
Marc Snir

Software for High Performance
Computing

Requirements & Research
Directions

May 2006

Marc Snir

2 Jun-06

Outline
Petascale hardware
Petascale operating system
Programming models

Marc Snir

3 Jun-06

Petascale Systems are Coming
NSF plan to fund one petascale system to be
available in 2010; DOE will also install
petascale systems in 2010.

Petascale = 1015 operations per second; or
1015 floating point operations per second

(petaflops) peak; or
1015 floating point operations per second

(petaflops) sustained

Marc Snir

4 Jun-06

Hardware Trends
Chip density continues to increase; but
computer architects do not know how to use
the extra transistors in order to increase
single processor performance
Vendors are moving to chip multiprocessors

Clock speed does not increase
Performance growth toward Petascale will

come almost uniquely from increased
parallelism

Marc Snir

5 Jun-06

Problems

1. Very large number of concurrent threads
(500,000 – 1,000,000)

2. Frequent failures (?)
might be resolved with hardware redundancy

3. Very hierarchical & possibly heterogeneous
system

Marc Snir

6 Jun-06

Hierarchy and Heterogeneity
Hierarchy (due to package boundaries and distance)

Multi core chip with 8—16 core
1—3 cycles

Multi chip SMP node [board] with 4-16 chips (shared
L3/L4)

10—50 cycles
Global network

100 – 500 cycles
Possible heterogeneous systems

chip with distinct cores: e.g., IBM Cell processor
distinct chips in node: e.g., node with attached FPGA

accelerator
system with distinct nodes

Marc Snir

7 Jun-06

Communication
Communication time to remote memory >> communication time to local memory

Time of flight, switching time, queuing delays

Cannot access remote memory efficiently via load/store operations; need bulk
transfer operations

hw does not support enough pending operations; compiler does not issue loads early
enough

Message passing (2-sided communication): send, receive…

Remote memory access (1-sided communication): put, get, accumulate
vector (location, length)

Scatter/gather (list of locations)

2-sided communication easier to support in software atop simple channel
protocol; but

1-sided communication easier to support directly in hardware

Network interface supports in hardware/firmware 1-sided communication, with 2-
sided implemented in software (Infiniband, Myrinet, Quadrix…)

Marc Snir

8 Jun-06

Petascale OS
Cluster OS

Tightly coupled parallel application
Distributed OS + (few) cluster services

Problems
OS Noise
OS reliability (frequent crashes)
Abstraction mismatch (no OS abstractions for parallel

jobs)

OS

user

OS

user

OS

user

OS

user

OS

user

OS

user

(SPDP 95)

Marc Snir

9 Jun-06

OS Noise
Regular OS has many background
activities (daemons, heartbeats…)
that happen at random times
Parallel programs often use
barrier synchronization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

processors

pr
ob

ab
ili

ty

Probability of completing barrier without being interrupted, assuming
1% background activity

Marc Snir

10 Jun-06

OS Noise (continued)
Sequential processor
with 1% background
system activity “looks
like” dedicated system
running at 99%
speed; same not true
for parallel system.
Solutions:

1. avoid background
noise (reduce OS
functionality)

2. synchronize
background noise
(provide right
abstraction)

Marc Snir

11 Jun-06

Solution (1)

Light-weight kernel
no daemons, no server threads, no demand paging…
supports directly some Posix calls
offloads to proxy on OS node other calls

Example: Cray XD1 & IBM Blue Gene/L
Helps with noise and reliability

Less so, for data-intensive (I/O intensive) computing…
Does not help with abstraction mismatch

LWK

user

LWK

user

LWK

user

LWK

user

LWK

user

LWK

user

OS

libs

OS

libs

OS

libs

OS

libs

Compute
partition

(diskless)

System
partition

(fat nodes)

Marc Snir

12 Jun-06

Example: Cluster File System

Abstraction mismatch:
Posix semantics (file pointer)
Performance requirements (30K fopen/sec!)
Protection, sharing & coherence mechanisms (distinct processes of

same parallel application ≠ distinct jobs)

Par IO lib

app

Par IO lib

app

Par IO lib

app

Par IO lib

app

Par IO lib

app

Par IO lib

app

Par IO lib

CFS

Par IO lib

CFS

Par IO lib

CFS

Par IO lib

CFS

CFS CFS CFS CFS

Lib clients

Lib servers

CFS clients

CFS servers
Posix I/O

Marc Snir

13 Jun-06

Alternative – distributed mmap

Collective memory map call pa=mmap(addr, len, prot, flags, fildes, off, dist)
Buffers between (temporal and spatial) fine grain app IO and coarse grain file IO
Issued by user (prefetch) or by library (collective miss)
Does not require coherence protocol!
Natural extension to global array libraries and languages
Possible gang scheduling point

app app app app app app

app

CFS

app

CFS

app

CFS

app

CFS

CFS CFS CFS CFS

Compute
clients

Mem servers

CFS servers
Pmmap
(bulk IO)

CFS clients

Marc Snir

14 Jun-06

Parallel OS
Parallel OS ≠ Scalable OS

support for parallel applications, not scaling of distributed OS

Add collective resources
files, distributed memory buffers, distributed process cohorts…
resources (distributed or replicated) are owned by cohorts, not by
individual processes

Add collective calls
pfopen, pmmap, pshmget, pfork,…

Virtualize nodes
cohortid.index, rather than (node, pid)
support migration for fault tolerance & ease of management

Posix interfaces used for legacy; parallel interfaces used for
performance

Marc Snir

15 Jun-06

Programming for Deep Hierarchies
“Wrong problem”: different communication models
at different levels (MPI+OpenMP)
“Right problem”: communication structure of
algorithm should match architecture hierarchy

Assume algorithm using alternating
computation/communication phases:
All communications during a phase should all have “same

locality” (on chip, on node, global)
Local communication phases should be more frequent

than global communication phases.
Hard if need to explicitly map problem to machine
topology
Possible solution: recursion (nested dissections)

Marc Snir

16 Jun-06

Recursive Algorithms
Many parallel
algorithms can be
expressed recursively

Matrix product, FFT,
Multigrid…

Use recursive
structure to map to
machine
Will get efficient
mapping, no matter
what the hierarchy is
(Snir, Leicerson)

CPU
Chip

Marc Snir

17 Jun-06

Example: Hierarchically Tiled Arrays (HTA)

Padua et. al.
Added HTA’s to Matlab

extended (data parallel) array operations to work
with HTA’s

Marc Snir

18 Jun-06

Programming for Noisy Systems
“Crystalline” model:

Fixed number of processes, all moving at same speed.
A computation consists of a sequence of global phases;
all processes do “same amount of work” during a phase.

Problems:
1. Increased variance in processor speed

Dynamic power management
Dynamic error recovery
Asynchronous software (e.g., monitoring for
debugging and performance tuning, concurrent
checkpointing, etc.)

2. Increased variance in compute work per phase

Marc Snir

19 Jun-06

Apply fine scale model to
elements where continuum
model is invalid…
…but to just a sample of the
elements – denser sample
where necessary
Elsewhere, interpolate
response function in state
space from fine scale results
calculated for similar
elements
10X or better performance
improvement achievable
over 100% sample
Requires load balancing

(Steve Ashby)

Example: Adaptive Sampling

Marc Snir

20 Jun-06

Load Balancing & Dynamic Resource
Allocation

Done internally, as part of application logic
E.g., Zoltan Load Balancing Library, Sandia
Requires that entire application be managed by

library; does not work when independently
developed codes are integrated into one multi-
physics application

Done externally, by runtime
may be steered by application
requires processor virtualization

replace “processor” by run-time managed thread

Marc Snir

21 Jun-06

On the Many Advantages of
Processor Virtualization

Facilitates composition of multiple paradigms
E.g., Charm++ and AMPI (Kale)

Supports adaptive overlapping of computation and
communication (message-driven scheduling)
Supports run-time load balancing
Supports migration and checkpointing
Supports run-time communication optimization
Improves cache performance
Does not worsen performance! (Kale, NAMD)

Need to work on interaction with rDMA (no
message driven scheduling)

Marc Snir

22 Jun-06

Programming Models
Communication model

2-sided (send-receive)
1-sided (put, get)
0-sided (load, store)

Computation location model
static
dynamic
automatic

Data location model
static
dynamic
automatic

Marc Snir

23 Jun-06

Current Libraries and Languages
MPI

2-sided, 1-sided; static data and control allocation

OpenMP
0-sided; dynamic allocation of control and

automatic allocation of data

Global Shared Array Languages (UPC, CAF)
0-sided
static allocation of control
static allocation of data (partitioned arrays)

Marc Snir

24 Jun-06

Problems with Current Languages
0-sided communication convenient, but compilers do
not do a good job at optimizing communication
when latency is high; need user control on data
movement => 1-sided model
Static allocation of data and control is too limited;
need to support data and control migration
All programming models associate variable name
with location: if data is explicitly moved then it is
renamed; this complicates programming and
prevents compatibility between shared memory and
distributed memory systems

Marc Snir

25 Jun-06

Possible Solution (PPL1, Snir)
Virtual locales
Execution blocks (e.g., iterates in parallel loop) are explicitly
associated to locales (dynamic allocation of computation)
Arrays are partitioned over locales; partitions can be changed
dynamically (dynamic allocation of data)
Locale is an abstraction for expressing locality, not a physical
resource

run-time dynamically maps locales to processors or nodes
PPL1 provides global name space with user control of locality

data is moved to thread that needs it by repartitioning array; name
does not change
compiler can optimize away data movement on shared memory system

Always provide to compiler as much information as possible
as early as possible on data access pattern
Control locality with data remapping operation, not with
explicit data copying

Marc Snir

26 Jun-06

Parallel Component Models

Processor virtualization may avoid both pitfalls!

Time slicing
Collective method invocation
Idle time if have load imbalance

Space slicing
Communication between spatially
disjoint component
Loss of locality

Need more general model: asynchronous parallel invocation
Different levels of parallelism in two components
Possibly different data distribution (redistribution is part of
invocation)
Blocking or nonblocking invocation (parallel future?)

Marc Snir

27 Jun-06

Summary
Petascale can be reached with current programming
models – but it’s becoming increasingly hard to
program [sound wall vs. heat wall]

Parallel software has not evolved in last decade
[applications have evolved]

There is important research to do on High
Performance Computing Software

It will be hard to have community adopt new
software paradigm [the boiling frog]

Marc Snir

28 Jun-06

Marc Snir

29 Jun-06

Dennard’s Scaling Principle

If feature size, and voltage are scaled down
by λ then
transistor count increases by λ2

clock frequency increases by λ; and
power stays constant.

Marc Snir

30 Jun-06

“Moore’s Law”

(D. Sima)

Marc Snir

31 Jun-06

Instructions per Cycles (IPC)

(D. Sima)

Computer architects have run out of tricks!

Marc Snir

32 Jun-06

Frequency Evolution

(D. Sima)

Marc Snir

33 Jun-06

Microprocessor Evolution
Technologists have increased clock frequency faster
than have decreased feature size (to compensate for
the failure of computer architecture)

This increases power consumption
Technologists cannot scale down voltage anymore,
because of leakage current

This also increases power consumption
So chips have become much warmer

Chips have reached the limit of power density
Single processor performance is barely increasing

now; instead, multiple processors (cores) are put on
one chip

	 Software for High Performance Computing
	Outline
	Petascale Systems are Coming
	Hardware Trends
	Problems
	Hierarchy and Heterogeneity
	Communication
	Petascale OS
	OS Noise
	OS Noise (continued)
	Solution (1)
	Example: Cluster File System
	Alternative – distributed mmap
	Parallel OS
	Programming for Deep Hierarchies
	Recursive Algorithms
	Example: Hierarchically Tiled Arrays (HTA)
	Programming for Noisy Systems
	Example: Adaptive Sampling
	Load Balancing & Dynamic Resource Allocation
	On the Many Advantages of Processor Virtualization
	Programming Models
	Current Libraries and Languages
	Problems with Current Languages
	Possible Solution (PPL1, Snir)
	Parallel Component Models
	Summary
	Dennard’s Scaling Principle
	“Moore’s Law”
	Instructions per Cycles (IPC)
	Frequency Evolution
	Microprocessor Evolution

