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Extended abstract





	Unsupervised learning of an ACTOR functioning in the WORLD is typically performed by using computational algorithms which treat the external environment in which the goal is supposed to be achieved as large data sets implicitly containing the proper rules of the goal achievement. As a result of learning processes the subsets of WORLD data are selectively collected and properly organized for the subsequent processing. After the learning is performed, the the results of processing for both the environment and the rules of goal achievement form a joint STATE-ACTION model of the overall system WORLD-ACTOR. The problem of learning is understood as development of the strategy of selective data collection, their further proper organization and development of the applicable model for extraction of reactive rules and formation of deliberative plans. Thus, two contradictory criteria should be taken in account in design of learning algorithms: a) the success of using the rules and plans, and b) the complexity of computations required for extracting these rules and plans.


	We demonstrate that the tradeoff between these two criteria can be achieved by using a multiresolutional computational system which applies similar tools for both planning and learning. These planning-learning computational algorithms with theis supporting data structure work bottom-up for learning processes and top-down for the processes of planning and control. It has been demonstrated that  in a multiresolutional system, computing error compensation (or feedback control sequences) for the i-th level of resolution is equivalent to computing reactive rules for the (i+1)-th level and to computing planning (or feedforward control sequences) for the (i-1)-th level of resolution. 


	As a byproduct of the learning processes, the data end up to be organized in a multigranular (multiscale) system of "world representation" which allows for effective interpretation and direct use for computing multiresolutional planning and control sequences. The latter is done via tracing connections between two multigranular hierarchies: for the concepts and for the temporal changes (if the time factor is involved). The algorithm performs recursively the goal oriented multiresolutional clustering of the available information. The structure of final "world representation" is intimately linked with mechanisms of "behavior generation" as far as the goal of analysis is specified.


	The multiresolutional representation structure is acquired from the external reality via learning based upon the strategies of exploratory testing of the environment supplemented by the testing via functioning. Many types of learning are mentioned in the literature (supervised, unsupervised, reinforcement, dynamic, PAC, etc.) Before classifying a need in a particular method of learning and deciding how to learn, we would like to figure out what should we learn. The following knowledge should be contained in the Representation Space. If no goal state is given, any pair of state representations should contain implicitly the rule of moving from one state to another. In this case, while learning we inadvertently consider any second state as a provisional goal state.


	 We will call “proper” representation a representation similar to the mathematical function and/or field description: at any point of the space, the derivative is available together with the value of the function; the derivative can be considered an action required to produce the change in the value of the function. We will call “goal oriented” representation a representation in which at each point a value of the action is given required for describing not the best way of achieving an adjacent point but the best way of achieving the final goal. Both “proper” and “goal oriented” representation can be transformed in each other. 


	Representation (that of the World) can be characterized by the following artifacts:


   • existence of states with its boundaries determined by the resolution of the space each state is presented as a tessellatum, or an elementary unit of representation, the lowest possible bounds of attention)


   • characteristics of the tessellatum which is defined as an indistinguishability zone (we consider that resolution of the space shows how far the “adjacent” tessellata (states) are located from the “present state.” 


   • lists of coordinate values at a particular tessellatum in space and time


   • lists of actions to be applied at a particular tessellatum in space and time order to achieve a selected adjacent tessellatum in space and time


   • existence of strings of states intermingled with the strings of actions to receive next consecutive tessellata of these strings of states


   • boundaries (the largest possible bounds of the space) and obstacles


   • costs of traversing from a state to a state and through strings of states.


	In many cases, the states contain information which pertains to the part of the world which is beyond our ability to control it, and this part is called “environment.” Another part of the world is to be controlled: this is the system for which the planning is to be performed. We will refer to it frequently as “self.” Thus, part of the representation is related to “self” including knowledge about actions which this “self” should undertake in order to traverse the environment.


	It is seen from the list of artifacts that all knowledge is represented at a particular resolution. Thus, the same reality can be represented at many resolutions and the “multiresolutional representation” is presumed.


	Planning is performed by searching within a limited subspace


	•  for a state with a particular value (designing the goal)


	•  for a string (a group) of states connecting SP and GP satisfying some conditions on the cumulative cost (planning of the course of actions.)


	The process of searching is associated ether with collection of addition information about experiences, or with extracting from KS the implicit information about the state and moving from state to state, or learning. In other words, planning is inseparable from and complementary to learning.


	This unified planning/learning process is always oriented toward improvement of functioning in engineering systems (improvement of accuracy in an adaptive controller) and/or toward increasing of probability of survival (emergence of the advanced viruses for the known diseases that can resist various medications, e.g. antibiotics.)


	Thus, this joint process can be related to a system as well as to populations of systems and determines their evolution.


	LPA is a tool which allows for jointly exploring these two fundamental processes of intelligent systems.





�


Figure 1. On the relations between planning and learning





	Search is performed by constructing feasible combinations of the states within a subspace (feasible, means: satisfying a particular set of conditions.) Search is interpreted as exploring (physically, or in simulation) as many as possible alternatives of possible motion and comparing them afterwards. 


	Each alternative is created by using a particular law of producing the group of interest (cluster, string, etc.) Usually, grouping presumes exploratory construction of possible combinations of the elements of space (combinatorial search) and as one or many of these combinations satisfy conditions of “being an entity” - substitution of this group by a new symbol with subsequent treating it as an object (grouping.)


	The larger the space of search is the higher is the complexity of search. This is why a special effort is allocated with reducing the space of search. This effort is called focusing attention and it results in determining two conditions of searching, namely, its upper and lower boundaries:


	a) the upper boundaries of the space in which the search should be performed, and


	b) the resolution of representation (the lower boundaries) 


	This paper illuminates algorithms of unsupervised learning performed via nested clustering of the large data sets and discusses the results of simulation of goal driven decision making processes. For dealing with numerical data, we use multiscale deconvolution. For dealing with descriptive data we use a set of multigranular parsing procedures coupled computationally with numerical multiscale deconvolution. The structure of the hierarchy is not predetermined: it is supposed to be negotiated between these two algorithms.


	Among other issues, we concentrate upon early learning, thus, the minimum initial knowledge is presumed to be known ("bootstrap knowledge"). Learning system uses the newly arrived information to extract rules of interpretation. It is important for us not to prescribe the structure of the world representation explicitly: given the mechanism of generalization (which includes grouping, focusing attention and combinatorial search), our system arrives at a particular structure of representation.


	The concept of recursive generalization is explored as the main tool of extracting the rules from the raw information of experiences and constructing the system of knowledge representation. It is demonstrated that consecutive simulation of the decision making process gives more efficient results than persistent multidimensional clustering, although the results of these two competing algorithms are expected to be very similar.


	The processes of learning are tested in a simulated environment. The results of simulation reveal peculiarities of the early learning process and suggest a possibility of formation of an individual cognitive portrait of the particular problem.


	Representations reduce the redundancy of reality. Elimination of redundancy allows for having problems that can be solved in a closed form (no combinatorics is possible and/or necessary). Sometimes, this ultimate reduction of redundancy is impossible and the combinatorial search is the only way of solving the problem). If the problem cannot be solved in a closed form, we introduce redundancy intentionally to enable functioning of GFACS.


	At each level of resolution, planning is done as a reaction for the slow changes in situation which invokes the need in anticipation and active interference


	a) to take advantage of the growing opportunities, or 


	b) to take necessary measures before the negative consequences occur.


	The deviations from a plan are compensated for by the compensatory mechanism also in a reactive manner. Thus, both feedforward control (planning) and feedback compensation are reactive activities as far as interaction system-environment is concerned. Both can be made active in their implementation. This explains different approaches in control theory.


	Examples:  


  a) Classical control systems are systems with no redundancy, they can be solved in a closed form. Thus, they do not require any searching. 


  b) Any stochastics introduced to a control system creates redundancy and requires either for elimination of redundancy and bringing the solution to a closed form, or performing search.


  c) Optimum control allows for the degree of redundancy which determines the need in searching.


	In Figure 2, the process of multiresolutional joint planning-learning via consecutive search with focusing attention and grouping is demonstrated for the required functioning with minimum-time motion trajectory.


	The space is learned in advance by multiple testing, and its representation is based upon knowing that the distance, velocity and time are linked by a simple expression which is sufficient for obtaining computationally the theoretically correct solution with an error accepted to be admissible. Several methods of constructing the envelopes of attention can be applied.
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Figure 8. Solving a minimum-time control problem by multiresolutional with grouping and consecutive focusing attention
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