 1

3-optimal solution.

Theorem: (M., Vetta[2004]) In a market sharing game,
after one round of selfish behavior of players, they
converge to a 1

log(n)-optimal solution and this is almost

tight.
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Valid-utility Games: Convergence

Theorem:(M., Vetta[2004]) For any k > 0, in valid-utility
games, the social value after k rounds might be 1

n
of

the optimal social value.
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Sink Equilibria

A sink equilibrium is a minimal set of states such
that no best response move of any player goes
out of these states.
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Sink Equilibria

A sink equilibrium is a minimal set of states such
that no best response move of any player goes
out of these states.

If we enter a sink equilibrium, we are stuck there.
Even random best-response paths cannot help us
going out of a sink equilibria.

Price of anarchy for sink equilibria vs. the price of
anarchy for Nash equilibria.
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Sink Equilibria

Theorem: (M., Vetta) In valid-utility games, even
though the price of anarchy for Nash equilibria is 1

2 , the
price of anarchy for sink equilibria is 1

n
.

The performance of the Nash equilibria (or the
price of anarchy for NE) is not a good measure for
these games.

Theorem: (M., Vetta) Finding a sink equilibrium in
valid-utility games is PLS-Hard and there are states
that are exponentially far from any sink equilibria.
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Sink Equilibria

Theorem: (M., Vetta) In valid-utility games, even
though the price of anarchy for Nash equilibria is 1

2 , the
price of anarchy for sink equilibria is 1

n
.

The performance of the Nash equilibria (or the
price of anarchy for NE) is not a good measure for
these games.

Theorem: (M., Vetta) Finding a sink equilibrium in
valid-utility games is PLS-Hard and there are states
that are exponentially far from any sink equilibria.
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Conclusion

Study Speed of convergence to approximates
solutions instead of to Nash equilibria.

Sink equilibria: an alternative measure to study the
performance of the systems in lack of coordination.
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Open problems

Are there exponentially long fair paths in Basic-utility
games.

Is finding a 2-approximate Nash equilibrium for the cut
game in P? How long does it take that 2-greedy
players converge to a (2-approximate) Nash
equilibrium? If it is polynomial, then finding a
2-approximate Nash equilibrium is in P.

Are there exponentially long paths in the market
sharing game?

Study covering and random paths in other games.
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