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Computer scientists can — and should — play a key role 
in increasing the efficiency and effectiveness of the way 
we manage and allocate our natural resources, while 
enriching and transforming Computer Science. 

Vision 

Why we proposed this expedition in 
Computational Sustainability!!! 



Red Cockaded Woodpecker (RCW) is a federally endangered species 

 Current population is estimated to be about 
1% of original stable population (~12,000 birds) 

 

Conservation Funds manages  
 Palmetto Peartree Preserve (North Carolina) 
  32 active RCW territories (as of Sept 2008) 

Conservation and Biodiversity: 
Reserve Design for Bird Conservation 

Goal: Increase RCW population level  
 
Management options: 

Prioritizing  land acquisition adjacent 
 to current RCW populations 

Building artificial cavities 
Translocation of birds 

D. Sheldon, B. Dilkina, A. Elmachtoub, R. Finseth,  A. Sabharwal, J. Conrad, C. Gomes, D. Shmoys, W. 
Allen, O. Amundsen, and B. Vaughn, Maximizing the Spread of Cascades Using Network Design



Problem Statement 

!  Given a limited conservation budget, which habitat 
patches should you put into conservation to maximize 
RCW population growth? 



Computational Challenge: scaling up solutions  
for considering a large number of years (100+) 
! decomposition methods and exploiting structure 
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Stochastic diffusion model  
(movement and survival patterns) 

 in RCW populations 
Stochastic optimization model 

Decisions: where and when to acquire land parcels 
Goal:  Maximize expected number of surviving RCW 

Red Cockaded W. 

 Biological and 
Ecological  Model 

Management Decisions:  

Land acquisition   
Artificial cavities 

Translocation  of birds 
 

Must explicitly consider 
interactions between  
biological/ecological 

patterns and management 
decisions 

Conservation and Biodiversity: 
Reserve Design for Bird Conservation 



PROBLEM: When do we buy territories and/or make them 
suitable? 

!  Suppose we want to maximize the expected total number 
of occupied regions at the end of time horizon 
(oversimplified objective) 

!  Decide to buy/improve certain territories in order to 
increase the potential number of future occupied 
territories 

!  Decision effects propagate across the space-time domain 

!  There is a budget constraint that limits the total spent on 
acquisition/improvement 



Simple Patch-based Diffusion Model 

!  There is a set R of regions and a time horizon of T periods 

!  For each region i ! R  and for each t=1,!,T, 
    if the region is occupied at that time, then the territory becomes 

 unoccupied with probability ! 

!  For each pair of regions i,j ! R and for each t=1,!,T, 
    there is a given probablity pij, that, conditioned on the event that region i 

 is occupied at time t-1, that region j is occupied at time t 

!  The transition probabilities were drawn based on the RCW DSS code 
provided to us by Jeff Walters. 



Sample Average Approximation 

!  “True” Stochastic Optimization Model 

!  Maximize EP(F(x,y)) 
!  subject to y! Y 
!  where P is a probability distribution over possible inputs x 

!  Sample Average Approximation 

!  Draw m samples x1, x2, ! , xm independently from P 
!  and instead 

!  Maximize (1/m) !i F(xi,y) 
!  subject to  y ! Y 



This can be modeled as a network connectivity problem 

• Territories 
A,B,C 

• 2 Years 

• 2 “Trials” 
 



Red lines indicate the chance of a territory remaining occupied in 
1 year 

• A line from one oval 
to another represents 
the ability for a bird 
from the first 
territory to colonize 
the second 

• Red lines indicate 
that if birds occupy a 
territory, then they 
will continue occupying 
it in the next time 
step 

• Birds at C in year 1 in 
simulation 1 won’t 
make it… 



Pink lines indicate the chance that one territory will occupy 
another 

• Using data we can 
estimate the 
probability of a bird 
in one territory 
occupying another 
territory in one time 
step 

• The pink lines 
represent the 
outcomes of the 
simulation using 
these probabilities 

• If there are birds 
at B in year 1 in sim. 
1, they will colonize C 



Blue line represents territories  already suitable (& occupied in example) 

• The reason for 
having two nodes 
represent each 
territory is to 
indicate whether or 
not it is suitable 

• If suitable, then 
there will be a line, 
allowing the birds 
to inhabit the 
territory from one 
time step to the 
next 



Green lines indicate which territory which we should purchase 

• Start with only 
territory A occupied 

• Now we want to 
decide which territory 
to purchase, B or C? 

• What maximizes 
average number of 
occupied nodes at 
time 2? 

• In simulation 2, the 
birds from A can 
never get to B. In 
both simulations we 
can get to C, so C is 
better 

 



The Flow-Type IP Formulation 

Purchase constraints 

Suitability constraints 

Colonization constraints 

Flow constraints 

Budget constraint 

Purchase constraints 

Suitability constraints 

Colonization constraints 

Flow constraints 

Budget constraint 

Purchase constraints 

Suitability constraints 

Colonization constraints 

Flow constraints 

Budget constraint 

Purchase constraints 

Suitability constraints 

Colonization constraints 

Flow constraints 

Budget constraint 

Purchase constraints 

Suitability constraints 

Colonization constraints 

Flow constraints 

Budget constraint 

!  . 



Sample Average Approximation MIP vs Greedy 

• In our experiments, we use two greedy 
algorithms as baselines. 
  
• The MIP finds better solutions than the 
greedy baseline while proving near-
optimality 

• Results show dramatic improvement 
over greedy algorithm. 

Experimental Results 



Results 
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Spatio-Temporal Aspects Make These Problems Hard



Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

Approximation algorithms for

fragmenting a graph

against a stochastically-located threat

(WAOA 2011)

David Shmoys and Gwen Spencer

September 21, 2011

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

A preventative approach to wildfire management

� Fuels build-up on landscape,
fires threaten habitat and infrastructure:
USFS interest in preventative fuel reductions.

� Current planning methods: don’t simultaneously incorporate
distributional information about ignition site and
spatial information.

� Best fire simulation models seem too complex for optimization
of stochastic objective.

Goal: Better understand spatial/stochastic interplay.
Particularly: Correct balance of prevention and real-time action?

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

What can we add to this prevention-planning tool box?

� Simple example (no fire ending events, assume that fuel
treatment stops fire).

� Uniform ignition probability:

single barrier beats parcel isolation by a factor of 8.

� Concentrated ignition probability:

parcel isolation beats single barrier by a factor of 2.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

Exploring explicit dependence on distribution of fire
ignition location

� Distribution of ignition point matters in determining

placement of preventative treatments.

� How can we use distributional info about ignition site

explicitly?

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

This talk:

� Propose: Introduction of a stripped down model for budgeted
placement of preventative treatments that explicitly
incorporates probabilistic data on outbreak site.

� Goal (near term): Find scalable algorithms that perform
provably close to the optimal solution for this problem.

� Goal (longer term): Extract design insight from methods
and solution forms for simple stripped down model that can
be used to inform decision making about the full complexity
planning problem.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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Algorithmic Results

The model: Stochastic Graph Protection

� A map becomes a graph:

� A node for each parcel, edges indicate adjacent parcels.

� Parcels have values, edges have costs, specified budget to
spend, distribution over ignition sites.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Motivation: Preventative Fuel Reductions
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Algorithmic Results

The model: Stochastic Graph Protection Problem

� Thematic: Remove budget-limited set of edges, fire spreads
through connected components. Protecting a node requires
that every path from ignition point is blocked.

Goal: Spend budget removing edges from the graph to

max expected value of the landscape protected

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

2-stage version: Preventative vs. Real-time

� �� �
preventative actions ignition realized real-time actions after ignition spread realized

� Basic paradigm in multi-stage optimization:
Acting in real time is more costly.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

Comments:

� Stochastic Graph Protection is very general:

captures stochastic outbreak of harmful diffusive process in

network.

Steps toward isolating the outbreak are only effective if other

paths to infection don’t exist,

variable costs (and variable inflation),

variable loss (across nodes and scenarios).

� Other possible applications of this model:

isolating outbreaks of pests or disease

stemming the spread of invasive species

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Motivation: Preventative Fuel Reductions

The Model: Stochastic Graph Protection

Hardness

Algorithmic Results

Comments:

� Restricted graph classes (e.g. trees) can be useful:

zebra mussels spreading through a river and stream system.

from CA.gov

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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Results: 1-stage

restricted graph classes general graphs (via [3],[4])

stochastic, single source trees: (1− 1/e, 1) open

with probabilistic edges Due to submodularity.

stochastic, single source trees: (1− (1− 1/δ)δ , 1) (1− (1− 1/n)n,O(log n))

Reduce to MCKP, apply [1].

stochastic with trees: (1 + �, 1) (1 + �, O(log n))

constant support and

constant source size

deterministic with bounded tree width: (1 + �, O(log n))

arbitrary source size (1 + �, 1)

deterministic with bounded tree width: (1 + �, O(log n)) [2]

single source (1 + �, 1) [2]

[1] Ageev, Sviridenko ’04. [2] Hayrapetyan, Kempe, Pál, Svitkina ’05. [3] Räcke ’08.

[4] Engelberg, Könemann, Leonardi, Naor ’06.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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The Model: Stochastic Graph Protection
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Tool: Maximum Coverage subject to Knapsack Constraint

� MCKP:

Family F = {Sj : j ∈ J} of subsets of I = {1, 2, ..., n}
subset weights wj , item costs ci , budget B :

Find a budget-balanced set of items X to

max
�

j :Sj∩X �=∅

wj .

� Theorem. (Ageev, Sviridenko ’04)
Exists a (1− (1− 1

δ )
δ)-approximation algorithm for MCKP.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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Hardness
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1-stage Stochastic GPP in trees:
Connection to Maximum Coverage

v

i

� Choosing any edge on this path covers the pair (i,v).

� Path gives a set of items: including one of these items (or
more) in solution accrues (value of v)× pi .

� Apply Ageev and Sviridenko’s MCKP Result:
(1− (1− 1

δ )
δ)-approximation. ∗wBSMC also.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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Results: 2-stage

restricted graph classes general graphs (via [3],[4])

stochastic, single source trees: (1− (1− 1/2δ)2δ , 2) constant # of scenarios
Via pipage rounding. ⇒ (1− (1− 1/2n)2n,

O(log n)

Alternative: (0.387, 1)

stochastic, single source trees: (1− (1− 1/2δ)2δ , 1, 2) constant # of scenarios
with (B1,B2) Via pipage rounding. ⇒ (1− (1− 1/2n)2n,

O(log n), O(log n))

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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The 2-stage problem

Theorem
There exists a bicriteria (1− (1− 1

2δ )
2δ, 2)-approximation

algorithm in trees.

�

v

i

� Edge in i , v path can cover in first stage or second stage.
Consider these as separate items.
⇒ Max Coverage objective.

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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Algorithmic Results

A LP for the 2-stage problem: Preventative vs. Realtime

xiv = 1 if v protected when i ignites.
ye = 1 if solution buys e in first stage.
z ie = 1 if solution buys e in second stage when i ignites.

max
�

(i ,v)

(piviv )xiv ← max expected valued protected

protection constraints →
�

e∈P(i ,v)

ye +
�

e∈P(i ,v)

z ie ≥ xiv ∀(i , v)

budget constraints →
�

e

yece +
�

e

z ie(M
iece) ≤ B ∀i

xiv ≤ 1 ∀(i , v)

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat
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Comments and Directions:

� The analysis of several well-known 2-stage optimization
results requires uniform inflation in the second stage.

Are there simple algorithms for Stochastic Graph Protection
that perform better when we assume uniform inflation?

� General problem in graphs:
possible to avoid resorting to capacity approximation (and
the associated O(log n) loss in budget guarantee)?

David Shmoys and Gwen Spencer Approximation algorithms...stochastically-located threat



Thank you!


