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Type	
  of	
  appliance	
  	
   Number	
  

Firewalls	
   166	
  

NIDS	
   127	
  

Media	
  gateways	
   110	
  

Load	
  balancers	
   67	
  

Proxies	
   66	
  

VPN	
  gateways	
   45	
  

WAN	
  Op9mizers	
   44	
  

Voice	
  gateways	
   11	
  

“Middleboxes”	
  are	
  valuable,	
  	
  
but	
  have	
  many	
  pain	
  points!	
  	
  

High	
  Capital	
  Expenses	
  	
  
Device	
  Sprawl	
  

High	
  Opera9ng	
  Expenses	
  
e.g.,	
  separate	
  management	
  teams	
  
need	
  manual	
  tuning	
  

Inflexible,	
  difficult	
  to	
  extend	
  
	
  	
  à	
  need	
  for	
  new	
  boxes!	
  ?	
  

Based	
  on	
  survey	
  responses	
  +	
  discussions	
  

[COMB,	
  NSDI	
  ’12]	
  



Case	
  for	
  Network	
  Func9on	
  Outsourcing	
  (NFO)	
  

Internet	
  

Cloud	
  Provider	
  

+	
  Economies	
  of	
  scale,	
  pay-­‐per	
  use	
  
+	
  Simplifies	
  configura9on	
  &	
  deployment	
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Today:	
  
High	
  CapEx,	
  OpEx,	
  	
  
Delay	
  in	
  innova9on	
  

[APLOMB,	
  SIGCOMM	
  ’12]	
  



Concerns	
  with	
  ceding	
  control	
  

Internet	
  

Cloud	
  Provider	
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Correctness	
  proper9es:	
  
Behavior,	
  Performance,	
  Accoun9ng	
  
	
  
Outside	
  scope:	
  Isola9on,	
  privacy,	
  ..	
  

[vNFO,	
  HotMiddlebox	
  ’13]	
  



What	
  makes	
  this	
  challenging?	
  

•  Lack	
  of	
  visibility	
  into	
  the	
  workload	
  

•  Dynamic,	
  traffic-­‐dependent,	
  and	
  proprietary	
  
ac9ons	
  of	
  the	
  network	
  func9ons	
  

•  Stochas9c	
  effects	
  introduced	
  by	
  the	
  network	
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Outline	
  

•  Mo9va9on	
  for	
  verifiable	
  NFO	
  
	
  

•  Formalizing	
  	
  proper9es	
  
	
  

•  A	
  roadmap	
  for	
  vNFO	
  
	
  

•  Discussion	
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Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . . ) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . . ) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . . ) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet ).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0  ⇡in

j and then applying

⇡j1  f pkt

1 (⇡j0,�
in

1 );�
out

1  f st

1 (⇡j0,�
in

1 )

⇡j2  f pkt

2 (⇡j1,�
in

2 );�
out

2  f st

2 (⇡j1,�
in

2 )

...

⇡jn  f pkt

n (⇡j(n�1)�
in

n);�
out

n  f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
�in

i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i ) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i )

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂pkt

1 (⇡in

j ,�
in

1 ),�
in

2 ), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂pkt

1 (⇡in

j ,�
in

1 ),�
in

2 ), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
of packets processed by the functions; i.e., Metricm =
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Figure 4: The system parameters necessary to specify the formal
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a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet ).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0  ⇡in

j and then applying
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and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
�in

i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i ) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
of packets processed by the functions; i.e., Metricm =

Reference	
  	
  
implementa9on	
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form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
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and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
�in

i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�
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i ) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
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Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
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f(⇡,�), respectively.
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return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
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T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
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ets to the service chain f1, f2, . . . , fn of primitive functions. That
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of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0  ⇡in

j and then applying

⇡j1  f pkt

1 (⇡j0,�
in

1 );�
out

1  f st

1 (⇡j0,�
in

1 )

⇡j2  f pkt

2 (⇡j1,�
in

2 );�
out

2  f st

2 (⇡j1,�
in

2 )

...

⇡jn  f pkt

n (⇡j(n�1)�
in

n);�
out

n  f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
�in

i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i ) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.
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tion. For instance, bfi may represent the case of running the actual
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Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
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packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in
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Building on this, we extend the correctness properties to the full
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.
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The correctness properties, which are discussed next, use the no-
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which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
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As a starting point, we list two properties that must be guaranteed
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in
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Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1 ),�
in

2 ), . . . ,�
in

n)

This is the most basic requirement where we want to make
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-
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respective functions at the time of processing.
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of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out
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T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
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Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in
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Building on this, we extend the correctness properties to the full
pipeline of functions as follows:
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requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . . ) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . . ) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . . ) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet ).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
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is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
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was dropped.) Let ⇡ji denote the packet output by fi, as run by
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The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
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As a starting point, we list two properties that must be guaranteed
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in
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Building on this, we extend the correctness properties to the full
pipeline of functions as follows:
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
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⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
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As in the earlier case, we are strengthening the correctness
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respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
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ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
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T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
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respective functions at the time of processing.
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tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
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of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

The guarantee provided by the black-box primitive equiva-
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respective functions at the time of processing.
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outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0  ⇡in

j and then applying
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and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
�in

i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i ) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
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Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . . ) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . . ) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . . ) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet ).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0  ⇡in

j and then applying
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and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
�in

i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i ) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
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1 2 ⌃1, . . . ,�
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . . ) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . . ) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . . ) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet ).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0  ⇡in

j and then applying
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and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
�in

i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i ) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i )

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
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j 2 ⇧:
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
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Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . . ) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . . ) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . . ) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet ).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out
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and then setting ⇡out

j  ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i ) will be used as its input state (i.e.,
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i ) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�
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of measurable computational resources R[fi(⇡j(i�1),�

in

i )] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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• Snapshot pipeline equivalence:
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . . ) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . . ) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . . ) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet ).
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We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
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tions.
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This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.
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The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in
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Building on this, we extend the correctness properties to the full
pipeline of functions as follows:
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This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.
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As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
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ALIBI	
  architecture	
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Guest-­‐Plarorm	
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Bracke9ng	
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CPU	
  Accoun9ng	
  Case	
  Study	
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Outline	
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Discussion	
  
•  Is	
  the	
  NFO	
  provider	
  willing	
  to	
  deploy	
  a	
  shim?	
  

•  What	
  are	
  the	
  market	
  implica9ons	
  for	
  customers?	
  

•  What	
  is	
  the	
  role	
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  SLAs?	
  

•  Should-­‐I	
  accoun9ng?	
  I/O	
  accoun9ng?	
  
•  Interes9ng	
  anecdotes	
  of	
  correctness	
  or	
  accoun9ng	
  
problems?	
  

•  Minimal	
  TCB?	
  without	
  nested?	
  

•  Crowdsourcing	
  correctness?	
  
•  …	
  

28	
  


