Jellyfish: Networking

Data Centers Randomly

Ankit Singla Chi-Yao Hong Lucian Popa
Brighten Godfrey

DIMACS Workshop on Systems and
Networking Advances in Cloud Computing
December 8 2011

The real stars...

AT S P

W ¥
g

=4 >4 . : y
.
T - J ;“ y
A B
‘ A i !
. = r ! »~
~

ek

» E,_i ;

= N

'y \-"‘ \

I — Bl

Ankit Singla Chi-Yao Hong Lucian Popa
UIUC UIUC HP Labs

€ € It is anticipated that the
whole of the populous
barts of the United States
will, within two or three
years, be covered with net-
work like a spider's web.

)

Let’s start with a prediction: Any guesses what date this is from?

It is anticipated that the
whole of the populous
barts of the United States
will, within two or three
years, be covered with net-
work like a spider's web.

— The London Anecdotes,
| 848

This talk is about network topology, and as this quote illustrates people have been designing network topologies for hundreds of years. But in the past, they have been
constrained in some way. If you’re building a wide area network, you need to build a network constrained by, for example, where the population is located ...

... If you’re building a supercomputer, you need a network with a highly regular structure so routing is easy and can’t get deadlocked. ...

... and if you’re building a traditional data center, you need a design like a tree so the Spanning Tree Protocol can work right.

But now, in data centers particularly, we have the tools to build topologies with a great deal more freedom than we’ve ever had before. And | intend to use it! We’re going
to take that freedom and do something a little radical with it. So, what do we want out of a network topology?

Two goals

High throughput Incremental expandability

Eliminate bottlenecks Easily add/replace
Agile placement of VMs servers & switches

Incremental expansion

Facebook “adding capacity on a daily basis”

Server footprint

07 e

2007 08 09 10

Commercial products

® SGI lce Cube (“Expandable Modular Data Center”)
® HP EcoPod (“Pay-as-you-grow”)

You can add servers, but what about the network!?

(http://tinyurl.com/2ayeu4f) These commercial products let you add servers, but expanding high bandwidth
network interconnects turns out to be rather tricky.

Today's structured networks

ATE I'F 7 LT

\ VY, /
| \\\\‘l‘\\\i\\\ \“%‘;’ X / // 7
N \ \\ \\ \ \\ \ ‘>\ ”‘4”":‘_’6«&’(!
! \\\QSX\\}‘:\‘ ‘«i\%“‘;‘:«"“/ ‘;‘W /
:

N\ \‘\\\\ / ;‘/fy
SN N
N

\ i i
N\

D \\\

R

ESSN

N\ \\
;N&
~N\

\
RN
AN

f“-
"’ X |/
A g i
o

X
<>

N AAAA KNS A TN

N AU IR L i

NS R s | "
\ N X i | ar I
ORI i
NSNS AT *
N

w\r

7 /// ’ /\\
/ x’;‘/‘“\‘ W
N
/VWMQN”
AN
i

=

Z
77

==

=
Z A

NN

—

=

\ \

T
r//{z,’(/

/7
7217

-

THY

\

';-—-——’“v—:—,ﬁ

Structure constrains expansion

Coarse design points

e Hypercube: 2% switches
e de Bruijn-like: 3 switches
e 3-level fat tree: 5k%/4 switches

Fat trees by the numbers:

o (3-level, with commodity 24, 32, 48, ... port switches)
® 3456 servers, 8192 servers, 27648 servers, ...

Unclear how to maintain structure incrementally

Our Solution

Forget about structure —
let’s have no structure at all!

Jellyfish:
The Topology

Jellyfish: The Topology

:6 O o & g
|

:E Server
‘ Switch

\\ Switch i\@ S\ Server
S

/ ~

Uniform randomly Switches are nodes

selected from all Each node has
the same degree
regular graphs

Capacity as a fluid

I
Y

\)

'»‘\"

7 N\
i ” ﬁ \ \
)

Jellyfish random graph

432 servers, 180 switches, degree 12

The name Jellyfish comes from the intuition that Jellyfish makes network capacity less like a
structured solid and more like a fluid.

Capacity as a fluid

Jellyfish random graph Jellyfish

432 servers, |80 switches, degree 12 Arctapodema (http://goo.gl/KoAC3)

But it also looks like a jellyfish...

http://goo.gl/KoAC3
http://goo.gl/KoAC3

Construction & Expansion

Building Jellyfish

=

Building Jellyfish

Building Jellyfish

Same procedure for initial construction
and incremental expansion

Quantifying expandability

Bisection Bandwidth

0 1 2 3 4 3} 6 14 38

Expansion Stage

LEGUP: [Curtis, Keshay, Lopez-Ortiz, CoNEXT’10]

Main reason this happens: LEGUP needs to leave some ports free to be able to scale out, while Jellyfish can use them all. The point is not that LEGUP is bad -- it's trying its best, but it has
to stay within a Clos-like topology, and to do that, it has to leave some ports free for later expansion.

Throughput

So we got higher bisection bandwidth here because we're using all ports. But, what if we forget about expandability for a moment, and just compare two topologies with equivalent
equipment: By giving up a carefully planned structure, do we take a hit on throughput?

Throughput: Jellyfish vs. fat tree

B50Q e e o
Jellyfish (Packet-level) «--&-- [o
: | Fat-tree @ ey

3000 |) BO/

2 L o
T o e
@ 2000 e
S ! e T
o a a a e a a
m =000 B ‘
5700 N MU SN SN B S SN S
% -
g 1 OOO '1.;"‘...r1 --------------------------- ,1
3
500 - . e
O a , ' b e H H i i

0 2000 4000 6000 8000 10000 12000 14000
Equipment Cost [#Ports] Using Identical Equipment

Packet-level simulation

About half the people we talk to think this is obvious, and half think it’s surprising. So, let’s get some intuition for why Jellyfish has higher throughput.

Intuition

if we fully utilize all available capacity ...

total capacity

| Gbps flows = .
used capacity per flow

Intuition

if we fully utilize all available capacity ...

inks capacity(link
| Gbps flows = —=nks capacity(ink)
used capacity per flow

Intuition

if we fully utilize all available capacity ...

inks capacity(link
| Gbps flows = —=inks capacity(ink)
| Gbps * mean path length

Intuition

if we fully utilize all available capacity ...

inks capacity(link
| Gbps flows = —=inks capacity(ink)
| Gbps * mean path length

Mission:

minimize average path length

\ l(\ ,\’) 4 y
N AN DAY s
\ *l\\ \ \\’"WW vy /
\ \ " ,//// w4 ,/
N\ \\Wiele
) \\\\\\!\ \\\ \1@!’{)"‘ /"ﬁ’eg,\’y’ ///

AN NN
AN
= . NN

N \ \\ X ‘§s§§\\w Z Y 3 ;’{ \/f('//

// /"/,“l’/l oS
AR A NS \
/d' } ('\\ \\:\

/1

0

i
il

Fat tree Jellyfish random graph

432 servers, 180 switches, degree 12 432 servers, 180 switches, degree 12

Let’s take an example...

Example

Fat tree Jellyfish random graph

|6 servers, 20 switches, degree 4 |6 servers, 20 switches, degree 4

A more manageable example, actually...

4 of |6

reachable
in < 6 hops

Example: Fat Tree

Example: Jellyfish

|3 of 16 ,'
reachable in

< 6 hops

Can we do even better?

What is the maximum number of nodes
in any graph with degree 0 and diameter d?

Can we do even better?

What is the maximum number of nodes
in any graph with degree 3 and diameter 2!

Peterson graph

Degree-diameter problem

LARGEST KNOWN (A,D)-GRAPHS. June 2010.
Diameter

-~
-

o X 1N kW@

Degree

e e S W
N R W=D

[—
=)

[Delorme & Comellas: http: //www-mat.upc.es/grup de grafs/table g.html/]

This is not an easy problem! Only the values in bold are known to be optimal. But people have put in a lot of time to find good graphs in clever ways. Can we make use of this?

http://www-mat.upc.es/grup_de_grafs/table_g.html/
http://www-mat.upc.es/grup_de_grafs/table_g.html/

Degree-diameter problem

Do the best known degree-diameter graphs
also work well for high throughput!?

Degree-diameter vs. Jellyfish

1
0.8
0.6
0.4
0.2
’ (7o 12>, 19
Switches: 0> < ¢ QO % e %

Total ports: " v 7 & N R I P AP
2> 7 2 2 4 0 6 7
Net-ports: < 7 Y 2 B =~ 7

Normalized Throughput

S 7 R

Best-known Degree-Diameter Graph Il
Jellyfish =]

DHD U (L Lt Jellyfish within |5%!

high throughput

Two interesting things come out of this: (1) Our hypothesis was right, D-D do have high throughput, which might be useful as a benchmark or to build DCs that don’t need to expand like
maybe in a container. (2) Randomness is competitive, always within 15% of these carefully-optimized topologies. And of course, Jellyfish has the advantage of easy incremental
expandability.

What we know so far

i\

2 \v"
Z, //
Y o,
///’
70 i
(
/ d /i \ \ \

'{ Y

flexible, expandable high throughput

"OK, but...”

Now, this is the point in the talk when you might be saying, “OK, but, what about X?” I'd like to talk about two values of X: Routing and Cabling.

How do we effectively utilize
capacity without structure!

Well, that's a big if...
So, how do we fully utilize the capacity? Tree-like networks have nice structure and we can use something like ECMP or Valiant load balancing, spraying packets or flows randomly to the
core switches. But now we don't have any structure of "core" switches. What do we do?

Routing: a simple solution

Find k shortest paths

Let Multipath TCP do the rest
e [Wischik, Raiciu, Greenhalgh, Handley, NSDI’ | 0]

86-907% of
optimal

Normalized Throughput

70 165 335 600 960
#Servers

Jellyfish (Packet-level) .
Jellyfish (CPLEX) (optimal)

We are happy to stand on the shoulders of giants.

Perhaps not literally giants, but Mark Handley is pretty tall...

Cabling

[Photo: Javier Lastras / Wikimedia]
You'll note that Jellyfish bears more than a passing resemblance to a bowl of spaghetti.

Cabling solutions

Fewer Aggregate Avoid long

cables bundles cables
cluster A
new rack X
for same #
> < 5% loss of
servers as

throughput

fat tree

cluster B

It might seem that randomness means there’s no way to organize cables. But we note that (1) Jellyfish has about
20% fewer switches and cables than an equivalent fat tree with the same number of servers, (2) It is possible to
cluster servers in a ‘pod’ or perhaps a container, and run bundles of cables between the pods, (3) cable length is
also an issue since long cables can be significantly more costly; but we can restrict the number of short vs. long

cables to match the fat tree with less than 5% throughput loss (details omitted).

Conclusion

High throughput Expandability

Sometimes in systems design you have to carefully navigate a tradeoff space. But here it seems that we can get the best of both worlds.

Backup

Cabling geometry

Long optical cables: cost += ~$200

|ldea: random with constraint on # of long cables

N < 5% throughput loss
\ with same equipment

0.6 o
« \. and cable lengths as

o fat tree

0.2

240 Servers ----E}---
500 Servers @
900 Servers —A&—

1 2 3 4) 6 7/
#Local (in-pod) Connections

Throughput Normalized to Unrestricted RRG

Normalized Throughput

0.95

09 |

0.85 -

0.8
0.75
0.7

0.65

Robustness

.._._._._._._~_.._._._._._._._._.J..' R |

..

L]
..

.......

gy gy S SO |

0.6 - R -

0 0.05 0.1 0.15 0.2

Fraction of Links Failed Randomly

Fairness

5
o

) B B
(@)
-)
o
_C
|_

; ---
0
LL

s

 Jellyfish 8-

0 ‘ ‘ . . Fat-tree.—o— ‘

0 50 100 150 200 250 300

Rank of Flow

