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�
Introduction





Epidemiology can be conceived of as the science of observing “natural experiments,” in particular, those involving the occurrence of disease in human populations.  The manner the observations are made and arranged is usually referred to as “study design” and in environmental epidemiology (epidemiology as applied to environmental hazards) study design comes in three basic forms, corresponding to natural questions often asked by communities concerned about their neighborhoods:


Exposure-driven: A community identifies a source of hazard (e.g., a hazardous waste dump) and wants to know, “What will happen to me or my family?”


Outcome-driven: An apparent increase in disease occurs and the community wants to know, “Why us?”


Mixed: A community perceives a problem in the environment and also wonders if there is more sickness in their neighborhood. They want to know, “Are we sicker than our neighbors?”


These three questions correspond to three classical types of study design, the cohort study (comparison of an exposed and unexposed group for differences in disease experience); the case-control study (comparison between those with and without disease to see how they differ in antecedent factors); and the cross-sectional design (simultaneous comparison of disease prevalence in two different populations).





The objective in environmental epidemiology is to study associations among posited independent (“exposures”) and dependent (“diseases”) variables. At the heart of analytic epidemiology lies a comparison, usually between risks, rates or proportions in two or more populations. Thus the measures of association are usually quantities like rate ratios, risk ratios, odds ratios, or rate or risk differences.


Mathematics is extensively used in epidemiology in the form of statistical analysis of these comparisons, in the form of a model (e.g., multiple regression); for parameter estimation; or for hypothesis testing. Recently, difference equations and ODEs have been used to model infectious disease processes (e.g., AIDS, parasitic diseases). Beyond these two applications, however, mathematical analysis is infrequent.


Since people occur as integers, it would seem natural to look to discrete mathematics as a source of tools to study epidemiologic problems. The purpose of this paper is to suggest some applications of discrete mathematics to chronic disease epidemiology.


Occurrence of cancer cases around a source in a case-control study


We are motivated by a particular study we have done on the Upper Cape region of Massachusetts, where high cancer rates gave rise to concern that environmental hazards were responsible. All cancer cases diagnosed between 1983 and 1986 for nine types of cancer were located and interviewed, and their responses compared to a random sample of the population of the same area that gave rise to the cases (the “controls”). The controls were thus an estimate of the population density, and the number of cases diagnosed in a particular area during a time period divided by the number of controls (the case odds) was an indication of risk.


Consider a specific source (say a hazardous waste site or a smokestack) suspected of being related to cancer risk. The conventional method of epidemiological analysis would designate an exposure area around the source and then count the number of cases and controls in the exposed area and compare it to the number of cases and controls in the unexposed area (cf. fig. 1), summarizing the results in the usual 2 x 2 table (cf. tables 1 and 2):


�


Figure 1:  Cases (x's) and controls (o's) around a hazardous waste site





�
cases�
controls�
�
�
exposed�
3�
2�
5�
�
unexposed�
7�
9�
16�
�
�
10�
11�
21�
�
Table 1: 2x2 table for an exposed radius of 2.0 km (cf. fig. 1)





�
cases�
controls�
�
�
exposed�
1�
1�
2�
�
unexposed�
9�
10�
19�
�
�
10�
11�
21�
�
Table 2: 2x2 table for an exposed radius of 1.5 km (cf. fig. 1)


As one can see, however, the 2x2 tables that result depend critically on the radius of exposure. Unfortunately in most cases it is not possible to know what that radius truly is. This is referred to as the “cutpoint” problem. For each cutpoint we get a new 2x2 table, and with it a possibly different measure of association (the usual measure of association in a case-control study would be the odds ratio, a good estimate of the relative risk, the risk of disease in the exposed divided by the risk of disease in the unexposed).


One way to visualize the set of possible 2x2 tables that can result from different cutpoints is through a device we call the lattice diagram. Consider the typical 2x2 table with one set of fixed margins from either a case-control or cohort design (cf. table 3):





�
cases�
controls�
�
�
exposed�
a�
b�
a+b�
�
unexposed�
n1-a�
n2-b�
(n1+n2 ) - (a+b)�
�
�
n1�
n2�
n1+n2�
�
Table 3:  2x2 table with fixed column margins


If we fix a pair of internal entries (either two in the same row or two in the same column), then we fix the whole table. Thus the table can be represented by an ordered pair, say (a,b), and all possible 2x2 tables (all possible ordered pairs) can be represented by (n1+1) * (n2+1) integer lattice points:


�


Figure 2: The lattice diagram, with table (5,3) circled, corresponding to table 4.





�
cases�
controls�
�
�
exposed�
5�
3�
8�
�
unexposed�
5�
8�
13�
�
�
10�
11�
21�
�
Table 4: The 2x2 table circled in figure 2


Suppose now we start at a putative source of environmental pollution and move outward, encountering as we go cases and controls, resulting in a sequence of ones (cases) and zeroes (controls), say 110010110100101011000. As we move the cutpoint across exposures we successively add a case or control (depending upon if we encounter a one or zero in the sequence) to one of the columns in the exposed row and remove it from that column in the unexposed row, each time generating a new 2x2 table. The result is a pathway that runs from lower left to upper right of the lattice diagram:





�


Figure 3: A pathway on the lattice diagram corresponding to the exposure scenario of 110010110100101011000.


If we mark on this diagram lines of equal odds ratios, we see that the choice of cutpoint will make a difference in our estimate of this measure of association (cf. figure 4). Note that the diagonal represents an odds ratio of 1.0, the null association (the proportion of exposed cases is the same as the proportion of exposed controls).





�


Figure 4: Lattice diagram and pathway with some lines of equal odds ratios indicated.


The usual way to analyze “small” tables present here is with the Fisher Exact test, which conditions on the observed marginal (a+b). Here (cf. figure 5) we show the case for the table on the pathway that has the exposed row marginal (a+b) = 10:





�


Figure 5: Pathway and marginal a+b=10. The diagonal represents the null association.


The farther the pathway wanders away from the diagonal the less likely is the null case. If we ask how likely it is a pathway would go through the indicated point it is just the number of pathways from the left lower corner to that point times the number of pathways from that point to the upper right corner divided by the total number of pathways from lower left to upper right:





� EMBED "Equation" "Word Object2" \* mergeformat  ���





But this is just the Fisher Exact Test. The consequence of conditioning on the marginal a+b=10 is to confine the sample space from the whole lattice diagram to the tables on the marginal. The consequence of picking a cutpoint is to collapse the whole pathway to a single point, ignoring the “history” (ordering) of the exposure sequence before and after the cutpoint. How might the information in the pathway be used to better advantage? In our laboratory we are exploring a wide variety of approaches, but I confine myself here to one of particular interest from the standpoint of discrete mathematics.


If one looks at the measures of association produced by the pathway in figure 4, none are very impressive from the epidemiological point of view, most staying fairly close to the diagonal no matter what cutpoint is selected. On the other hand, if we ask, “What is the probability that a pathway will stay on one side of the diagonal?” (corresponding to the epidemiological question, what is the probability that the measure of association will be elevated for every choice of cutpoint), the answer is more interesting. It turns out that this question is an old one in number theory, going under the name of the Ballot Problem. When n1=n2 the answer (depending on the common value n) is one of the Catalan numbers, C(n). If n1 and n2 are co-prime or one is a multiple of the other, the answer is also fairly simple:( 


n1 = n2 = n, Catalan number: � EMBED Equation.2  ���


n1, n2 co-prime: � EMBED Equation.2  ���


n2 = k*n1, k integer: � EMBED Equation.2  ���


However, if 1 < gcd(n1,n2) < min(n1,n2), i.e., n1 and n2 have a common factor and one is not a multiple of the other, the answer is much more difficult and has only recently been solved, by I. Gessel at Brandeis, in the form of a generating function (too long to give here).


The lattice diagram is also an algebraic lattice if we define the glb and lub of a pair of tables to be the largest table a pathway can go through and still go through either and the smallest table that is incident to pathways that go through both (cf. figure 6):


�


Figure 6: glb and lub (small circles) of the pair of tables marked with large circles.


The lattice so-produced is complete (because finite), has a top and bottom (the corners) and distributive (it is the direct product of two chains).  We can also look at the up-sets and the down-sets (the filters and principal ideals) of a table (cf. figure 7):





�


Figure 7: The up-sets and down-sets (dark points) and the out-sets (light points) of the table (13,16)


If we now take the set of non-comparable tables (the light points of figure 7) and call them the “out-sets,” we find that the ratio of the number of elements (tables) in the two out-sets is just the epidemiologic odds ratio (the cross-product, an estimate of the relative risk).


This is just a brief indication of some aspects of discrete mathematics that appear in epidemiologic applications. It is likely that many more will be discovered as mathematicians become more aware of the intriguing and delicate problems inherent in this important branch of public health science.





( The result for the co-prime case is due to my graduate student, Mr. T. Webster.
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