Introduction to BCP — MCF Ezample

Laszlo Ladanyit
Francois Margot?

July 18, 2006

1: IBM T.J. Watson Research Center
2: Tepper School of Business, Carnegie Mellon University



BCP: Branch-Cut-Price

Software for branch-and-cut-and-price
Parallel code

LP solver : Clp, Cplex, Xpress, ...

Most flexible in COIN-OR

Research code (no stand-alone executable)



BCP: Branch-Cut-Price

Software for branch-and-cut-and-price
Parallel code

LP solver : Clp, Cplex, Xpress, ...

Most flexible in COIN-OR

Research code (no stand-alone executable)

BCP code split into four directories: (see coin-Bcp/Bep/src)

include: all header files

Tree Manager (TM): Maintain the LP associated with each
node, manage cuts and variables

Node level operations (LP): cutting, branching, heuristics,

fixing, column generation

Utilities (Member): code for interface between TM and LP,
initialization



Solver Initialization

Tree Manager Solver

e read data



Solver Initialization

Tree Manager Solver

e read data

e pack module data



Solver Initialization

Tree Manager Solver

e read data

e pack module data e unpack module data



Solver Initialization

Tree Manager Solver
e read data
N
e pack module data e unpack module data

e setup the LP solver



Processing a node

Tree Manager Solver

e select node



Processing a node

Tree Manager Solver

e select node

e pack node LP data



Processing a node

Tree Manager Solver

e select node

e pack node LP data T e unpack node LP data



Processing a node

Tree Manager

Solver

e select node

e pack node LP data

e unpack node LP data
e solve

e generate cuts/vars

e branch

e create LP data for sons



Processing a node

Tree Manager

Solver

e select node

e pack node LP data

e unpack node LP data
e solve

e generate cuts/vars

e branch

e create LP data for sons

e pack node LP data for
sons



Processing a node

Tree Manager

Solver

e select node

e pack node LP data

e unpack node LP data
for sons

e unpack node LP data
e solve

e generate cuts/vars

e branch

e create LP data for sons

e pack node LP data for
sons



Processing a node

Tree Manager

Solver

e select node

e pack node LP data

e unpack node LP data
for sons

e add sons to tree

e unpack node LP data
e solve

e generate cuts/vars

e branch

e create LP data for sons

e pack node LP data for
sons



BCP Constraints/Variables

Types of Constraints/Variables:
e Core : present at all nodes
e Algorithmic : separation/generation algorithm

e Indexed : e.g. stored in a vector



BCP Constraints/Variables

Types of Constraints/Variables:
e Core : present at all nodes
e Algorithmic : separation/generation algorithm

e Indexed : e.g. stored in a vector

Algorithmic constraints and variables are local



BCP Constraints/Variables

Types of Constraints/Variables:
e Core : present at all nodes
e Algorithmic : separation/generation algorithm

e Indexed : e.g. stored in a vector

Algorithmic constraints and variables are local
Representation: Constraints are stored as ranged constraints:
Ib<ax <ub

with /b = —DBL_MAX or ub = DBL_MAX possible



Implementing a Column Generation Application

Member:
e Read input
e Implement variables
TM:
e Set up the LP at the root node

e display of a solution

LP:
e Test feasibility of a solution
e Column generation method
e Computation of a lower bound

e Branching decision



Col. Gen. Ezxample: Multicommodity Flow (MCF-1)

Directed graph G = (V,E)

N commodities

(s',t") : source-sink pair, i =0,...,N —1

d’ : supply/demand vector for s't’ — flow, i =0,...,N —1



Col. Gen. Ezxample: Multicommodity Flow (MCF-1)

e Directed graph G = (V,E)
e N commodities
e (s',t) : source-sink pair, i =0,...,N —1

e d' : supply/demand vector for s't’ — flow, i =0,...,N —1

For each arc e € E:
e 0 : lower bound for total flow on arc
e u, : finite upper bound for total flow on arc (0 < w,)

e we : unit cost (0 < we)



MCF: ILP Formulation

Solution:
o fi: s't'-flow with supply/demand vector d’
o) fi<uforallecE

]



MCF: ILP Formulation

Solution:

o fi: s't'-flow with supply/demand vector d’

o) fi<uforallecE

]

ILP Formulation:

Yooofi- Y fi=d]

e=(v,w)eE e=(w,v)eE
0<f<u
f' integral

Vv e V,Vi

Vi



MCF: Input data

Class MCF_data (see Member/MCF_data.hpp):

arcs : vector of struct (tail, head, 1b, ub, weight)
commodities : vector of struct (source, sink, demand)
numarcs

numnodes

numcommodities

Setup by MCF _data: :readDimacsFormat ()



MCF: Input data

Class MCF_data (see Member/MCF_data.hpp):

arcs : vector of struct (tail, head, 1b, ub, weight)
commodities : vector of struct (source, sink, demand)
numarcs

numnodes

numcommodities

Setup by MCF _data: :readDimacsFormat ()

Parameter MCF_AddDummySourceSinkArcs : Add
numcommodities dummy arcs with large weight to ensure
feasibility



MCF: Master Problem

Master Problem:
e Column : s't'-flow satisfying d’ for some i
e F': matrix of all generated s't'-flows (+ dummy flow)

e A : multiplier for generated s't'-flows



MCF: Master Problem

Master Problem:
e Column : s't'-flow satisfying d’ for some i
e F': matrix of all generated s't'-flows (+ dummy flow)

e A : multiplier for generated s't'-flows

Example: all arcs upper capacity 2, source = 0, sink = 3, d = 2.
2

01
02
12
0 3 13
23
03

N O OO OO




MCF: Master Problem

Master Problem:
e Column : s't'-flow satisfying d’ for some i
e F': matrix of all generated s't'-flows (+ dummy flow)

e A : multiplier for generated s't'-flows

Example: all arcs upper capacity 2, source = 0, sink = 3, d = 2.
2

01
02
12
0 3 13
23
03

N OO O oo
ORrRr O~ -




MCF: Master Problem

Master Problem:
e Column : s't'-flow satisfying d’ for some i
e F': matrix of all generated s't'-flows (+ dummy flow)

e A : multiplier for generated s't'-flows

Example: all arcs upper capacity 2, source = 0, sink = 3, d = 2.
2

01
02
12
0 3 13
23
03

N OO O oo
ORrRr O~ -
ONONON




MCF: Master Problem

min wT Fi)
)
> FiXN <

el N =1
AN >0
F'\' integer

vi

Vi
Vi



MCF: Master Problem

minz wT FiN

Z Fix' <u
e’ N =1 Vi
N>0 Vi
FiX integer Vi

)\0
[FO Fl F2] )\1 <u



MCF: Master Problem

min Z wl FiX
> FiXN < ()
e"N =1 vi (V)
AN'>0 Vi
FiA" integer Vi
Pricing of feasible s't'-flow f:

weight of flow : w'lf
dual activity: alf+ v

Reduced cost of flow f = wTf —7Tf — v/ = (wT —aT)f — 1/



Class MCF_vars

MCF _var:
e int commodity : index of commodity
e CoinPackedVector flow : positive flow on arcs

e weight: objective coefficient

See include/MCF_var.hpp, Member/MCF_var.cpp



Class MCF_vars

MCF _var:
e int commodity : index of commodity
e CoinPackedVector flow : positive flow on arcs

e weight: objective coefficient

See include/MCF_var.hpp, Member/MCF_var.cpp

MCF_1p: :vars_to_cols(): generate columns of the master
problem for vars



MCF: Setting the Master at the Root

Variables:
o Dummy flow variables are algorithmic variables (A} V i)

e All generated variables are algorithmic

See in TM/MCF_tm. cpp:
MCF_tm: :initialize_core
MCF_tm: :create_root



MCF: Setting the Master at the Root

Variables:
o Dummy flow variables are algorithmic variables (A} V i)

e All generated variables are algorithmic

Constraints:
o All constraints are core constraints
e Upper bound constraints: 0 < wu, Ve€ E
e Dummy upper bound constraints: dem(i)\y < dem(i) Vi

o Convexity constraints: \j =1V j

See in TM/MCF_tm. cpp:
MCF_tm: :initialize_core
MCF_tm: :create_root



Class MCF_tm: Derived from BCP_tm_user

Data:
e MCF_data data

Methods:

e pack module_data() : pack data needed at the node level.
Called once for each processor used as a solver.

e initialize_core() : Transmit core constraints/variables to
BCP.

e create_root : set up the problem at the root node
e pack var_algo() : pack algorithmic vars
e unpack_var_algo() : unpack algorithmic vars

e display feasible solution() : display solution



IS

IR

10.
11.
12.
15.

Node operations

Initialize new node

Solve node LP

Test feasibility of node LP solution
Compute lower bound for node LP
Fathom node (if possible)

Perform fixing on vars

Update row effectiveness records

Generate cuts, Generate vars

Generate heuristic solution

Fathom node (if possible)

Decide to branch, fathom, or repeat loop
Add to node LP the cuts/vars generated, if loop is repeated

Purge cut pool, var pool



Class MCF_LP: Derived from BCP_lp user

Data:

OsiSolverInterfacex cg_lp: pointer on Osi LP solver used
for column generation

MCF_data data: problem data
vector<MCF_branch_decision>* branch_history:

branch history[i]: vector of branching decision involving
commodity i (arc, 1b, ub)

map<int,double>* flows: flows[i]l: map between index
of arc and positive flow for commodity / in LP solution
BCP_vec<BCP_var*> gen_vars: vector holding generated vars

bool generated_vars: indicator for success in column
generation

See LP/MCF_1p.cpp, include/MCF_1p.hpp



Class MCF_LP: Derived from BCP_1p_user (cont)

Methods:

unpack_module _data()
pack_var_algo(), unpack_var_algo()

initialize new_search_tree_node() : Natural place for
initializing user defined variables of MCF_1p.

test_feasibility(): Test feasibility of current LP solution.

compute_lower_bound(): Lower bound on optimal value of
subproblem

generate vars_in 1p(): Pass new variables to BCP

vars_to_cols() : Function generating a column from the var
representation

select_branching candidates() : Generate rules for
creating potential sons



MCF: Computing a Lower Bound

Initially, lower bound of a node is set to the lower bound of its
father

e Try to generate a variable with negative reduced cost
e If successful, lower bound is currently known lower bound

e |f unsuccessful, lower bound is the current LP value

See MCF_1p: : compute_lower_bound () in LP/MCF_1p.cpp



MCF: Column Generation

. optimal dual solution of the Master

o T,V

(see MCF_1p: : compute_lower_bound in LP/MCF_1p.cpp)



MCF: Column Generation

. optimal dual solution of the Master

o T,V

Column generation:
min(w’ —xT)f — o/

oo - Y fi=d] eV
e=(w,v)eE e=(w,v)eE
< fi<d

f' integral

If solution is negative , then f' is the new column

(see MCF_1p: : compute_lower_bound in LP/MCF_1p.cpp)



MCF: Column Generation

. optimal dual solution of the Master

o T,V

Column generation:
min(w’ — 7 T)f

oo - Y fi=d] eV
e=(w,v)eE e=(w,v)eE
< fi<d

f' integral

If solution is < v/, then f' is the new column

(see MCF_1p: : compute_lower_bound in LP/MCF_1p.cpp)



MCF: Column Generation

. optimal dual solution of the Master

o T,V

Column generation:
min(w’ —77)f’
oo - Y fi=d] eV
e=(w,v)eE e=(w,v)eE
< fi<d

f' integral

If solution is < v/, then f' is the new column

Minimum cost flow problem = Solve as an LP
(see MCF_1p: : compute_lower_bound in LP/MCF_1p.cpp)



Branching

MCF_1p::select_branching candidates(): Called at the end of
each iteration. Possible return values are:

e BCP_DoNotBranch Fathomed : fathomed without branching

e BCP_DoNotBranch : continue to work on this node

e BCP_DoBranch : Branching must be done. Must create the
candidates



MCF': Branching

e Solution of the Master is fractional

e No new column is generated



MCF': Branching

e Solution of the Master is fractional

e No new column is generated

= Must branch

Branching rule:
e Select an arc e (not dummy) and i with F'\" = z fractional
e First child: Use only columns where flow of i on e is > z

e Second child: Use only columns where flow of i on e is < z



MCF': Branching

e Solution of the Master is fractional

e No new column is generated

= Must branch

Branching rule:

Select an arc e (not dummy) and i with F'\’ = z fractional

First child: Use only columns where flow of / on e is > z

Second child: Use only columns where flow of i on e is < z

Need to know ¢. and u., for all i and e for col. gen.



MCF': Branching

e Solution of the Master is fractional

e No new column is generated

= Must branch

Branching rule:

Select an arc e (not dummy) and i with F'\’ = z fractional

First child: Use only columns where flow of / on e is > z

Second child: Use only columns where flow of i on e is < z

Need to know ¢. and u., for all i and e for col. gen.
= use branch history[i]



Class MCF branching var

MCF_branching_var:
e artificial variable used to keep branching history around
e weight 0
o coefficients 0

e upper: 1, lower 0: identify child

See include/MCF_var.hpp, Member/MCF_var.cpp



Class MCF branching var

MCF_branching_var:
artificial variable used to keep branching history around

weight O
coefficients 0
upper: 1, lower 0: identify child

Data:
e commodity: commodity i used in branching
e arc_index: arc e used in branching
e 1b_childO, ub_childO, 1b_child1, ub_child1: bounds for
commodity i/ on e in the children

See include/MCF_var.hpp, Member/MCF_var.cpp



Branching object

Create the candidates using:
BCP_lp_branching object: :BCP_lp_branching object ()
Its relevant parameters are:

int children : # children

BCP_vec<BCP_var*> *new_vars : vector for new vars

BCP_vec<BCP_cut*> *new_cuts : vector for new cuts

BCP_vec<int> *fvp : vector for indices of variables whose
bounds are changed

Negative indices : vars from new_vars,

index —i — 1 corresponding to entry i

BCP_vec<int> *fcp : vector for indices of cuts whose
bounds are changed.

Negative indices : cuts from new_cuts,

index —i — 1 corresponding to entry i



Branching object MCF

Create the candidates using:
BCP_lp_branching object: :BCP_lp_branching object ()
Its relevant parameters are:

int children : # children

BCP_vec<BCP_var*> *new_vars : vector for new vars

BCP_vec<BCP_cut*> *new_cuts : vector for new cuts

BCP_vec<int> *fvp : vector for indices of variables whose
bounds are changed

Negative indices : vars from new_vars,

index —i — 1 corresponding to entry i

BCP_vec<int> *fcp : vector for indices of cuts whose
bounds are changed.

Negative indices : cuts from new_cuts,

index —i — 1 corresponding to entry i



Branching object MCF

Create the candidates using:
BCP_lp_branching object: :BCP_lp_branching object ()
Its relevant parameters are:

int children : # children 2

BCP_vec<BCP_var*> *new_vars : vector for new vars

BCP_vec<BCP_cut*> *new_cuts : vector for new cuts

BCP_vec<int> *fvp : vector for indices of variables whose
bounds are changed

Negative indices : vars from new_vars,

index —i — 1 corresponding to entry i

BCP_vec<int> *fcp : vector for indices of cuts whose
bounds are changed.

Negative indices : cuts from new_cuts,

index —i — 1 corresponding to entry i



Branching object MCF

Create the candidates using:
BCP_lp_branching object: :BCP_lp_branching object ()
Its relevant parameters are:

int children : # children 2

BCP_vec<BCP_var*> *new_vars : vector for new vars
one new MCF_branching_var

BCP_vec<BCP_cut*> *new_cuts : vector for new cuts

BCP_vec<int> *fvp : vector for indices of variables whose
bounds are changed

Negative indices : vars from new_vars,

index —i — 1 corresponding to entry i

BCP_vec<int> *fcp : vector for indices of cuts whose
bounds are changed.

Negative indices : cuts from new_cuts,

index —i — 1 corresponding to entry i



Branching object MCF

Create the candidates using:
BCP_lp_branching object: :BCP_lp_branching object ()
Its relevant parameters are:

int children : # children 2

BCP_vec<BCP_var*> *new_vars : vector for new vars
one new MCF_branching_var

BCP_vec<BCP_cut*> *new_cuts : vector for new cuts NULL

BCP_vec<int> *fvp : vector for indices of variables whose
bounds are changed

Negative indices : vars from new_vars,

index —i — 1 corresponding to entry i

BCP_vec<int> *fcp : vector for indices of cuts whose
bounds are changed.

Negative indices : cuts from new_cuts,

index —i — 1 corresponding to entry i



Branching object MCF

Create the candidates using:
BCP_lp_branching object: :BCP_lp_branching object ()
Its relevant parameters are:

e int children : # children 2

e BCP_vec<BCP_var*> *new_vars : vector for new vars
one new MCF_branching_var

e BCP_vec<BCP_cut*> *new_cuts : vector for new cuts NULL

e BCP_vec<int> *fvp : vector for indices of variables whose
bounds are changed
Negative indices : vars from new_vars,
index —i — 1 corresponding to entry i [-1, 4, 7]

e BCP_vec<int> *fcp : vector for indices of cuts whose
bounds are changed.
Negative indices : cuts from new_cuts,
index —i — 1 corresponding to entry i



Branching object MCF

Create the candidates using:
BCP_lp_branching object: :BCP_lp_branching object ()
Its relevant parameters are:

e int children : # children 2

e BCP_vec<BCP_var*> *new_vars : vector for new vars
one new MCF_branching_var

e BCP_vec<BCP_cut*> *new_cuts : vector for new cuts NULL

e BCP_vec<int> *fvp : vector for indices of variables whose
bounds are changed
Negative indices : vars from new_vars,
index —i — 1 corresponding to entry i [-1, 4, 7]

e BCP_vec<int> *fcp : vector for indices of cuts whose
bounds are changed.
Negative indices : cuts from new_cuts,
index —i — 1 corresponding to entry i NULL



Branching object (cont)

e BCP_vec<double> *fvb : vector for lower/upper bounds for
each vars in fvp, for each child

e BCP_vec<double> *fcb : vector for lower/upper bounds for
each constraint in fcp, for each child

e 4 additional parameters (implied parts)

Pass NULL for irrelevant parameters



Branching object (cont) MCF

e BCP_vec<double> *fvb : vector for lower/upper bounds for
each vars in fvp, for each child
[0,0,0,1,0,0,1,1,0,0,0, 1]

e BCP_vec<double> *fcb : vector for lower/upper bounds for
each constraint in fcp, for each child

e 4 additional parameters (implied parts)

Pass NULL for irrelevant parameters



Branching object (cont) MCF

e BCP_vec<double> *fvb : vector for lower/upper bounds for
each vars in fvp, for each child
[0,0,0,1,0,0,1,1,0,0,0, 1]

e BCP_vec<double> *fcb : vector for lower/upper bounds for
each constraint in fcp, for each child NULL

e 4 additional parameters (implied parts)

Pass NULL for irrelevant parameters



Branching object (cont) MCF

e BCP_vec<double> *fvb : vector for lower/upper bounds for
each vars in fvp, for each child
[0,0,0,1,0,0,1,1,0,0,0, 1]

e BCP_vec<double> *fcb : vector for lower/upper bounds for
each constraint in fcp, for each child NULL

e 4 additional parameters (implied parts)NULL

Pass NULL for irrelevant parameters



Branching object: Forced vs. Implied

Forced changes:
e Used during strong branching
e Sent to the tree manager if branching object is selected

e Used in the children if branching object is selected



Branching object: Forced vs. Implied

Forced changes:
e Used during strong branching
e Sent to the tree manager if branching object is selected

e Used in the children if branching object is selected

Implied changes:
e Used during strong branching
e NOT Sent to the tree manager if branching object is selected
e NOT Used in the children if branching object is selected



Branching object: Forced vs. Implied

Forced changes:
e Used during strong branching
e Sent to the tree manager if branching object is selected

e Used in the children if branching object is selected

Implied changes:
e Used during strong branching
e NOT Sent to the tree manager if branching object is selected
e NOT Used in the children if branching object is selected

Many implied changes = storing them is costly.
If implied changes are used, implement them also in
MCF_1lp::_initialize new_search_tree node()



MCF: Parameter File

Predefined parameters:
Class MCF_par (see include/MCF_par.hpp)
Class BCP_lp_par Class BCP_tm_par



MCF: Parameter File

Predefined parameters:
Class MCF_par (see include/MCF_par.hpp)
Class BCP_lp_par Class BCP_tm_par

Some parameters with their default values:

MCF_AddDummySourceSinkArcs: 1
MCF_InputFilename: small
BCP_VerbosityShutUp: 0
BCP_MaxRunTime : 3600
BCP_Granularity : le-8
BCP_IntegerTolerance : le-5

BCP_TreeSearchStrategy : 1
// 0: Best Bound 1: BFS 2: DFS



