
Verifiable	
 Cloud	
 Outsourcing	

for	
 Network	
 Func9ons	
 	

(+	
 Verifiable	
 Resource	
 Accoun9ng	
 for	
 Cloud	
 Services)	

Vyas	
 Sekar	

1	

vNFO	
 joint	
 with	
 	

	
 Seyed	
 Fayazbakhsh,	
 Mike	
 Reiter	

VRA	
 joint	
 with	

	
 Chen	
 Chen,	
 Petros	
 Mania9s,	
 Adrian	
 Perrig,	
 Amit	
 Vasudevan	

2	

Type	
 of	
 appliance	
 	
 Number	

Firewalls	
 166	

NIDS	
 127	

Media	
 gateways	
 110	

Load	
 balancers	
 67	

Proxies	
 66	

VPN	
 gateways	
 45	

WAN	
 Op9mizers	
 44	

Voice	
 gateways	
 11	

“Middleboxes”	
 are	
 valuable,	
 	

but	
 have	
 many	
 pain	
 points!	
 	

High	
 Capital	
 Expenses	
 	

Device	
 Sprawl	

High	
 Opera9ng	
 Expenses	

e.g.,	
 separate	
 management	
 teams	

need	
 manual	
 tuning	

Inflexible,	
 difficult	
 to	
 extend	

	
 	
 à	
 need	
 for	
 new	
 boxes!	
 ?	

Based	
 on	
 survey	
 responses	
 +	
 discussions	

[COMB,	
 NSDI	
 ’12]	

Case	
 for	
 Network	
 Func9on	
 Outsourcing	
 (NFO)	

Internet	

Cloud	
 Provider	

+	
 Economies	
 of	
 scale,	
 pay-­‐per	
 use	

+	
 Simplifies	
 configura9on	
 &	
 deployment	

3	

Today:	

High	
 CapEx,	
 OpEx,	
 	

Delay	
 in	
 innova9on	

[APLOMB,	
 SIGCOMM	
 ’12]	

Concerns	
 with	
 ceding	
 control	

Internet	

Cloud	
 Provider	

4	

Correctness	
 proper9es:	

Behavior,	
 Performance,	
 Accoun9ng	

	

Outside	
 scope:	
 Isola9on,	
 privacy,	
 ..	

[vNFO,	
 HotMiddlebox	
 ’13]	

What	
 makes	
 this	
 challenging?	

•  Lack	
 of	
 visibility	
 into	
 the	
 workload	

•  Dynamic,	
 traffic-­‐dependent,	
 and	
 proprietary	

ac9ons	
 of	
 the	
 network	
 func9ons	

•  Stochas9c	
 effects	
 introduced	
 by	
 the	
 network	

5	

Outline	

•  Mo9va9on	
 for	
 verifiable	
 NFO	

	

•  Formalizing	
 	
 proper9es	

	

•  A	
 roadmap	
 for	
 vNFO	

	

•  Discussion	
 	

6	

Formal	
 Framework	
 	

Management	

Interface	

f1	
 fn	

….	

σ1	
 σn	

BCPU,	
 BMem,	
 BNet	

Customer	

CPU,	

Mem	

Net	
 CPU,	

Mem	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

π1
in, π2

in,… π1
out, π2

out,...

Management(
Interface(

f1 fn ….
σ1

σn

BCPU, BMem, BNet

Customer(

CPU,
Mem

Net CPU,
Mem

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
of packets processed by the functions; i.e., Metricm =

State	
 Space	
 Packet	
 Space	

π1
in, π2

in,… π1
out, π2

out,...

Management(
Interface(

f1 fn ….
σ1

σn

BCPU, BMem, BNet

Customer(

CPU,
Mem

Net CPU,
Mem

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
of packets processed by the functions; i.e., Metricm =

Reference	
 	

implementa9on	
 	

7	

Blackbox	
 Behavioral	
 Correctness	

….	

σ1	
 σn	

π1
in	
 π1

out	

visible	
 to	
 customer	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

….	
 σ’1	
 σ’n	

π1

in	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Is	
 there	
 some	

viable	
 state?	

π1
out	

?	
 ?	

8	

Snapshot	
 Behavioral	
 Correctness	

….	

σ1	
 σn	

π1
in	
 π1

out	

visible	
 to	
 customer	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

….	

σ1	
 σn	

π1
in	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Would	
 I	
 get	
 the	
 	

same	
 output?	

π1
out?	

9	

Performance	
 Correctness	

….	

σ1	
 σn	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

….	

σ1	
 σn	

π1
in,	
 π2

in,…	
 	

π1

out,	
 π2
out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Would	
 it	
 really	

take	
 this	
 long?	

t1out,	
 t2out,...	

t’1out,	
 t’2out,...	

Observed	
 provider	
 performance	
 ≈	
 Reference	
 performance	

10	

“Did-­‐I”	
 Accoun9ng	
 Correctness	

….	

σ1	
 σn	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Did	
 It	
 actually	

consume?	

Charged	
 value	
 of	
 resource	
 r	
 ≈	
 	

Consump9on	
 of	
 resource	
 r	
 by	
 provider	

11	

“Should-­‐I”	
 Accoun9ng	
 Correctness	

….	

σ1	
 σn	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Should	
 It	
 really	

cost	
 this	
 much?	

12	

	
 Consump9on	
 of	
 resource	
 r	
 by	
 provider	
 ≈	
 	

Consump9on	
 of	
 resource	
 r	
 by	
 reference	
 implementa9on	

Outline	

•  Mo9va9on	
 for	
 NFO	
 +	
 vNFO	

	

•  Formalizing	
 vNFO	
 proper9es	

	

•  A	
 roadmap	
 for	
 vNFO	

	

•  Discussion	

13	

Verifiable	
 NFO	
 (vNFO)	
 Overview	

Management	

Interface	
 BCPU,	
 BMem,	
 BNet	

Customer	

CPU,	

Mem	

Net	
 CPU,	

Mem	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

….	

Each	
 func9on	
 is	
 implemented	
 as	
 a	
 virtual	
 appliance.	

NFO	
 provider	
 deploys	
 a	
 trusted	
 shim	
 for	
 logging.	
 	

14	

Behavioral	
 +	
 Performance	
 Correctness	

Management	

Interface	
 BCPU,	
 BMem,	
 BNet	

Customer	

CPU,	

Mem	

Net	
 CPU,	

Mem	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

….	

Shim	
 logs:	
 every	
 packet,	
 VM	
 state,	
 9mestamps	
 per	
 packet	

15	

Challenges!	

Management	

Interface	
 BCPU,	
 BMem,	
 BNet	

Customer	

CPU,	

Mem	

Net	
 CPU,	

Mem	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

….	

1.	
 Middlebox	
 ac9ons	
 make	
 it	
 difficult	
 to	
 correlate	
 logs	

2.	
 Scalability	
 and	
 performance	
 impact	
 due	
 to	
 logging	

16	

Poten9al	
 solu9ons	
 to	
 challenges	

1.  Lack	
 of	
 visibility	
 into	
 middlebox	
 ac9ons:	

– Packets	
 may	
 be	
 modified	
 by	
 middleboxes.	

2.  Scalability	

–  Infeasible	
 to	
 log	
 all	
 packets	
 and	
 processing	
 stats.	

17	

FlowTags:	
 NSDI	
 ‘14	

Trajectory	
 Sampling	

Outline	

•  Mo9va9on	
 for	
 NFO	
 +	
 vNFO	

	

•  Formalizing	
 vNFO	
 proper9es	

	

•  A	
 roadmap	
 for	
 vNFO	

–  Verifiable	
 accoun9ng	
 for	
 Did-­‐I	
 correctness	

•  Discussion	
 	

18	

“Did-­‐I”	
 Accoun9ng	
 Correctness	

….	

σ1	
 σn	

π1
in,	
 π2

in,…	
 	
 π1
out,	
 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Did	
 It	
 actually	

consume?	

Charged	
 value	
 of	
 resource	
 r	
 ≈	
 	

Consump9on	
 of	
 resource	
 r	
 by	
 provider	

19	

Desired	
 Proper9es	

•  Image	
 Integrity	

– What	
 is	
 running	

•  Execu9on	
 Integrity	

– How	
 it	
 is	
 running	

•  Accoun9ng	
 Integrity	

– Only	
 chargeable	
 events	
 are	
 accounted	

20	

ALIBI	
 Design	
 Overview	

•  Image	
 Integrity	

•  Execu9on	
 Integrity	

•  Accoun9ng	
 Integrity	

via	
 Aqested	
 Instance	
 Launch	

via	
 Guest-­‐Plarorm	
 Isola9on	

via	
 Bracke9ng	

Provider Software

Co-tenant
Instance

Customer’s
Instance (VM)

ReportObserver

HW

Verifier

Integrity
protected Trusted Untrusted

ch
ar
ge
ab

le
ev
en
t

21	

ALIBI	
 architecture	

Enhance	
 KVM	
 nested	
 virtualiza9on	
 with	
 resource	

accoun9ng	
 and	
 protec9on	

KVM-L1

L2 Guest L2 Guest

KVM-L0

HW

Alibi

•  Advantage	

•  Intercept	
 cri9cal	
 events	

•  No	
 modifica9on	
 to	
 L1	

hypervisor	

	

•  Current	
 Implementa9on	

•  CPU	
 accoun9ng	

•  Memory	
 accoun9ng	

22	

Guest-­‐Plarorm	
 Isola9on	

	
 (Execu9on	
 Integrity)	

•  Memory	
 Integrity	

–  Isolate	
 memory	
 pages	
 M	
 by	
 instances	

– Mi	
 is	
 writeable	
 only	
 when	
 instance	
 i	
 is	
 running	

•  Control	
 Flow	
 Integrity	

– Protect	
 program	
 stack	
 by	
 memory	
 protec9on	

– Monitor	
 and	
 validate	
 guest-­‐CPU	
 state	
 changes	

•  Storage	
 Integrity	

–  Integrity	
 protected	
 file	
 system	

23	

Bracke9ng	
 (Accoun9ng	
 integrity)	

•  Event	
 Detec9on	

•  Control	
 transfer	

•  Memory	
 mapping	
 and	

unmapping	

•  Event	
 Aqribu9on	

•  Associate	
 resource	
 usage	
 with	

CPU	
 ownership	

	

•  Event	
 Repor9ng	

•  Collect	
 event	
 measurements	

•  Store	
 and	
 protect	
 event	

measurements	

A

B

C

map page

unmap page

Instance 0

Instance 1

Instance 0 CPU Execution

24	

CPU	
 Accoun9ng	
 Case	
 Study	

•  Account	
 CPU	
 cycles	
 directly	
 used	
 by	
 L2	
 guest	

•  Protect	
 Time	
 Stamp	
 Counter	
 (TSC)	
 register	

•  Get	
 CPU	
 cycles,	
 e.g.,	
 RDTSC	

•  Entry	
 into	
 L2	
 guest	

•  Exit	
 from	
 L2	
 guest	

•  Virtualize	
 TSC	
 register	

KVM-L1

L2 Guest L2 Guest

KVM-L0

HW

Alibi

Read Timestamp Counter

25	

0
10
20
30
40
50
60
70
80
90

100

%
 N

at
iv

e
(h

ig
he

r
th

e
be

tt
er

)

single-level nested nested with accounting

•  Single-­‐level	
 virt.	
 vs.	
 na9ve	
 (no	
 virt.)	
 :	
 ~9.5%	
 slowdown	

•  Nested	
 virt.	
 vs.	
 Single-­‐level	
 virt.	
 :	
 ~6.3%	
 slowdown	

•  ALIBI	
 addi9onal:	
 ~0.5%	
 slowdown	

•  HW:	
 Intel	
 Xeon	
 E3-­‐1220	
 (3.10Ghz)	
 with	
 8GB	
 RAM	

•  L2/L1:	
 Ubuntu	
 9.04	
 (kernel	
 version	
 2.6.18-­‐10)	
 	

L0:	
 Ubuntu	
 12.04	
 (kernel	
 version	
 3.5.0)	
 and	
 ALIBI	

Overhead	
 of	
 ALIBI	

26	

Outline	

•  Mo9va9on	
 for	
 verifiable	
 NFO	

	

•  Formalizing	
 	
 proper9es	

	

•  A	
 roadmap	
 for	
 vNFO	

	

•  Discussion	
 	

27	

Discussion	

•  Is	
 the	
 NFO	
 provider	
 willing	
 to	
 deploy	
 a	
 shim?	

•  What	
 are	
 the	
 market	
 implica9ons	
 for	
 customers?	

•  What	
 is	
 the	
 role	
 of	
 SLAs?	

•  Should-­‐I	
 accoun9ng?	
 I/O	
 accoun9ng?	

•  Interes9ng	
 anecdotes	
 of	
 correctness	
 or	
 accoun9ng	

problems?	

•  Minimal	
 TCB?	
 without	
 nested?	

•  Crowdsourcing	
 correctness?	

•  …	

28	

