
Verifiable	 Cloud	 Outsourcing	
for	 Network	 Func9ons	 	

(+	 Verifiable	 Resource	 Accoun9ng	 for	 Cloud	 Services)	

Vyas	 Sekar	

1	

vNFO	 joint	 with	 	
	 Seyed	 Fayazbakhsh,	 Mike	 Reiter	
VRA	 joint	 with	
	 Chen	 Chen,	 Petros	 Mania9s,	 Adrian	 Perrig,	 Amit	 Vasudevan	

2	

Type	 of	 appliance	 	 Number	

Firewalls	 166	

NIDS	 127	

Media	 gateways	 110	

Load	 balancers	 67	

Proxies	 66	

VPN	 gateways	 45	

WAN	 Op9mizers	 44	

Voice	 gateways	 11	

“Middleboxes”	 are	 valuable,	 	
but	 have	 many	 pain	 points!	 	

High	 Capital	 Expenses	 	
Device	 Sprawl	

High	 Opera9ng	 Expenses	
e.g.,	 separate	 management	 teams	
need	 manual	 tuning	

Inflexible,	 difficult	 to	 extend	
	 	 à	 need	 for	 new	 boxes!	 ?	

Based	 on	 survey	 responses	 +	 discussions	

[COMB,	 NSDI	 ’12]	

Case	 for	 Network	 Func9on	 Outsourcing	 (NFO)	

Internet	

Cloud	 Provider	

+	 Economies	 of	 scale,	 pay-‐per	 use	
+	 Simplifies	 configura9on	 &	 deployment	

3	

Today:	
High	 CapEx,	 OpEx,	 	
Delay	 in	 innova9on	

[APLOMB,	 SIGCOMM	 ’12]	

Concerns	 with	 ceding	 control	

Internet	

Cloud	 Provider	

4	

Correctness	 proper9es:	
Behavior,	 Performance,	 Accoun9ng	
	
Outside	 scope:	 Isola9on,	 privacy,	 ..	

[vNFO,	 HotMiddlebox	 ’13]	

What	 makes	 this	 challenging?	

•  Lack	 of	 visibility	 into	 the	 workload	

•  Dynamic,	 traffic-‐dependent,	 and	 proprietary	
ac9ons	 of	 the	 network	 func9ons	

•  Stochas9c	 effects	 introduced	 by	 the	 network	

5	

Outline	

•  Mo9va9on	 for	 verifiable	 NFO	
	

•  Formalizing	 	 proper9es	
	

•  A	 roadmap	 for	 vNFO	
	

•  Discussion	 	

6	

Formal	 Framework	 	

Management	
Interface	

f1	 fn	
….	

σ1	 σn	

BCPU,	 BMem,	 BNet	

Customer	

CPU,	
Mem	

Net	 CPU,	
Mem	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

π1
in, π2

in,… π1
out, π2

out,...

Management(
Interface(

f1 fn ….
σ1

σn

BCPU, BMem, BNet

Customer(

CPU,
Mem

Net CPU,
Mem

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
of packets processed by the functions; i.e., Metricm =

State	 Space	 Packet	 Space	

π1
in, π2

in,… π1
out, π2

out,...

Management(
Interface(

f1 fn ….
σ1

σn

BCPU, BMem, BNet

Customer(

CPU,
Mem

Net CPU,
Mem

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence
of packets processed by the functions; i.e., Metricm =

Reference	 	
implementa9on	 	

7	

Blackbox	 Behavioral	 Correctness	

….	
σ1	 σn	

π1
in	 π1

out	

visible	 to	 customer	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

….	 σ’1	 σ’n	
π1

in	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Is	 there	 some	
viable	 state?	

π1
out	

?	 ?	

8	

Snapshot	 Behavioral	 Correctness	

….	
σ1	 σn	

π1
in	 π1

out	

visible	 to	 customer	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

….	
σ1	 σn	

π1
in	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Would	 I	 get	 the	 	
same	 output?	

π1
out?	

9	

Performance	 Correctness	

….	
σ1	 σn	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

….	
σ1	 σn	

π1
in,	 π2

in,…	 	
π1

out,	 π2
out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Would	 it	 really	
take	 this	 long?	

t1out,	 t2out,...	

t’1out,	 t’2out,...	

Observed	 provider	 performance	 ≈	 Reference	 performance	
10	

“Did-‐I”	 Accoun9ng	 Correctness	

….	
σ1	 σn	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Did	 It	 actually	
consume?	

Charged	 value	 of	 resource	 r	 ≈	 	
Consump9on	 of	 resource	 r	 by	 provider	

11	

“Should-‐I”	 Accoun9ng	 Correctness	

….	
σ1	 σn	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let fpkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Should	 It	 really	
cost	 this	 much?	

12	

	 Consump9on	 of	 resource	 r	 by	 provider	 ≈	 	
Consump9on	 of	 resource	 r	 by	 reference	 implementa9on	

Outline	

•  Mo9va9on	 for	 NFO	 +	 vNFO	
	

•  Formalizing	 vNFO	 proper9es	
	

•  A	 roadmap	 for	 vNFO	
	

•  Discussion	

13	

Verifiable	 NFO	 (vNFO)	 Overview	
Management	
Interface	 BCPU,	 BMem,	 BNet	

Customer	

CPU,	
Mem	

Net	 CPU,	
Mem	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

….	

Each	 func9on	 is	 implemented	 as	 a	 virtual	 appliance.	
NFO	 provider	 deploys	 a	 trusted	 shim	 for	 logging.	 	

14	

Behavioral	 +	 Performance	 Correctness	
Management	
Interface	 BCPU,	 BMem,	 BNet	

Customer	

CPU,	
Mem	

Net	 CPU,	
Mem	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

….	

Shim	 logs:	 every	 packet,	 VM	 state,	 9mestamps	 per	 packet	

15	

Challenges!	
Management	
Interface	 BCPU,	 BMem,	 BNet	

Customer	

CPU,	
Mem	

Net	 CPU,	
Mem	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

….	

1.	 Middlebox	 ac9ons	 make	 it	 difficult	 to	 correlate	 logs	
2.	 Scalability	 and	 performance	 impact	 due	 to	 logging	

16	

Poten9al	 solu9ons	 to	 challenges	

1.  Lack	 of	 visibility	 into	 middlebox	 ac9ons:	
– Packets	 may	 be	 modified	 by	 middleboxes.	

2.  Scalability	
–  Infeasible	 to	 log	 all	 packets	 and	 processing	 stats.	

17	

FlowTags:	 NSDI	 ‘14	

Trajectory	 Sampling	

Outline	

•  Mo9va9on	 for	 NFO	 +	 vNFO	
	

•  Formalizing	 vNFO	 proper9es	
	

•  A	 roadmap	 for	 vNFO	
–  Verifiable	 accoun9ng	 for	 Did-‐I	 correctness	

•  Discussion	 	

18	

“Did-‐I”	 Accoun9ng	 Correctness	

….	
σ1	 σn	

π1
in,	 π2

in,…	 	 π1
out,	 π2

out,...	

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂ pkt

n (. . . f̂pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Figure 4: The system parameters necessary to specify the formal
correctness requirements of NFO: the sequence of input packets
(i.e., ⇡in

1 ,⇡
in

2 , . . .) is processed by a sequence of functions (i.e.,
f pkt

1 , f pkt

2 , . . .) in the NFO provider; the sequence of processed
packets (i.e., ⇡out

1 ,⇡out

2 , . . .) is then sent to the customer along with
a bill that represents usage of various resources (e.g., BCPU , BMem ,
BNet).

form the design of a verifiable NFO by highlighting the system and
environment effects that need to be captured.
Preliminaries: Let f : (⇧ ⇥ ⌃) ! (⇧ ⇥ ⌃) denote a primitive
middlebox function that takes as input a packet and a state, and
outputs a packet and a new state (see Figure 4). More specifically,
⇧ denotes the set of all packets, and ⌃ is the set of reachable states
for f. For convenience, we specify that ⇧ includes a special symbol
“?” and that each primitive function f satisfies (?,�) f(?,�)
for all � 2 ⌃. The symbol “?” captures packets that are dropped
by f (e.g., a packet that matches a drop rule at a firewall function).
Let f pkt(⇡,�) and f st(⇡,�) denote the packet and state outputs of
f(⇡,�), respectively.

Let superscripts in and out denote whether the corresponding
parameter is an input or an output of a function. We assume that a
customer has contracted with the NFO provider to subject its pack-
ets to the service chain f1, f2, . . . , fn of primitive functions. That
is, if ~⇡in 2 ⇧⇤ denotes the sequence of packets that a customer
expects to be processed in the cloud, then she expects to receive in
return a sequence ~⇡out 2 ⇧⇤ of the same length. (Some elements
of ~⇡out might be ?, indicating that the corresponding packet in ~⇡in

was dropped.) Let ⇡ji denote the packet output by fi, as run by
the NFO provider, corresponding to the jth packet of the input se-
quence ~⇡in as its input. Also, let ⌃i denote the state space of fi.
Informally, the j-th element of ~⇡out, denoted by ⇡out

j , should be
produced by setting ⇡j0 ⇡in

j and then applying

⇡j1 f pkt

1 (⇡j0,�
in

1);�
out

1 f st

1 (⇡j0,�
in

1)

⇡j2 f pkt

2 (⇡j1,�
in

2);�
out

2 f st

2 (⇡j1,�
in

2)

...

⇡jn f pkt

n (⇡j(n�1)�
in

n);�
out

n f st

n (⇡j(n�1),�
in

n)

and then setting ⇡out

j ⇡jn. Note that in the above formulation
the output state of fi (i.e., �out

i) will be used as its input state (i.e.,
�in

i) in the next invocation of fi.
Suppose each invocation fi(⇡j(i�1),�

in

i) consumes a set
of measurable computational resources R[fi(⇡j(i�1),�

in

i)] =
hRes1, . . . ,ResRi in units suitable for each resource; e.g., CPU
cycles or instantaneous memory consumption. Let each invoca-
tion of fi be associated with invocation and completion timestamps
T in(⇡j(i�1), fi) and T out(⇡ji, fi), respectively.

The correctness properties, which are discussed next, use the no-
tion of the reference implementation of function fi, denoted by bfi,

which serves as a point of reference for verifying each property.
We assume the customer has access to the reference implementa-
tion. For instance, bfi may represent the case of running the actual
VM image of the ith function locally in the customer’s site.

3.1 Functional Correctness
Our first goal is to verify the semantic behavior of the outsourced

functions. We describe this correctness as occurring at two levels:
at the level of an individual primitive function and then at the level
of the entire pipeline or chain composed of multiple primitive func-
tions.

As a starting point, we list two properties that must be guaranteed
for each primitive function:

• Black-box primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧:
9�in

i 2 ⌃i : ⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

This property states that if we can log the incoming/outgoing
packet at a given middlebox, then there is some instantiation
of the state variables for the reference function bfi that could
have output the observed packet.

• Snapshot primitive equivalence:
Given ⇡j(i�1),⇡ji 2 ⇧, and �in

i 2 ⌃i:
⇡ji = f̂ pkt

i (⇡j(i�1),�
in

i)

The guarantee provided by the black-box primitive equiva-
lence is a weak form of correctness, as it just states that there
is some possible execution sequence. The snapshot primi-
tive equivalence provides a stronger notion of correctness by
binding the execution to the known current state �in

i .

Building on this, we extend the correctness properties to the full
pipeline of functions as follows:

• Black-box pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧:
9�in

1 2 ⌃1, . . . ,�
in

n 2 ⌃n :
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

This is the most basic requirement where we want to make
sure that there is some instantiation of the internal states of
the middleboxes and the intermediate packets that could have
resulted in the observed input-output behavior.

hey man: f̂1 AND f̂n

• Snapshot pipeline equivalence:
Given ⇡in

j ,⇡
out

j 2 ⇧, �in

1 2 ⌃1, . . ., �in

n 2 ⌃n:
⇡out

j = f̂pkt

n (. . . f̂ pkt

2 (f̂ pkt

1 (⇡in

j ,�
in

1),�
in

2), . . . ,�
in

n)

As in the earlier case, we are strengthening the correctness
requirement by additionally binding the internal states of the
respective functions at the time of processing.

As we will see in the next section, the different properties en-
tail different monitoring requirements. For instance, the blackbox
properties only require the input/output packets, whereas the snap-
shot properties also need to account for middlebox state.

3.2 Performance Correctness
Suppose the NFO customer and provider have contrac-

tually agreed on a set of performance measures M =
hMetric1, . . . ,MetricM i as part of their service-level agree-
ment. Each Metricm is computed as a summary statis-
tic w.r.t. metric m (e.g., average delay) over the sequence

Did	 It	 actually	
consume?	

Charged	 value	 of	 resource	 r	 ≈	 	
Consump9on	 of	 resource	 r	 by	 provider	

19	

Desired	 Proper9es	

•  Image	 Integrity	
– What	 is	 running	

•  Execu9on	 Integrity	
– How	 it	 is	 running	

•  Accoun9ng	 Integrity	
– Only	 chargeable	 events	 are	 accounted	

20	

ALIBI	 Design	 Overview	

•  Image	 Integrity	
•  Execu9on	 Integrity	
•  Accoun9ng	 Integrity	

via	 Aqested	 Instance	 Launch	
via	 Guest-‐Plarorm	 Isola9on	
via	 Bracke9ng	

Provider Software

Co-tenant
Instance

Customer’s
Instance (VM)

ReportObserver

HW

Verifier

Integrity
protected Trusted Untrusted

ch
ar
ge
ab

le
ev
en
t

21	

ALIBI	 architecture	

Enhance	 KVM	 nested	 virtualiza9on	 with	 resource	
accoun9ng	 and	 protec9on	

KVM-L1

L2 Guest L2 Guest

KVM-L0

HW

Alibi

•  Advantage	
•  Intercept	 cri9cal	 events	
•  No	 modifica9on	 to	 L1	

hypervisor	
	

•  Current	 Implementa9on	
•  CPU	 accoun9ng	
•  Memory	 accoun9ng	

22	

Guest-‐Plarorm	 Isola9on	
	 (Execu9on	 Integrity)	

•  Memory	 Integrity	
–  Isolate	 memory	 pages	 M	 by	 instances	
– Mi	 is	 writeable	 only	 when	 instance	 i	 is	 running	

•  Control	 Flow	 Integrity	
– Protect	 program	 stack	 by	 memory	 protec9on	
– Monitor	 and	 validate	 guest-‐CPU	 state	 changes	

•  Storage	 Integrity	
–  Integrity	 protected	 file	 system	

23	

Bracke9ng	 (Accoun9ng	 integrity)	

•  Event	 Detec9on	
•  Control	 transfer	
•  Memory	 mapping	 and	
unmapping	

•  Event	 Aqribu9on	
•  Associate	 resource	 usage	 with	
CPU	 ownership	

	
•  Event	 Repor9ng	
•  Collect	 event	 measurements	
•  Store	 and	 protect	 event	
measurements	

A

B

C

map page

unmap page

Instance 0

Instance 1

Instance 0 CPU Execution

24	

CPU	 Accoun9ng	 Case	 Study	

•  Account	 CPU	 cycles	 directly	 used	 by	 L2	 guest	
•  Protect	 Time	 Stamp	 Counter	 (TSC)	 register	

•  Get	 CPU	 cycles,	 e.g.,	 RDTSC	
•  Entry	 into	 L2	 guest	
•  Exit	 from	 L2	 guest	

•  Virtualize	 TSC	 register	

KVM-L1

L2 Guest L2 Guest

KVM-L0

HW

Alibi

Read Timestamp Counter

25	

0
10
20
30
40
50
60
70
80
90

100

%
 N

at
iv

e
(h

ig
he

r
th

e
be

tt
er

)

single-level nested nested with accounting

•  Single-‐level	 virt.	 vs.	 na9ve	 (no	 virt.)	 :	 ~9.5%	 slowdown	
•  Nested	 virt.	 vs.	 Single-‐level	 virt.	 :	 ~6.3%	 slowdown	
•  ALIBI	 addi9onal:	 ~0.5%	 slowdown	

•  HW:	 Intel	 Xeon	 E3-‐1220	 (3.10Ghz)	 with	 8GB	 RAM	
•  L2/L1:	 Ubuntu	 9.04	 (kernel	 version	 2.6.18-‐10)	 	

L0:	 Ubuntu	 12.04	 (kernel	 version	 3.5.0)	 and	 ALIBI	

Overhead	 of	 ALIBI	

26	

Outline	

•  Mo9va9on	 for	 verifiable	 NFO	
	

•  Formalizing	 	 proper9es	
	

•  A	 roadmap	 for	 vNFO	
	

•  Discussion	 	

27	

Discussion	
•  Is	 the	 NFO	 provider	 willing	 to	 deploy	 a	 shim?	

•  What	 are	 the	 market	 implica9ons	 for	 customers?	

•  What	 is	 the	 role	 of	 SLAs?	

•  Should-‐I	 accoun9ng?	 I/O	 accoun9ng?	
•  Interes9ng	 anecdotes	 of	 correctness	 or	 accoun9ng	
problems?	

•  Minimal	 TCB?	 without	 nested?	

•  Crowdsourcing	 correctness?	
•  …	

28	

