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Data centers constantly evolve

- 63% of Data Center Knowledge readers are either in the
midst of data center expansion projects or have just
completed a new facility

- 59% continue to build and manage their data centers in-
house

http://www.datacenterknowledge.com/archives/2010/08/16/data-center-industry-expansion-in-full-swing/



http://www.datacenterknowledge.com/archives/2010/08/16/data-center-industry-expansion-in-full-swing/
http://www.datacenterknowledge.com/archives/2010/08/16/data-center-industry-expansion-in-full-swing/
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Network upgrade motivation

o Several prior solutions for greenfield data centers

- VL2, flattened butterfly, HyperX, BCube, DCell,
Al-Fares et al., MDCube

o What about legacy data centers?



Existing topologies are not flexible enough
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Goal

It should be easy and cost-effective to add
capacity to a data center network



Challenging problem

o Designing a data center expansion or upgrade isn't easy
- Huge design space

- Many constraints




Problem 1

e |t's hard to analyze and understand
heterogeneous topologies

Problem 2

 How to design an upgraded topology?



Problem 1

e High performance network topologies are
based on rigid constructions

- Homogeneous switches
- Prescribed switch radix
- Single link rate



Problem 1

e High performance network topologies are
based on rigid constructions

- Homogeneous switches
- Prescribed switch radix
- Single link rate

Solutions:

1. develop theory of heterogeneous Clos networks

2. explore unstructured data center network topologies



Two solutions:

LEG U P: output is a heterogeneous Clos network

[Curtis, Keshav, Lopez-Ortiz; CONEXT 2010]

REWIRE: designs unstructured DCN topologies

[Curtis et al.; INFOCOM 2012]
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L EGUP in brief:

LEGUP designs upgraded/expanded networks for legacy data
center networks

Input Output

Difficult optimization problem



Difficult optimization problem

First pass: limit solution space by finding
only heterogeneous Clos networks



Clos networks

This is a physical realization of a Clos network
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Clos networks

We can find a logical topology for this network
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Heterogeneous Clos networks

Logical topology is a forest
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Theoretical contributions

*optimal = uses same link capacity an equivalent stage Clos network
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Theoretical contributions

Lemma 1: How to construct all optimal logical
forests for a set of switches

Lemma 2: How to build a physical realization
from a logical forest

Theorem: A characterization of heterogeneous
Clos networks

This is the first optimal heterogeneous topology

*optimal = uses same link capacity an equivalent stage Clos network



Problem 1

e |t's hard to analyze and understand
heterogeneous topologies more later...

Problem 2

 How to design an upgraded topology?



Problem 2

 How to design an upgraded topology?

heterogeneous Clos



Problem 2

Upgraded network should:

« Maximize performance, minimize cost
e Berealized in the target data center

» Incorporate existing network equipment if it
makes sense

Approach: use optimization



LEGUP algorithm

e Branch and bound search of solution space

- Heuristics to map switches to a rack

e See paper for details

e Timeis bottleneck in algorithm

- Exponential in number of switch types and (worst-case) in
number ToRs

- 760 server data center: 5-10 minutes to run algorithm
- 7600 server data center: 1-2 days

- But can be parallelized



LEGUP summary

e Developed theory of heterogeneous Clos networks
e Implemented LEGUP design algorithm

e On our data center, we see substantial cost savings:
spend less than half as much money as a fat-tree
for same performance



Two solutions:

REWIRE: designs unstructured DCN topologies

[Curtis et al.; INFOCOM 2012]



Can we do better with
unstructured networks?
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Problem

e Now we have an even harder network design problem



Problem

e Now we have an even harder network design problem

Approach

o Use local search heuristics to find a“good enough”
solution



REWIRE

Uses simulated annealing to find a network that:

- Maximizes performance

Subject to:

- The budget

- Physical constraints of the data center model
(thermal, power, space)

- No topology restrictions
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REWIRE

Uses simulated annealing to find a network that:

- Maximizes performance

Subject to:
Costs = new cables + moved cables

+ new switches
- Physical constraints of the data center model

(thermal, power, space)

- Th¢ budget

- No topology restrictions



Simulated annealing algorithm

e Ateach iteration, computes

- Performance of candidate solution

- If accept this solution, then

e Compute next neighbor to consider



Simulated annealing algorithm

e Ateach iteration, computes

- Performance of candidate solution

No known algorithm to find the
bisection bandwidth of an
arbitrary network!




Bisection bandwidth computation
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Bisection bandwidth computation
bw(S,S’) = link cap(S,S)

min { server rates(S), server rates(S’) }




Bisection bandwidth computation

bw(S,S’) =

min{2, 6}




Bisection bandwidth computation

Then bisection bandwidth is the min over all cuts




Bisection bandwidth computation

e Easy on tree-like topologies because there
are O(n) cuts
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Bisection bandwidth computation

e Easy on tree-like topologies because there
are O(n) cuts
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Bisection bandwidth computation

Theorem [Curtis and Lopez-Ortiz, INFOCOM 2009]:

A network can feasibly route all traffic matrices feasible under the server NIC
rates using multipath routing iff all its cuts have bandwidth > a sum dependent
on q; for all nodes i

We can compute the a; values using linear programming
[Kodialam et al. INFOCOM 2006]

These two theoretical results give us a polynomial-time algorithm
to find the bisection bandwidth of an arbitrary network



Evaluation

How much performance do we gain with
heterogeneous network equipment?



Evaluation

o U of Waterloo School of Computer Science
data center as input

e Three scenarios:
- Upgrading the network (see paper)
- Expansion by adding servers

- Greenfield data center



Evaluation: input

e SCS data center topology

- 19 edge switches, 760 servers
- Heterogeneous edge switches

- All aggregation switches are HP 5406 models




Evaluation: input

e The data center handles air poorly.
So, we add thermal constraints modeling this

Cold/hot aisle

Cold aisle

—>
ks
=
U

—>

Hot aisle



Evaluation: cost model

1 Gb ports 10 Gb ports Watts Cost (S)
24 100 250
48 150 1,500
48 4 235 5,000
24 300 6,000
48 600 10,000
144 5000 /5,000
Rate Short (S) Medium (S) Long (S)
1 Gb 5 10 20
10 Gb 50 100 200
Install cost 10 20 50




Evaluation: comparison methods

e Generalized fat-tree

- Bounded best-case performance

e Greedy algorithm

- Finds link addition that improves performance the
most, adds it, and repeats

e Random graph

- Proposed by Singla et al., HotCloud 2011 as data
center network topology



Expanding the Waterloo SCS data center
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Expanding the Waterloo SCS data center
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Expanding the Waterloo SCS data center
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Greenfield network design

e 1920 servers

e Edges switches have 48 gigabit ports

- Assume 24 servers per rack



Greenfield network design
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Greenfield network design
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Greenfield network design

e Expanding a greenfield network

e 1600 servers initially

- Grow by increments of 400 servers (10 racks)

- $6000/rack budget



Expanding a greenfield network
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Expanding a greenfield network
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Expanding a greenfield network
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Are unstructured topologies worth it?

e Higher performance

- Up to 10x more bisection bandwidth than heterogeneous
Clos for same cost

- Lower latency
(can get 2 hops between racks instead of 4)

e But difficult to manage

- Cost to build/manage is unclear

- Need to use Multipath TCP [Raiciu et al. SIGCOMM 2011] or SPAIN

[Mudigonda et al., NSDI12010] to effectively use available
bandwidth



REWIRE future work

e Structural constraints on topology

- Generalize greenfield topology design framework of
Mudigonda et al.,,USENIX ATC 2011

e Bisection bandwidth computation
algorithm numerically unstable

o Scalelocal search approach to larger
networks

e Relationship between spectral gap and
bisection bandwidth?



Conclusions

e Best practices are not enough for data center upgrades

 Need theory to understand and effectively build
heterogeneous networks

e Implemented LEGUP and REWIRE, optimization
algorithms to design heterogeneous DCNs
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