
Jellyfish: Networking
Data Centers Randomly

Ankit Singla Chi-Yao Hong Lucian Popa
Brighten Godfrey

DIMACS Workshop on Systems and
Networking Advances in Cloud Computing

December 8 2011

The real stars...

Ankit Singla
UIUC

Chi-Yao Hong
UIUC

Lucian Popa
HP Labs

“

”

It is anticipated that the
whole of the populous
parts of the United States
will, within two or three
years, be covered with net-
work like a spider's web.

Let’s start with a prediction: Any guesses what date this is from?

–– The London Anecdotes,
1848

“

”

It is anticipated that the
whole of the populous
parts of the United States
will, within two or three
years, be covered with net-
work like a spider's web.

This talk is about network topology, and as this quote illustrates people have been designing network topologies for hundreds of years. But in the past, they have been
constrained in some way. If you’re building a wide area network, you need to build a network constrained by, for example, where the population is located ...

... If you’re building a supercomputer, you need a network with a highly regular structure so routing is easy and can’t get deadlocked. ...

... and if you’re building a traditional data center, you need a design like a tree so the Spanning Tree Protocol can work right.

But now, in data centers particularly, we have the tools to build topologies with a great deal more freedom than we’ve ever had before. And I intend to use it! We’re going
to take that freedom and do something a little radical with it. So, what do we want out of a network topology?

Two goals

High throughput

Eliminate bottlenecks
Agile placement of VMs

Incremental expandability

Easily add/replace
servers & switches

Incremental expansion

Facebook “adding capacity on a daily basis”

Commercial products

• SGI Ice Cube (“Expandable Modular Data Center”)
• HP EcoPod (“Pay-as-you-grow”)

You can add servers, but what about the network?

2007 1008 09

(http://tinyurl.com/2ayeu4f) These commercial products let you add servers, but expanding high bandwidth
network interconnects turns out to be rather tricky.

Today’s structured networks

Structure constrains expansion

Coarse design points

• Hypercube: 2k switches
• de Bruijn-like: 3k switches
• 3-level fat tree: 5k2/4 switches

Fat trees by the numbers:

• (3-level, with commodity 24, 32, 48, ... port switches)
• 3456 servers, 8192 servers, 27648 servers, ...

Unclear how to maintain structure incrementally

Our Solution

Forget about structure –
let’s have no structure at all!

Jellyfish:
The Topology

Jellyfish: The Topology

Switch'

Server'
ports'

Server''

Server'

Random'''Regular'''Graph'

Switches'are'nodes'
Each'node'has''
the'same'degree'

Uniform'randomly'
selected'from'all'
regular'graphs'

Switch'

Switch'

Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12

The name Jellyfish comes from the intuition that Jellyfish makes network capacity less like a
structured solid and more like a fluid.

Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12

Jellyfish
Arctapodema (http://goo.gl/KoAC3)

[Photo: Bill Curtsinger, National Geographic]

But it also looks like a jellyfish...

http://goo.gl/KoAC3
http://goo.gl/KoAC3

Construction & Expansion

Building Jellyfish

Building Jellyfish

X

Building Jellyfish

X

X

Same procedure for initial construction
and incremental expansion

Quantifying expandability

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

B
is

ec
tio

n
B

an
dw

id
th

 Expansion Stage

Jellyfish

LEGUP

Increasing cost

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’10]
Main reason this happens: LEGUP needs to leave some ports free to be able to scale out, while Jellyfish can use them all. The point is not that LEGUP is bad -- it's trying its best, but it has
to stay within a Clos-like topology, and to do that, it has to leave some ports free for later expansion.

Throughput

So we got higher bisection bandwidth here because we’re using all ports. But, what if we forget about expandability for a moment, and just compare two topologies with equivalent
equipment: By giving up a carefully planned structure, do we take a hit on throughput?

Throughput: Jellyfish vs. fat tree

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000 12000 14000

#S
er

ve
rs

 a
t N

on
-B

lo
ck

in
g

R
at

e

Equipment Cost [#Ports] Using Identical Equipment

Jellyfish (Packet-level)
Fat-tree

Packet-level simulation

} +25%
more

servers

About half the people we talk to think this is obvious, and half think it’s surprising. So, let’s get some intuition for why Jellyfish has higher throughput.

Intuition

1 Gbps flows
total capacity

used capacity per flow
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

used capacity per flow
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...

Mission:
minimize average path length

Example

Fat tree
432 servers, 180 switches, degree 12

Jellyfish random graph
432 servers, 180 switches, degree 12

Let’s take an example...

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

A more manageable example, actually...

Example: Fat Tree

origin

4 of 16
reachable

in < 6 hops

Example: Jellyfish

origin

13 of 16
reachable in

< 6 hops

1

2

3

45

The example demonstrates that Jellyfish has much lower average path length. The randomness of the links allows the sphere of reachable nodes to rapidly expand as we get farther from
the origin. (Formally, the random graph is a good expander graph.)

Can we do even better?

What is the maximum number of nodes
in any graph with degree ∂ and diameter d?

Can we do even better?

What is the maximum number of nodes
in any graph with degree 3 and diameter 2?

Peterson graph

A LaTeX dvi table and dvi legend are available from Charles Delorme, Laboratoire de Recherche en
Informatique, Orsay, France.
Please, send new results to:
cd@lri.fr (Charles Delorme , LRI , who keeps the LaTeX table)
comellas@ma4.upc.edu (Francesc Comellas , DMAT/combgraph , who updates this WWW table).

Link to a Java applet that computes the degree and diameter of a graph in a file, local or accessible by HTTP,
and formatted as a list of adjacencies. Click here.

LARGEST KNOWN (Δ,D)-GRAPHS. June 2010.

D \ D 2 3 4 5 6 7 8 9 10
3 10 20 38 70 132 196 336 600 1 250
4 15 41 98 364 740 1 320 3 243 7 575 17 703
5 24 72 212 624 2 772 5 516 17 030 53 352 164 720
6 32 111 390 1 404 7 917 19 282 75 157 295 025 1 212 117
7 50 168 672 2 756 11 988 52 768 233 700 1 124 990 5 311 572
8 57 253 1 100 5 060 39 672 130 017 714 010 4 039 704 17 823 532
9 74 585 1 550 8 200 75 893 270 192 1 485 498 10 423 212 31 466 244
10 91 650 2 223 13 140 134 690 561 957 4 019 736 17 304 400 104 058 822
11 104 715 3 200 18 700 156 864 971 028 5 941 864 62 932 488 250 108 668
12 133 786 4 680 29 470 359 772 1 900 464 10 423 212 104 058 822 600 105 100
13 162 851 6 560 39 576 531 440 2 901 404 17 823 532 180 002 472 1 050 104 118
14 183 916 8 200 56 790 816 294 6 200 460 41 894 424 450 103 771 2 050 103 984
15 186 1 215 11 712 74 298 1 417 248 8 079 298 90 001 236 900 207 542 4 149 702 144
16 198 1 600 14 640 132 496 1 771 560 14 882 658 104 518 518 1 400 103 920 7 394 669 856

References

[BeDeQu92] J.-C. Bermond, C. Delorme and J.J. Quisquater; Table of large (Δ,D)-graphs. Discrete
Applied Mathematics, 37/38 (1992), 575-577.
[Bi74] N. Biggs; Algebraic Graph Theory, Cambridge Math. Library ISBN 0-521-45897-8 pbk, (1974,
1993 2nd edition).
[Co06] Marston Conder http://www.math.auckland.ac.nz/~conder/symmcubic2048list.txt
[CoGo92] F. Comellas and J. Gómez, New large graphs with given degree and diameter. , Graph
Theory, Combinatorics and Algorithms, vol 1, Yousef Alavi and Allen Schwenk (Eds.), John Wiley &
Sons, Inc.; New York (1995) pp. 221-233. ISBN 0-471-30437-9. (Proc. of the Seventh Quadrennial
International Conference on the Theory and Applications of Graphs, Kalamazoo, MI, USA, June
1992.)
[DeGo02] C. Delorme, J. Gómez. Some new large compound graphs. European Journal of
Combinatorics, 23 (2002), pp. 547.
[DiHa94] M.J. Dinneen & P. Hafner. New results for the degree/diameter problem. Networks, 24
(1994) 359-367.

[Delorme & Comellas: http://www-mat.upc.es/grup_de_grafs/table_g.html/]

Diameter

D
eg

re
e

Degree-diameter problem

This is not an easy problem! Only the values in bold are known to be optimal. But people have put in a lot of time to find good graphs in clever ways. Can we make use of this?

http://www-mat.upc.es/grup_de_grafs/table_g.html/
http://www-mat.upc.es/grup_de_grafs/table_g.html/

Degree-diameter problem

Do the best known degree-diameter graphs
also work well for high throughput?

Degree-diameter vs. Jellyfish

 0

 0.2

 0.4

 0.6

 0.8

 1

(132, 4, 3)

(72, 7, 5)

(98, 6, 4)

(50, 11, 7)

(111, 8, 6)

(212, 7, 5)

(168, 10, 7)

(104, 16, 11)

(198, 24, 16)

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Best-known Degree-Diameter Graph
Jellyfish

D-D graphs do have
high throughput Jellyfish within 15%!

Switches:
Total ports:

Net-ports:

Two interesting things come out of this: (1) Our hypothesis was right, D-D do have high throughput, which might be useful as a benchmark or to build DCs that don’t need to expand like
maybe in a container. (2) Randomness is competitive, always within 15% of these carefully-optimized topologies. And of course, Jellyfish has the advantage of easy incremental
expandability.

What we know so far

flexible, expandable high throughput

“OK, but...”

Now, this is the point in the talk when you might be saying, “OK, but, what about X?” I’d like to talk about two values of X: Routing and Cabling.

Routing

Intuition

1 Gbps flows

total capacity

used capacity per flow
=

if we fully utilize all available capacity ...

if

How do we effectively utilize
capacity without structure?

Well, that's a big if...
So, how do we fully utilize the capacity? Tree-like networks have nice structure and we can use something like ECMP or Valiant load balancing, spraying packets or flows randomly to the
core switches. But now we don't have any structure of "core" switches. What do we do?

Routing: a simple solution

Find k shortest paths

Let Multipath TCP do the rest

• [Wischik, Raiciu, Greenhalgh, Handley, NSDI’10]

 0

 0.2

 0.4

 0.6

 0.8

 1

70 165 335 600 960

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

#Servers

Jellyfish (Packet-level)
Jellyfish (CPLEX) (optimal)

86-90% of
optimal

We are happy to stand on the shoulders of giants.

Perhaps not literally giants, but Mark Handley is pretty tall...

Cabling

Cabling

[Photo: Javier Lastras / Wikimedia]

You'll note that Jellyfish bears more than a passing resemblance to a bowl of spaghetti.

Cluster of switches
Rack of servers
Aggregate cable

new rack X
cluster A

cluster B

Aggregate
bundles

Cabling solutions

Fewer
cables

for same #
servers as
fat tree

Avoid long
cables

< 5% loss of
throughput

It might seem that randomness means there’s no way to organize cables. But we note that (1) Jellyfish has about
20% fewer switches and cables than an equivalent fat tree with the same number of servers, (2) It is possible to
cluster servers in a ‘pod’ or perhaps a container, and run bundles of cables between the pods, (3) cable length is
also an issue since long cables can be significantly more costly; but we can restrict the number of short vs. long
cables to match the fat tree with less than 5% throughput loss (details omitted).

Conclusion

High throughput Expandability

Sometimes in systems design you have to carefully navigate a tradeoff space. But here it seems that we can get the best of both worlds.

Backup

Cabling geometry

Long optical cables: cost += ~$200

Idea: random with constraint on # of long cables

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 U
nr

es
tri

ct
ed

 R
R

G

#Local (in-pod) Connections

240 Servers
500 Servers
900 Servers

< 5% throughput loss
with same equipment
and cable lengths as
fat tree

Robustness

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fraction of Links Failed Randomly

Jellyfish (544 Servers)
Fat-tree (432 Servers)

Fairness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Fl
ow

 T
hr

ou
gh

pu
t

Rank of Flow

Jellyfish
Fat-tree

